首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phycocyanobilin:ferredoxin oxidoreductase (PcyA) catalyzes the sequential reduction of the vinyl group of the D-ring and A-ring of biliverdin IXα (BV), using reducing equivalents provided by ferredoxin. This reaction produces phycocyanobilin, a pigment used for light-harvesting and light-sensing in red algae and cyanobacteria. The crystal structure of PcyA-BV reveals that BV is specifically bound in the PcyA active pocket through extensive hydrophobic and hydrophilic interactions. During the course of a mutational study of PcyA, we observed that mutation of the V225 position, apart from the processing sites, conferred an unusual property on PcyA; V225D mutant protein could bind BV and its analog BV13, but these complexes showed a distinct UV-vis absorption spectrum from that of the wild-type PcyA-BV complex. The crystal structures of BV- and BV13-bound forms of V225D protein revealed that gross structural changes occurred near the substrate-binding pocket, and that the BV/BV13 binding manner in the pocket was dramatically altered. Protein folding in V225D-BV/BV13 was more similar to that of substrate-free PcyA than that in PcyA-BV; the “induced-fit” did not occur when BV/BV13 was bound to the V225D protein. The unexpected structural change presented here provides a cautionary note about interpreting functional data derived from a mutated protein in the absence of its exact structure.  相似文献   

2.
Phycocyanobilin:ferredoxin oxidoreductase (PcyA) catalyzes the sequential reduction of the vinyl group of the D-ring and the A-ring of biliverdin IXalpha (BV) using ferredoxin to produce phycocyanobilin, a pigment used for light-harvesting and light-sensing in red algae and cyanobacteria. We have determined the crystal structure of the substrate-free form of PcyA from Synechocystis sp. PCC 6803 at 2.5 A resolution. Structural comparison of the substrate-free form and the PcyA-BV complex shows major changes around the entrance of the BV binding pocket; upon BV binding, two alpha-helices and nearby side-chains move to produce tight BV binding. Unexpectedly, these movements localize the positive charges around the BV binding site, which may contribute to the proper binding of ferredoxin to PcyA. In the substrate-free form, the side-chain of Asp105 was located at a site that would be underneath the BV A-ring in the PcyA-BV complex and hydrogen-bonded with His88. We propose that BV is protonated by a mechanism involving conformational changes of these two residues before reduction.  相似文献   

3.
In cyanobacteria, the biosynthesis of the phycobiliprotein and phytochrome chromophore precursor phycocyanobilin is catalyzed by the ferredoxin-dependent enzyme phycocyanobilin:ferredoxin oxidoreductase (PcyA), which mediates an atypical four-electron reduction of biliverdin IXalpha. Here we describe the expression, affinity purification, and biochemical characterization of recombinant PcyA from Anabaena sp. PCC 7120. A monomeric protein with a native M(r) of 30,400 +/- 5,000, recombinant PcyA forms a tight and stable stoichiometric complex with its substrate biliverdin IXalpha. The enzyme exhibits a strong preference for plant type [2Fe-2S] ferredoxins; however, flavodoxin can also serve as an electron donor. HPLC analyses establish that catalysis proceeds via the two electron-reduced intermediate 18(1),18(2)-dihydrobiliverdin, indicating that exovinyl reduction precedes A-ring (endovinyl) reduction. Substrate specificity studies indicate that the arrangement of the A- and D-ring substituents alters the positioning of the bilin substrate within the enzyme, profoundly influencing the course of catalysis. Based on these observations and the apparent lack of a metal or small molecule cofactor, a radical mechanism for biliverdin IXalpha reduction by phycocyanobilin:ferredoxin oxidoreductase is envisaged.  相似文献   

