首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular cascade that controls switching of the direction of rotation of Escherichia coli flagellar motors is well known, but the conformational changes that allow the rotor to switch are still unclear. The signaling molecule CheY, when phosphorylated, binds to the C-ring at the base of the rotor, raising the probability that the motor spins clockwise. When the concentration of CheY-P is so low that the motor rotates exclusively counterclockwise (CCW), the C-ring recruits more monomers of FliM and tetramers of FliN, the proteins to which CheY-P binds, thus increasing the motor's sensitivity to CheY-P and allowing it to switch once again. Motors that rotate exclusively CCW have more FliM and FliN subunits in their C-rings than motors that rotate exclusively clockwise. How are the new subunits accommodated? Does the diameter of the C-ring increase, or do FliM and FliN get packed in a different pattern, keeping the overall diameter of the C-ring constant? Here, by measuring fluorescence anisotropy of yellow fluorescent protein-labeled motors, we show that the CCW C-rings accommodate more FliM monomers without changing the spacing between them, and more FliN monomers at the same time as increasing their effective spacing and/or changing their orientation within the tetrameric structure.  相似文献   

2.
FliN is a major constituent of the C ring in the flagellar basal body of many bacteria. It is present in >100 copies per flagellum and together with FliM and FliG forms the switch complex that functions in flagellar assembly, rotation, and clockwise-counterclockwise switching. FliN is essential for flagellar assembly and switching, but its precise functions are unknown. The C-terminal part of the protein is best conserved and most important for function; a crystal structure of this C-terminal domain of FliN from Thermotoga maritima revealed a saddle-shaped dimer formed mainly from beta strands (P. N. Brown, M. A. A. Mathews, L. A. Joss, C. P. Hill, and D. F. Blair, J. Bacteriol. 187:2890-2902, 2005). Equilibrium sedimentation studies showed that FliN can form stable tetramers and that a FliM1FliN4 complex is also stable. Here, we have examined the organization of FliN subunits by using targeted cross-linking. Cys residues were introduced at various positions in FliN, singly or in pairs, and disulfide cross-linking was induced by oxidation. Efficient cross-linking was observed for certain positions near the ends of the dimer and for some positions in the structurally uncharacterized N-terminal domain. Certain combinations of two Cys replacements gave a high yield of cross-linked tetramer. The results support a model in which FliN is organized in doughnut-shaped tetramers, stabilized in part by contacts involving the N-terminal domain. Electron microscopic reconstructions show a bulge at the bottom of the C-ring whose size and shape are a close match for the hypothesized FliN tetramer.  相似文献   

3.
The flagellar switch of Salmonella typhimurium and Escherichia coli is composed of three proteins, FliG, FliM, and FliN. The switch complex modulates the direction of flagellar motor rotation in response to information about the environment received through the chemotaxis signal transduction pathway. In particular, chemotaxis protein CheY is believed to bind to switch protein FliM, inducing clockwise filament rotation and tumbling. To investigate the function of FliM and its interactions with FliG and FliN, we engineered a series of 34 FliM deletion mutant proteins, each lacking a different 10-amino-acid segment. We have determined the phenotype associated with each mutant protein, the ability of each mutant protein to interfere with the motility of wild-type cells, and the effect of additional FliG and FliN on the function of selected FliM mutant proteins. Overall, deletions at the N terminus produced a counterclockwise switch bias, deletions in the central region of the protein produced poorly motile or nonflagellate cells, and deletions near the C terminus produced only nonflagellate cells. On the basis of this evidence and the results of a previous study of spontaneous FliM mutants (H. Sockett, S. Yamaguchi, M. Kihara, V. M. Irikura, and R. M. Macnab, J. Bacteriol. 174:793-806, 1992), we propose a division of the FliM protein into four functional regions: an N-terminal region primarily involved in switching, an extended N-terminal region involved in switching and assembly, a middle region involved in switching and motor rotation, and a C-terminal region primarily involved in flagellar assembly.  相似文献   

4.
TheSalmonella typhimuriumFliN protein has been proposed to form a mutually interacting complex with FliG and FliM, the switch complex, that is required for flagellar morphogenesis and function. We have used affinity chromatography for purification of extended flagellar basal bodies sufficient for quantitative analysis of their protein composition. The belled, extended structure is predominantly comprised of the switch complex proteins; with FliN present in the most copies (111±13). This explains why single, missensefliN,fliGorfliMmutations, found in many non-motile strains, can alter the belled morphology. Cell lysates from these strains contained the wild-type complement of FliG, FliM and FliN; but the basal bodies lacked the outer, cytoplasmic(C)-ring of the bell and were separated by sedimentation from FliM and FliN. The amount of FliG present in basal bodies from wild-type and one such mutant, FliN100LP, was comparable. These data show that: (1) the mutations define a FliG and FliMFliN multiple contact interface important for motility. (2) FliG is responsible for the increased size of the membrane-embedded MS-ring complex of belled relative to acid-treated basal bodies. (3) FliN, together with FliM, account for most of the C-ring. As a major component of the C-ring, FliN is distinct from the other proteins implicated in axial flagellar protein export. Inner, cytoplasmic rod basal substructure, seen by negative-stain and quick- freeze replica electron microscopy, may gate such export. Lack of connectivity between the cytoplasmic rod and ring substructures places contacts between FliG and FliMFliN at the periphery of the basal body, proximal to the flagellar intramembrane ring particles. This topology is consistent with models where torque results from interaction of circumferential arrays of the switch complex proteins with the ring particles.  相似文献   

5.
The flagellar motor is one type of propulsion device of motile bacteria. The cytoplasmic ring (C-ring) of the motor interacts with the stator to generate torque in clockwise and counterclockwise directions. The C-ring is composed of three proteins, FliM, FliN, and FliG. Together they form the “switch complex” and regulate switching and torque generation. Here we report the crystal structure of the middle domain of FliM in complex with the middle and C-terminal domains of FliG that shows the interaction surface and orientations of the proteins. In the complex, FliG assumes a compact conformation in which the middle and C-terminal domains (FliGMC) collapse and stack together similarly to the recently published structure of a mutant of FliGMC with a clockwise rotational bias. This intramolecular stacking of the domains is distinct from the intermolecular stacking seen in other structures of FliG. We fit the complex structure into the three-dimensional reconstructions of the motor and propose that the cytoplasmic ring is assembled from 34 FliG and FliM molecules in a 1:1 fashion.  相似文献   

6.
The flagellar switch proteins of Salmonella, FliG, FliM and FliN, participate in the switching of motor rotation, torque generation and flagellar assembly/export. FliN has been implicated in the flagellar export process. To address this possibility, we constructed 10-amino-acid scanning deletions and larger truncations over the C-terminal domain of FliN. Except for the last deletion variant, all other variants were unable to complement a fliN null strain or to restore the export of flagellar proteins. Most of the deletions showed strong negative dominance effects on wild-type cells. FliN was found to associate with FliH, a flagellar export component that regulates the ATPase activity of FliI. The binding of FliM to FliN does not interfere with this FliN-FliH interaction. Furthermore, a five-protein complex consisting of FliG, His-tagged FliM, FliN, FliH and FliI was purified by nickel-affinity chromatography. FliJ, a putative general chaperone, is bound to FliM even in the absence of FliH. The importance of the C ring as a possible docking site for export substrates, chaperones and FliI through FliH for their efficient delivery to membrane components of the export apparatus is discussed.  相似文献   

7.
The three-dimensional surface topology of rapid-frozenSalmonella typhimuriumflagellar hook basal body complexes was studied by stereo-examination of thin-film metal replicas. The complexes contained the extended cytoplasmic structure, composed of the switch complex proteins; FliG, FliM, and FliN. Distinct nanometer-scale element arrays, separated by grooves, defined the outer surface of the cytoplasmic (C-) ring. The number of array elements was comparable to previously determined FliG and FliM copy numbers in the basal body. In addition to basal body complexes lacking C-rings, complexes containing incomplete C-rings were identified. The incomplete C-rings had lost segments of the proximal array. Basal bodies with the distal C-ring array alone were not found. These findings are compatible with the spatial organization of the flagellar switch suggested by previous biochemical data.  相似文献   