4.
In plants, phytochromobilin synthase (HY2) synthesize the open chain tetrapyrrole chromophore for light-sensing phytochromes. It catalyzes the double bond reduction of a heme-derived tetrapyrrole intermediate biliverdin IXα (BV) at the A-ring diene system. HY2 is a member of ferredoxin-dependent bilin reductases (FDBRs), which require ferredoxins (Fds) as the electron donors for double bond reductions. In this study, we investigated the interaction mechanism of FDBRs and Fds by using HY2 and Fd from Arabidopsis thaliana as model proteins. We found that one of the six Arabidopsis Fds, AtFd2, was the preferred electron donor for HY2. HY2 and AtFd2 formed a heterodimeric complex that was stabilized by chemical cross-linking. Surface-charged residues on HY2 and AtFd2 were important in the protein-protein interaction as well as BV reduction activity of HY2. These surface residues are close to the iron-sulfur center of Fd and the HY2 active site, implying that the interaction promotes direct electron transfer from the Fd to HY2-bound BV. In addition, the C12 propionate group of BV is important for HY2-catalyzed BV reduction. A possible role for this functional group is to mediate the electron transfer by interacting directly with AtFd2. Together, our biochemical data suggest a docking mechanism for HY2:BV and AtFd2.  相似文献   

5.
Phytochromobilin (PPhiB) is an open chain tetrapyrrole molecule that functions as the chromophore of light-sensing phytochromes in plants. Derived from heme, PPhiB is synthesized through an open chain tetrapyrrole intermediate, biliverdin IXalpha (BV), in the biosynthesis pathway. BV is subsequently reduced by the PPhiB synthase HY2 in plants. HY2 is a ferredoxin-dependent bilin reductase that catalyzes the reduction of the A-ring 2,3,3(1),3(2)-diene system to produce an ethylidene group for assembly with apophytochromes. In this study, we sought to determine the catalytic mechanism of HY2. Data from UV-visible and EPR spectroscopy showed that the HY2-catalyzed BV reaction proceeds via a transient radical intermediate. Site-directed mutagenesis showed several ionizable residues that are involved in the catalytic steps. Detailed analysis of these site-directed mutants highlighted a pair of aspartate residues central to proton donation and substrate positioning. A mechanistic prediction for the HY2 reaction is proposed. These results support the hypothesis that ferredoxin-dependent bilin reductases reduce BV through a radical mechanism, but their double bond specificity is decided by strategic placement of different proton-donating residues surrounding the bilin substrate in the active sites.  相似文献   

6.
Phycoerythrobilin is a linear tetrapyrrole molecule found in cyanobacteria, red algae, and cryptomonads. Together with other bilins such as phycocyanobilin it serves as a light-harvesting pigment in the photosynthetic light-harvesting structures of cyanobacteria called phycobilisomes. The biosynthesis of both pigments starts with the cleavage of heme by heme oxygenases to yield biliverdin IXalpha, which is further reduced at specific positions by ferredoxin-dependent bilin reductases (FDBRs), a new family of radical enzymes. The biosynthesis of phycoerythrobilin requires two subsequent two-electron reductions, each step being catalyzed by one FDBR. This is in contrast to the biosynthesis of phycocyanobilin, where the FDBR phycocyanobilin: ferredoxin oxidoreductase (PcyA) catalyzes a four-electron reduction. The first reaction in phycoerythrobilin biosynthesis is the reduction of the 15,16-double bond of biliverdin IXalpha by 15,16-dihydrobiliverdin:ferredoxin oxidoreductase (PebA). This reaction reduces the conjugated pi -electron system thereby blue-shifting the absorbance properties of the linear tetrapyrrole. The second FDBR, phycoerythrobilin:ferredoxin oxidoreductase (PebB), then reduces the A-ring 2,3,3(1),3(2)-diene structure of 15,16-dihydrobiliverdin to yield phycoerythrobilin. Both FDBRs from the limnic filamentous cyanobacterium Fremyella diplosiphon and the marine cyanobacterium Synechococcus sp. WH8020 were recombinantly produced in Escherichia coli and purified, and their enzymatic activities were determined. By using various natural bilins, the substrate specificity of each FDBR was established, revealing conformational preconditions for their unique specificity. Preparation of the semi-reduced intermediate, 15,16-dihydrobiliverdin, enabled us to perform steady state binding experiments indicating distinct spectroscopic and fluorescent properties of enzyme.bilin complexes. A combination of substrate/product binding analyses and gel permeation chromatography revealed evidence for metabolic channeling.  相似文献   

7.
The X-ray crystal structure of the substrate-free form of phycocyanobilin (PCB)-ferredoxin oxidoreductase (PcyA; EC 1.3.7.5) from the cyanobacterium Nostoc sp. PCC7120 has been solved at 2.5 A resolution. A comparative analysis of this structure with those recently reported for substrate-bound and substrate-free forms of PcyA from the cyanobacterium Synechocystis sp. PCC6803 (Hagiwara et al. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 27-32; Hagiwara et al. (2006) FEBS Lett. 580, 3823-3828) provides a compelling picture of substrate-induced changes in the PcyA enzyme and the chemical basis of PcyA's catalytic activity. On the basis of these structures and the biochemical analysis of site-directed mutants of Nostoc PcyA, including mutants reported in recent studies (Tu et al. (2006) J. Biol. Chem. 281, 3127-3136) as well as mutants described in this study, a revised mechanism for the PcyA-mediated four-electron reduction of biliverdin IXalpha to 3E/3Z-phycocyanobilin via enzyme-bound bilin radical intermediates is proposed. The mechanistic insight of these studies, along with homology modeling, have provided new insight into the catalytic mechanisms of other members of the ferredoxin-dependent bilin reductase family that are widespread in oxygenic photosynthetic organisms.  相似文献   

8.
The reddish purple open chain tetrapyrrole pigment phycoerythrobilin (PEB; A(lambdamax) approximately 550 nm) is an essential chromophore of the light-harvesting phycobiliproteins of most cyanobacteria, red algae, and cryptomonads. The enzyme phycoerythrobilin synthase (PebS), recently discovered in a marine virus infecting oceanic cyanobacteria of the genus Prochlorococcus (cyanophage PSSM-2), is a new member of the ferredoxin-dependent bilin reductase (FDBR) family. In a formal four-electron reduction, the substrate biliverdin IXalpha is reduced to yield 3Z-PEB, a reaction that commonly requires the action of two individual FDBRs. The first reaction catalyzed by PebS is the reduction of the 15,16-methine bridge of the biliverdin IXalpha tetrapyrrole system. This reaction is exclusive to PEB biosynthetic enzymes. The second reduction site is the A-ring 2,3,3(1),3(2)-diene system, the most common target of FDBRs. Here, we present the first crystal structures of a PEB biosynthetic enzyme. Structures of the substrate complex were solved at 1.8- and 2.1-A resolution and of the substrate-free form at 1.55-A resolution. The overall folding revealed an alpha/beta/alpha-sandwich with similarity to the structure of phycocyanobilin:ferredoxin oxidoreductase (PcyA). The substrate-binding site is located between the central beta-sheet and C-terminal alpha-helices. Eight refined molecules with bound substrate, from two different crystal forms, revealed a high flexibility of the substrate-binding pocket. The substrate was found to be either in a planar porphyrin-like conformation or in a helical conformation and is coordinated by a conserved aspartate/asparagine pair from the beta-sheet side. From the alpha-helix side, a conserved highly flexible aspartate/proline pair is involved in substrate binding and presumably catalysis.  相似文献   

9.
Phytobilins are linear tetrapyrrole precursors of the light-harvesting prosthetic groups of the phytochrome photoreceptors of plants and the phycobiliprotein photosynthetic antennae of cyanobacteria, red algae, and cryptomonads. Previous biochemical studies have established that phytobilins are synthesized from heme via the intermediacy of biliverdin IX alpha (BV), which is reduced subsequently by ferredoxin-dependent bilin reductases with different double-bond specificities. By exploiting the sequence of phytochromobilin synthase (HY2) of Arabidopsis, an enzyme that catalyzes the ferredoxin-dependent conversion of BV to the phytochrome chromophore precursor phytochromobilin, genes encoding putative bilin reductases were identified in the genomes of various cyanobacteria, oxyphotobacteria, and plants. Phylogenetic analyses resolved four classes of HY2-related genes, one of which encodes red chlorophyll catabolite reductases, which are bilin reductases involved in chlorophyll catabolism in plants. To test the catalytic activities of these putative enzymes, representative HY2-related genes from each class were amplified by the polymerase chain reaction and expressed in Escherichia coli. Using a coupled apophytochrome assembly assay and HPLC analysis, we examined the ability of the recombinant proteins to catalyze the ferredoxin-dependent reduction of BV to phytobilins. These investigations defined three new classes of bilin reductases with distinct substrate/product specificities that are involved in the biosynthesis of the phycobiliprotein chromophore precursors phycoerythrobilin and phycocyanobilin. Implications of these results are discussed with regard to the pathways of phytobilin biosynthesis and their evolution.  相似文献   