8.
The switch complex at the base of the bacterial flagellum is essential for flagellar assembly, rotation, and switching. In Escherichia coli and Salmonella, the complex contains about 26 copies of FliG, 34 copies of FliM, and more then 100 copies of FliN, together forming the basal body C ring. FliG is involved most directly in motor rotation and is located in the upper (membrane-proximal) part of the C ring. A crystal structure of the middle and C-terminal parts of FliG shows two globular domains connected by an alpha-helix and a short extended segment. The middle domain of FliG has a conserved surface patch formed by the residues EHPQ(125-128) and R(160) (the EHPQR motif), and the C-terminal domain has a conserved surface hydrophobic patch. To examine the functional importance of these and other surface features of FliG, we made mutations in residues distributed over the protein surface and measured the effects on flagellar assembly and function. Mutations preventing flagellar assembly occurred mainly in the vicinity of the EHPQR motif and the hydrophobic patch. Mutations causing aberrant clockwise or counterclockwise motor bias occurred in these same regions and in the waist between the upper and lower parts of the C-terminal domain. Pull-down assays with glutathione S-transferase-FliM showed that FliG interacts with FliM through both the EHPQR motif and the hydrophobic patch. We propose a model for the organization of FliG and FliM subunits that accounts for the FliG-FliM interactions identified here and for the different copy numbers of FliG and FliM in the flagellum.  相似文献   

9.
FliN is a component of the bacterial flagellum that is present at levels of more than 100 copies and forms the bulk of the C ring, a drum-shaped structure at the inner end of the basal body. FliN interacts with FliG and FliM to form the rotor-mounted switch complex that controls clockwise-counterclockwise switching of the motor. In addition to its functions in motor rotation and switching, FliN is thought to have a role in the export of proteins that form the exterior structures of the flagellum (the rod, hook, and filament). Here, we describe the crystal structure of most of the FliN protein of Thermotoga maritima. FliN is a tightly intertwined dimer composed mostly of beta sheet. Several well-conserved hydrophobic residues form a nonpolar patch on the surface of the molecule. A mutation in the hydrophobic patch affected both flagellar assembly and switching, showing that this surface feature is important for FliN function. The association state of FliN in solution was studied by analytical ultracentrifugation, which provided clues to the higher-level organization of the protein. T. maritima FliN is primarily a dimer in solution, and T. maritima FliN and FliM together form a stable FliM(1)-FliN(4) complex. Escherichia coli FliN forms a stable tetramer in solution. The arrangement of FliN subunits in the tetramer was modeled by reference to the crystal structure of tetrameric HrcQB(C), a related protein that functions in virulence factor secretion in Pseudomonas syringae. The modeled tetramer is elongated, with approximate dimensions of 110 by 40 by 35 Angstroms, and it has a large hydrophobic cleft formed from the hydrophobic patches on the dimers. On the basis of the present data and available electron microscopic images, we propose a model for the organization of FliN subunits in the C ring.  相似文献   

10.
FliG, FliM, and FliN are three proteins of Salmonella typhimurium that affect the rotation and switching of direction of the flagellar motor. An analysis of mutant alleles of FliM has been described recently (H. Sockett, S. Yamaguchi, M. Kihara, V. M. Irikura, and R. M. Macnab, J. Bacteriol. 174:793-806, 1992). We have now analyzed a large number of mutations in the fliG and fliN genes that are responsible for four different types of defects: failure to assembly flagella (nonflagellate phenotype), failure to rotate flagella (paralyzed phenotype), and failure to display normal chemotaxis as a result of an abnormally high bias to clockwise (CW) or counterclockwise (CCW) rotation (CW-bias and CCW-bias phenotypes, respectively). The null phenotype for fliG, caused by nonsense or frameshift mutations, was nonflagellate. However, a considerable part of the FliG amino acid sequence was not needed for flagellation, with several substantial in-frame deletions preventing motor rotation but not flagellar assembly. Missense mutations in fliG causing paralysis or abnormal switching occurred at a number of positions, almost all within the middle one-third of the gene. CW-bias and CCW-bias mutations tended to segregate into separate subclusters. The null phenotype of fliN is uncertain, since frameshift and nonsense mutations gave in some cases the nonflagellate phenotype and in other cases the paralyzed phenotype; in none of these cases was the phenotype a consequence of polar effects on downstream flagellar genes. Few positions in FliN were found to affect switching: only one gave rise to the CW mutant bias and only four gave rise to the CCW mutant bias. The different properties of the FliM, FliG, and FliN proteins with respect to the processes of assembly, rotation, and switching are discussed.  相似文献   

11.
The chemotaxis signal protein CheY of enteric bacteria shuttles between transmembrane methyl-accepting chemotaxis protein (MCP) receptor complexes and flagellar basal bodies [1]. The basal body C-rings, composed of the FliM, FliG and FliN proteins, form the rotor of the flagellar motor [2]. Phosphorylated CheY binds to isolated FliM [3] and may also interact with FliG [4], but its binding to basal bodies has not been measured. Using the chemorepellent acetate to phosphorylate and acetylate CheY [5], we have measured the covalent-modification-dependent binding of a green fluorescent protein-CheY fusion (GFP-CheY) to motor assemblies in bacteria lacking MCP complexes by evanescent wave microscopy [6]. At acetate concentrations that cause solely clockwise rotation, GFP-CheY molecules bound to native basal bodies or to overproduced rotor complexes with a stoichiometry comparable to the number of C-ring subunits. GFP-CheY did not bind to rotors lacking FIiM/FliN, showing that these subunits are essential for the association. This assay provides a new means of monitoring protein-protein interactions in signal transduction pathways in living cells.  相似文献   

12.
Three Salmonella typhimurium flagellar motor proteins, FliG, FliM and FliN, are required for the switching of rotation sense. The proteins have been localized to the cytoplasmic module of the flagellar base. Structures, which were morphologically indistinguishable from the native transmembrane MS-ring and cytoplasmic C-ring basal body modules, formed in Escherichia coli upon plasmid-encoded synthesis of these proteins together with FliF. The structures localized to the cell membrane and contained all three motor proteins, as determined by immuno-electron microscopy. This result supports the deduction, based on earlier biochemical analysis, that the C-ring is composed entirely of these proteins and, therefore, functions as a dedicated motor component. In addition, it demonstrates that the morphologically correct assembly of the C-ring onto the MS-ring proceeds independently of other structural components of these modules.  相似文献   

13.
Brown PN  Hill CP  Blair DF 《The EMBO journal》2002,21(13):3225-3234
The FliG protein is essential for assembly, rotation and clockwise/counter-clockwise (CW/CCW) switching of the bacterial flagellum. About 25 copies of FliG are present in a large rotor-mounted assembly termed the 'switch complex', which also contains the proteins FliM and FliN. Mutational studies have identified the segments of FliG most crucial for flagellar assembly, rotation and switching. The structure of the C-terminal domain, which functions specifically in rotation, was reported previously. Here, we describe the crystal structure of a larger fragment of the FliG protein from Thermotoga maritima, which encompasses the middle and C-terminal parts of the protein (termed FliG-MC). The FliG-MC molecule consists of two compact globular domains, linked by an alpha-helix and an extended segment that contains a well-conserved Gly-Gly motif. Mutational studies indicate that FliM binds to both of the globular domains, and given the flexibility of the linking segment, FliM is likely to determine the relative orientation of the domains in the flagellum. We propose a model for the organization of FliG-MC molecules in the flagellum, and suggest that CW/CCW switching might occur by movement of the C-terminal domain relative to other parts of FliG, under the control of FliM.  相似文献   

14.
The cytoplasmic portion of the bacterial flagellum is thought to consist of at least two structural components: a switch complex and an export apparatus. These components seem to assemble around the MS ring complex, which is the first flagellar basal body substructure and is located in the cytoplasmic membrane. In order to elucidate the process of assembly of cytoplasmic substructures, the membrane localization of each component of the switch complex (FliG, FliM, and FliN) in various nonflagellated mutants was examined by immunoblotting. It was found that all these switch proteins require the MS ring protein FliF to associate with the cell membrane. FliG does not require FliM and FliN for this association, but FliM and FliN associate cooperatively with the membrane only through FliG. Furthermore, all three switch proteins were detected in membranes isolated from fliE, fliH, fliI, fliJ, fliO, fliP, fliQ, fliR, flhA, flhB, and flgJ mutants, indicating that the switch complex assembles on the MS ring complex without any other flagellar proteins involved in the early stage of flagellar assembly. The relationship between the switch complex and the export apparatus is discussed.  相似文献   