10.
PEB (phycoerythrobilin) is one of the major open-chain tetrapyrrole molecules found in cyanobacterial light-harvesting phycobiliproteins. In these organisms, two enzymes of the ferredoxin-dependent bilin reductase family work in tandem to reduce BV (biliverdin IXα) to PEB. In contrast, a single cyanophage-encoded enzyme of the same family has been identified to catalyse the identical reaction. Using UV-visible and EPR spectroscopy we investigated the two individual cyanobacterial enzymes PebA [15,16-DHBV (dihydrobiliverdin):ferredoxin oxidoreductase] and PebB (PEB:ferredoxin oxidoreductase) showing that the two subsequent reactions catalysed by the phage enzyme PebS (PEB synthase) are clearly dissected in the cyanobacterial versions. Although a highly conserved aspartate residue is critical for both reductions, a second conserved aspartate residue is only involved in the A-ring reduction of the tetrapyrrole in PebB and PebS. The crystal structure of PebA from Synechococcus sp. WH8020 in complex with its substrate BV at a 1.55 ? (1 ?=0.1 nm) resolution revealed further insight into the understanding of enzyme evolution and function. Based on the structure it becomes obvious that in addition to the importance of certain catalytic residues, the shape of the active site and consequently the binding of the substrate highly determines the catalytic properties.  相似文献   

11.
Phycocyanobilin:ferredoxin oxidoreductase is a member of the ferredoxin-dependent bilin reductase family and catalyzes two vinyl reductions of biliverdin IXalpha to produce phycocyanobilin, the pigment precursor of both phytochrome and phycobiliprotein chromophores in cyanobacteria. Atypically for ferredoxin-dependent enzymes, phycocyanobilin:ferredoxin oxidoreductase mediates direct electron transfers from reduced ferredoxin to its tetrapyrrole substrate without metal ion or organic cofactors. We previously showed that bound bilin radical intermediates could be detected by low temperature electron paramagnetic resonance and absorption spectroscopies (Tu, S., Gunn, A., Toney, M. D., Britt, R. D., and Lagarias, J. C. (2004) J. Am. Chem. Soc. 126, 8682-8693). On the basis of these studies, a mechanism involving sequential electron-coupled proton transfers to protonated bilin substrates buried within the phycocyanobilin:ferredoxin oxidoreductase protein scaffold was proposed. The present investigation was undertaken to identify catalytic residues in phycocyanobilin:ferredoxin oxidoreductase from the cyanobacterium Nostoc sp. PCC7120 through site-specific chemical modification and mutagenesis of candidate proton-donating residues. These studies identified conserved histidine and aspartate residues essential for the catalytic activity of phycocyanobilin:ferredoxin oxidoreductase. Spectroscopic evidence for the formation of stable enzyme-bound biliverdin radicals for the H85Q and D102N mutants support their role as a "coupled" proton-donating pair during the reduction of the biliverdin exovinyl group.  相似文献   