15.
Recently, the switch-motor complex of bacterial flagella was found to be associated with a number of non-flagellar proteins, which, in spite of not being known as belonging to the chemotaxis system, affect the function of the flagella. The observation that one of these proteins, fumarate reductase, is essentially involved in electron transport under anaerobic conditions raised the question of whether other energy-linked enzymes are associated with the switch-motor complex as well. Here, we identified two additional such enzymes in Escherichia coli. Employing fluorescence resonance energy transfer in vivo and pull-down assays invitro, we provided evidence for the interaction of F(0)F(1) ATP synthase via its β subunit with the flagellar switch protein FliG and for the interaction of NADH-ubiquinone oxidoreductase with FliG, FliM, and possibly FliN. Furthermore, we measured higher rates of ATP synthesis, ATP hydrolysis, and electron transport from NADH to oxygen in membrane areas adjacent to the flagellar motor than in other membrane areas. All these observations suggest the association of energy complexes with the flagellar switch-motor complex. Finding that deletion of the β subunit in vivo affected the direction of flagellar rotation and switching frequency further implied that the interaction of F(0)F(1) ATP synthase with FliG is important for the function of the switch of bacterial flagella.  相似文献   

16.
The flagellar motor is an important virulence factor in infection by many bacterial pathogens. Motor function can be modulated by chemotactic proteins and recently appreciated proteins that are not part of the flagellar or chemotaxis systems. How these latter proteins affect flagellar activity is not fully understood. Here, we identified spermidine synthase SpeE as an interacting partner of switch protein FliM in Helicobacter pylori using pull‐down assay and mass spectrometry. To understand how SpeE contributes to flagellar motility, a speE‐null mutant was generated and its motility behavior was evaluated. We found that deletion of SpeE did not affect flagellar formation, but induced clockwise rotation bias. We further determined the crystal structure of the FliM‐SpeE complex at 2.7 Å resolution. SpeE dimer binds to FliM with micromolar binding affinity, and their interaction is mediated through the β1' and β2' region of FliM middle domain. The FliM‐SpeE binding interface partially overlaps with the FliM surface that interacts with FliG and is essential for proper flagellar rotational switching. By a combination of protein sequence conservation analysis and pull‐down assays using FliM and SpeE orthologues in E. coli, our data suggest that FliM‐SpeE association is unique to Helicobacter species.  相似文献   

17.
Domain Analysis of the FliM Protein of Escherichia coli   总被引:1,自引:0,他引:1       下载免费PDF全文
The FliM protein of Escherichia coli is required for the assembly and function of flagella. Genetic analyses and binding studies have shown that FliM interacts with several other flagellar proteins, including FliN, FliG, phosphorylated CheY, other copies of FliM, and possibly MotA and FliF. Here, we examine the effects of a set of linker insertions and partial deletions in FliM on its binding to FliN, FliG, CheY, and phospho-CheY and on its functions in flagellar assembly and rotation. The results suggest that FliM is organized into multiple domains. A C-terminal domain of about 90 residues binds to FliN in coprecipitation experiments, is most stable when coexpressed with FliN, and has some sequence similarity to FliN. This C-terminal domain is joined to the rest of FliM by a segment (residues 237 to 247) that is poorly conserved, tolerates linker insertion, and may be an interdomain linker. Binding to FliG occurs through multiple segments of FliM, some in the C-terminal domain and others in an N-terminal domain of 144 residues. Binding of FliM to CheY and phospho-CheY was complex. In coprecipitation experiments using purified FliM, the protein bound weakly to unphosphorylated CheY and more strongly to phospho-CheY, in agreement with previous reports. By contrast, in experiments using FliM in fresh cell lysates, the protein bound to unphosphorylated CheY about as well as to phospho-CheY. Determinants for binding CheY occur both near the N terminus of FliM, which appears most important for binding to the phosphorylated protein, and in the C-terminal domain, which binds more strongly to unphosphorylated CheY. Several different deletions and linker insertions in FliM enhanced its binding to phospho-CheY in coprecipitation experiments with protein from cell lysates. This suggests that determinants for binding phospho-CheY may be partly masked in the FliM protein as it exists in the cytoplasm. A model is proposed for the arrangement and function of FliM domains in the flagellar motor.  相似文献   

18.
Helicobacter pylori uses flagellum-mediated chemotaxis to promote infection. Bacterial flagella change rotational direction by changing the state of the flagellar motor via a subcomplex referred to as the switch. Intriguingly, the H. pylori genome encodes four switch complex proteins, FliM, FliN, FliY, and FliG, instead of the more typical three of Escherichia coli or Bacillus subtilis. Our goal was to examine whether and how all four switch proteins participate in flagellation. Previous work determined that FliG was required for flagellation, and we extend those findings to show that all four switch proteins are necessary for normal numbers of flagellated cells. Furthermore, while fliY and fliN are partially redundant with each other, both are needed for wild-type levels of flagellation. We also report the isolation of an H. pylori strain containing an R54C substitution in fliM, resulting in bacteria that swim constantly and do not change direction. Along with data demonstrating that CheY-phosphate interacts with FliM, these findings suggest that FliM functions in H. pylori much as it does in other organisms.Flagellar motility is important for gastric colonization by the ulcer-causing bacterium Helicobacter pylori and also for suborgan localization within the stomach (16-18, 33, 45). Flagellar motility is regulated by a set of signal transduction proteins, collectively referred to as the chemotaxis pathway, that control the migration of microbes in response to environmental cues. This pathway is well elucidated in organisms such as Escherichia coli, Salmonella enterica serovar Typhimurium (referred to hereinafter as S. Typhimurium), and Bacillus subtilis. Sequence analysis of the genomes of other flagellated bacteria, including H. pylori, has suggested that there is diversity in the set of chemotaxis proteins that a particular microbe contains. Here we analyze the diversity of H. pylori''s flagellar switch proteins, which control flagellar rotational direction.The molecular mechanisms underlying chemotactic signal transduction in E. coli and S. Typhimurium have been extensively studied (7, 50) The overall function of this pathway is to convert the perception of local environmental conditions into a swimming response that drives bacteria toward beneficial conditions and away from harmful ones. Such migration is accomplished by interspersing straight, or smooth, swimming with periods of random reorientations or tumbles. Smooth swimming occurs when the flagella rotate counterclockwise (CCW), while reorienting occurs when the flagella rotate clockwise (CW). The chemotaxis signal transduction system acts to appropriately alter flagellar rotation. The canonical chemotaxis pathway consists of a chemoreceptor bound to the coupling protein CheW, which is in turn bound to the histidine kinase CheA. If a beneficial/attractant ligand is not bound (or a repellant is bound) to the chemoreceptor, CheA autophosphorylates and passes a phosphate to the response regulator CheY. Phosphorylated CheY (CheY-P) interacts with a protein complex called the flagellar switch (discussed at more length below). This interaction causes a switch in the direction of flagellar rotation from CCW to CW, thus reorienting the cells, via an as-yet-unknown mechanism (reviewed in references 23 and 29).Bacterial flagella are complex, multiprotein organelles (reviewed in references 23, 25, and 29). Each flagellum is composed of several parts, including the filament, the hook, and the basal body (listed from outside the cell to inside the cytoplasm). The flagellar basal body spans from the outer membrane to the cytoplasm and is responsible for rotating the flagellum. This part of the flagellum is further made up of several subassemblies that are named for their locations. The innermost is called the switch or C ring, based on its location in the cytoplasm. The switch is comprised of three proteins in E. coli, FliM, FliN, and FliG (reviewed in references 23 and 29). Experimental evidence strongly suggests that these proteins, along with the stator proteins MotA and MotB, drive motor rotation, because one can obtain point mutations in these proteins that disrupt rotation but not flagellation. Null mutations, however, in fliM, fliN, or fliG also result in aflagellated cells, a phenotype that has been proposed to arise because these proteins are needed to complete the flagellar export apparatus (23).There is extensive structural information about each of the switch proteins and their arrangement in the flagellum (reviewed in references 23 and 29, with additional key references added below). There are 26 copies of FliG, 34 copies of FliM, and ∼136 copies of FliN, arranged in a circular structure at the base of each flagellum. FliM is positioned between FliG and FliN and interacts with both. FliM also binds CheY-P via sequences in the first 16 amino acids, and elsewhere (15), to play a key role in switching flagellar rotation direction. FliG, the switch protein closest to the cytoplasmic membrane, interacts with the stator protein MotA, the FliF membrane protein that forms the flagellar basal-body MS ring, and the membrane-bound respiratory protein fumarate reductase (11). FliG has the most direct role in creating flagellar rotation. FliN is the most cytoplasmic component of the switch, and its role is not fully understood. FliN may play a role in switching by possibly binding CheY-P directly (36) and an additional role in flagellar assembly, because it binds to the flagellar export protein FliH and localizes it, along with its interaction partners FliI and FliJ, to the flagellum (20, 28, 36). FliN contains significant sequence similarity to secretion proteins of type III secretion systems of Yersinia pestis and Shigella flexneri. The conserved domain comprises most of FliN and is called a SpoA or PFAM PF01052 domain. Other FliN homologs include YscL and Spa33 (25).The flagellar switch of another well-studied chemotactic microbe, B. subtilis, differs slightly in its protein makeup from that of E. coli. B. subtilis contains FliM and FliG, which function similarly to their E. coli counterparts, but instead of FliN it has a protein called FliY (6, 42). FliY of B. subtilis has two functional domains, one of which is homologous to E. coli FliN, while the other shares similarity with the B. subtilis chemotaxis protein CheC, which functions to dephosphorylate CheY-P. FliY is the most active known phosphatase of CheY-P in B. subtilis (40, 41).H. pylori contains homologs of many of the chemotaxis and flagellar genes found in other organisms (32, 48). Curiously, its genome encodes four predicted flagellar switch proteins, FliG, FliM, and both FliY and FliN, although FliY was not annotated in the original genome analysis. Previous work had determined that H. pylori strain SS1 lacking fliG was aflagellated (1), but the other switch proteins had not been analyzed. As noted above, FliN and FliY share a FliN domain and so could have functional redundancy. fliY and fliM appear to reside in an operon, suggesting that the two encoded proteins function together (see Fig. S1 in the supplemental material).Since having all four flagellar switch proteins in one microbe is unusual, we were curious as to whether all four serve “switch” functions. As noted above, fliM and fliG deletions typically result in an aflagellated phenotype in other organisms. Others had previously shown that fliG mutations have this phenotype in H. pylori (1), and we additionally show here that fliM null mutants are also almost completely aflagellate. In spite of a shared domain that might indicate functional redundancy, we show that fliN and fliY are each necessary for normal numbers of flagellated cells. Finally, we characterize a fliM point mutant that results in a lock-smooth swimming bias and demonstrate physical interaction between CheY-P and FliM, indicating that FliM responds to CheY signaling in H. pylori in a manner similar to that found in E. coli, S. Typhimurium, B. subtilis, and other studied organisms.  相似文献   