12.
Phytochromes are multidomain photoswitches that drive light perception in plants and microorganisms by coupling photoreversible isomerization of their bilin chromophore to various signaling cascades. How changes in bilin conformation affect output by these photoreceptors remains poorly resolved and might include several species-specific routes. Here, we present detailed three-dimensional models of the photosensing module and a picture of an entire dimeric photoreceptor through structural analysis of the Deinococcus radiodurans phytochrome BphP assembled with biliverdin (BV). A 1.16-Å resolution crystal structure of the bilin-binding pocket in the dark-adapted red light-absorbing state illuminated the intricate network of bilin/protein/water interactions and confirmed the protonation and ZZZssa conformation of BV. Structural and spectroscopic comparisons with the photochemically compromised D207A mutant revealed that substitutions of Asp-207 allow inclusion of cyclic porphyrins in addition to BV. A crystal structure of the entire photosensing module showed a head-to-head, twisted dimeric arrangement with bowed helical spines and a hairpin protrusion connecting the cGMP phosphodiesterase/adenylyl cyclase/FhlA (GAF) and phytochrome-specific (PHY) domains. A key conserved hairpin feature is its anti-parallel, two β-strand stem, which we show by mutagenesis to be critical for BphP photochemistry. Comparisons of single particle electron microscopic images of the full-length BphP dimer in the red light-absorbing state and the photoactivated far-red light-absorbing state revealed a large scale reorientation of the PHY domain relative to the GAF domain, which alters the position of the downstream histidine kinase output module. Together, our data support a toggle model whereby bilin photoisomerization alters GAF/PHY domain interactions through conformational modification of the hairpin, which regulates signaling by impacting the relationship between sister output modules.  相似文献   

13.
Phycocyanobilin:ferredoxin oxidoreductase (PcyA) catalyzes the proton-coupled four-electron reduction of biliverdin IXα’s two vinyl groups to produce phycocyanobilin, an essential chromophore for phytochromes, cyanobacteriochromes and phycobiliproteins. Previous site directed mutagenesis studies indicated that the fully conserved residue His74 plays a critical role in the H-bonding network that permits proton transfer. Here, we exploit X-ray crystallography, enzymology and molecular dynamics simulations to understand the functional role of this invariant histidine. The structures of the H74A, H74E and H74Q variants of PcyA reveal that a “conserved” buried water molecule that bridges His74 and catalytically essential His88 is not required for activity. Despite distinct conformations of Glu74 and Gln74 in the H74E and H74Q variants, both retain reasonable activity while the H74A variant is inactive, suggesting smaller residues may generate cavities that increase flexibility, thereby reducing enzymatic activity. Molecular dynamic simulations further reveal that the crucial active site residue Asp105 is more dynamic in H74A compared to wild-type PcyA and the two other His74 variants, supporting the conclusion that the Ala74 mutation has increased the flexibility of the active site.  相似文献   

14.
The pathway for phycocyanobilin biosynthesis in Synechococcus sp. strain PCC 7002 comprises two enzymes: heme oxygenase and phycocyanobilin synthase (PcyA). The phycobilin content of cells can be modified by overexpressing genes encoding alternative enzymes for biliverdin reduction. Overexpression of the pebAB and HY2 genes, encoding alternative ferredoxin-dependent biliverdin reductases, caused unique effects due to the overproduction of phycoerythrobilin and phytochromobilin, respectively. Colonies overexpressing pebAB became reddish brown and visually resembled strains that naturally produce phycoerythrin. This was almost exclusively due to the replacement of phycocyanobilin by phycoerythrobilin on the phycocyanin α-subunit. This phenotype was unstable, and such strains rapidly reverted to the wild-type appearance, presumably due to strong selective pressure to inactivate pebAB expression. Overproduction of phytochromobilin, synthesized by the Arabidopsis thaliana HY2 product, was tolerated much better. Cells overexpressing HY2 were only slightly less pigmented and blue-green than the wild type. Although the pcyA gene could not be inactivated in the wild type, pcyA was easily inactivated when cells expressed HY2. These results indicate that phytochromobilin can functionally substitute for phycocyanobilin in Synechococcus sp. strain PCC 7002. Although functional phycobilisomes were assembled in this strain, the overall phycobiliprotein content of cells was lower, the efficiency of energy transfer by these phycobilisomes was lower than for wild-type phycobilisomes, and the absorption cross-section of the cells was reduced relative to that of the wild type because of an increased spectral overlap of the modified phycobiliproteins with chlorophyll a. As a result, the strain producing phycobiliproteins carrying phytochromobilin grew much more slowly at low light intensity.  相似文献   