19.
In Escherichia coli, swimming behavior is mediated by the phosphorylation state of the response regulator CheY. In its active, phosphorylated form, CheY exhibits enhanced binding to a switch component, FliM, at the flagellar motor, which induces a change from counterclockwise to clockwise flagellar rotation. When Ile(95) of CheY is replaced by a valine, increased clockwise rotation correlates with enhanced binding to FliM. A possible explanation for the hyperactivity of this mutant is that residue 95 affects the conformation of nearby residues that potentially interact with FliM. In order to assess this possibility directly, the crystal structure of CheY95IV was determined. We found that CheY95IV is structurally almost indistinguishable from wild-type CheY. Several other mutants with substitutions at position 95 were characterized to establish the structural requirements for switch binding and clockwise signaling at this position and to investigate a general relationship between the two properties. The various rotational phenotypes of these mutants can be explained solely by the amount of phosphorylated CheY bound to the switch, which was inferred from the phosphorylation properties of the mutant CheY proteins and their binding affinities to FliM. Combined genetic, biochemical, and crystallographic results suggest that residue 95 itself is critical in mediating the surface complementarity between CheY and FliM.  相似文献   

20.
In this report we show that in Bacillus subtilis the flagellar switch, which controls direction of flagellar rotation based on levels of the chemotaxis primary response regulator, CheY-P, also causes hydrolysis of CheY-P to form CheY and Pi. This task is performed in Escherichia coli by CheZ, which interestingly enough is primarily located at the receptors, not at the switch. In particular we have identified the phosphatase as FliY, which resembles E. coli switch protein FliN only in its C-terminal part, while an additional N-terminal domain is homologous to another switch protein FliM and to CheC, a protein found in the archaea and many bacteria but not in E. coli. Previous E. coli studies have localized the CheY-P binding site of the switch to FliM residues 6-15. These residues are almost identical to the residues 6-15 in both B. subtilis FliM and FliY. We were able to show that both of these proteins are capable of binding CheY-P in vitro. Deletion of this binding region in B. subtilis mutant fliM caused the same phenotype as a cheY mutant (clockwise flagellar rotation), whereas deletion of it in fliY caused the opposite. We showed that FliY increases the rate of CheY-P hydrolysis in vitro. Consequently, we imagine that the duration of enhanced CheY-P levels caused by activation of the CheA kinase upon attractant binding to receptors, is brief due both to adaptational processes and to phosphatase activity of FliY.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号