15.
Bilins are open-chain tetrapyrrole molecules essential for light-harvesting and/or sensing in many photosynthetic organisms. While they serve as chromophores in phytochrome-mediated light-sensing in plants, they additionally function in light-harvesting in cyanobacteria, red algae and cryptomonads. Associated to phycobiliproteins a variety of bile pigments is responsible for the specific light-absorbance properties of the organisms enabling efficient photosynthesis under different light conditions. The initial step of bilin biosynthesis is the cleavage of heme by heme oxygenases (HO) to afford the first linear molecule biliverdin. This reaction is ubiquitously found also in non-photosynthetic organisms. Biliverdin is then further reduced by site specific reductases most of them belonging to the interesting family of ferredoxin-dependent bilin reductases (FDBRs)-a new family of radical oxidoreductases. In recent years much progress has been made in the field of heme oxygenases but even more in the widespread family of FDBRs, revealing novel biochemical FDBR activities, new crystal structures and new ecological aspects, including the discovery of bilin biosynthesis genes in wild marine phage populations. The aim of this review is to summarize and discuss the recent progress in this field and to highlight the new and remaining questions.  相似文献   

16.
PEB (phycoerythrobilin) is a pink-coloured open-chain tetrapyrrole molecule found in the cyanobacterial light-harvesting phycobilisome. Within the phycobilisome, PEB is covalently bound via thioether bonds to conserved cysteine residues of the phycobiliprotein subunits. In cyanobacteria, biosynthesis of PEB proceeds via two subsequent two-electron reductions catalysed by the FDBRs (ferredoxin-dependent bilin reductases) PebA and PebB starting from the open-chain tetrapyrrole biliverdin IXα. A new member of the FDBR family has been identified in the genome of a marine cyanophage. In contrast with the cyanobacterial enzymes, PebS (PEB synthase) from cyanophages combines both two-electron reductions for PEB synthesis. In the present study we show that PebS acts via a substrate radical mechanism and that two conserved aspartate residues at position 105 and 206 are critical for stereospecific substrate protonation and conversion. On the basis of the crystal structures of both PebS mutants and presented biochemical and biophysical data, a mechanism for biliverdin IXα conversion to PEB is postulated and discussed with respect to other FDBR family members.  相似文献   

17.
The ability of the human heme oxygenase-1 (hHO-1) R183E mutant to oxidize heme in reactions supported by either NADPH-cytochrome P450 reductase or ascorbic acid has been compared. The NADPH-dependent reaction, like that of wild-type hHO-1, yields exclusively biliverdin IXalpha. In contrast, the R183E mutant with ascorbic acid as the reductant produces biliverdin IXalpha (79 +/- 4%), IXdelta (19 +/- 3%), and a trace of IXbeta. In the presence of superoxide dismutase and catalase, the yield of biliverdin IXdelta is decreased to 8 +/- 1% with a corresponding increase in biliverdin IXalpha. Spectroscopic analysis of the NADPH-dependent reaction shows that the R183E ferric biliverdin complex accumulates, because reduction of the iron, which is required for sequential iron and biliverdin release, is impaired. Reversal of the charge at position 183 makes reduction of the iron more difficult. The crystal structure of the R183E mutant, determined in the ferric and ferrous-NO bound forms, shows that the heme primarily adopts the same orientation as in wild-type hHO-1. The structure of the Fe(II).NO complex suggests that an altered active site hydrogen bonding network supports catalysis in the R183E mutant. Furthermore, Arg-183 contributes to the regiospecificity of the wild-type enzyme, but its contribution is not critical. The results indicate that the ascorbate-dependent reaction is subject to a lower degree of regiochemical control than the NADPH-dependent reaction. Ascorbate may be able to reduce the R183E ferric and ferrous dioxygen complexes in active site conformations that cannot be reduced by NADPH-cytochrome P450 reductase.  相似文献   

18.
Bacterial phytochromes (Bphs) are ancestors of the well characterized plant photoreceptors. Whereas plant phytochromes perform their photoisomerization exclusively via a covalently bound bilin chromophore, Bphs are variable in their chromophore selection. This is demonstrated in the cyanobacterium Calothrix PCC7601 that expresses two Bphs, CphA and CphB. CphA binds phycocyanobilin (PCB) covalently, whereas CphB, lacking the covalently binding cysteine of the plant phytochromes, carries biliverdin IXalpha (BV) as the chromophore. Our experiments elucidate the different modes of chromophore-protein interaction in CphA and CphB and offer a rationale for their chromophore selectivity. The tight binding of BV by CphB prevents PCB from competing for the binding cavity. Even when the chromophore-binding cysteine has been inserted (CphB-mutant L266C), PCB replaces BV very slowly, indicating the tight, but not irreversible binding of BV. The mutant CphB L266C showed a redox-sensitivity with respect to its PCB binding mode: under reducing conditions, the chromoprotein assembly leads to spectra indicative for a covalent binding, whereas absence of dithiothreitol or its removal prior to assembly causes spectra indicative for noncovalent binding. Regarding the CphB-type Bphs lacking the covalently binding cysteine, our results support the involvement of the succeeding histidine residue in chromophore fixation via a Schiff base-like bond between the bilin A-ring carbonyl and the histidine imidazole group. The assembly process and the stability of the holo-proteins were strongly influenced by the concentration of added imidazole (mimicking the histidine side-chain), making the attachment of the chromophore via the histidine more likely than via another cysteine of the protein.  相似文献   

19.
Glycoprotein Ib–IX–V (GPIb–IX–V) is a platelet adhesion receptor complex that initiates platelet aggregation. Glycoprotein Ibα (GPIbα) is the central component of the GPIb–IX–V complex, anchoring the complex to the cytoskeleton and harboring the binding site for von Willebrand factor (vWF). Previous studies suggest that the coagulation function in pigs differs from that in humans, especially with respect to the interaction between vWF and platelets. However, we have little knowledge about the function of porcine platelets, which is important with regard to studies of cardiovascular disease, clotting, and surgery that use pigs as animal models. To extend this information, we cloned and analyzed the porcine GPIbα sequence. Porcine GPIbα contains 1891 nucleotides and includes an open reading frame that encodes 627 amino acids. The nucleotide sequence showed 67% identity with human GPIbα, whereas the deduced amino acid sequences were 59% identical. The vWF binding domain shares the highest identity among different species, whereas the PEST domain shows variations. Evaluation of platelet function by using ristocetin-induced platelet aggregation revealed remarkably lower levels of aggregation in porcine than human platelets. According to the sequence analysis and platelet aggregation tests, we propose that the function of GPIbα, especially regarding the ristocetin–vWF–GPIbα interaction, differs between pigs and humans. This characterization of porcine GPIbα will enhance our knowledge of the porcine coagulation system.Abbreviations: GPIbα, glycoprotein Ibα, vWF, von Willebrand factorGlycoprotein (GP) Ib–IX–V is one of the major adhesive receptors expressed on the surface of circulating platelets and is essential for platelet adhesion and clot formation at sites of vascular injury.2 Platelet adhesion in high-shear areas is initiated by GPIbα, a subunit of the GPIb–IX–V complex, via binding to von Willebrand factor (vWF), a multimeric adhesive protein associated with collagen in the vessel wall.3,13,27 After GPIbα-dependent adhesion to vWF, platelets become activated and undergo cytoskeletal rearrangements associated with shape changes, spreading, and the secretion of platelet agonists that amplify the platelet aggregation and activation mediated by platelet integrin αIIbβ3.1The GPIb–IX–V complex consists of 4 transmembrane subunits—GPIbα, GPIbβ, GP IX, and GP V—which are present at a ratio of 2:2:2:1.26 The entire ligand-binding capacity of the GPIb–IX–V complex is situated in the N-terminal globular region (amino acids 1 through 282) of GPIbα.28 Mutations in GPIbα lead to Bernard–Soulier syndrome and pseudo-von Willebrand disease.15,24 Thrombi that cause complications in arterial thrombosis are associated with GPIb–IX–V, especially GPIbα.21 Because the interactions between GPIbα and its ligand are critical to the vascular processes of thrombosis and inflammation, the complex is under intense scrutiny as a potential therapeutic target.29Pigs share many physiologic and anatomic similarities with humans and offer several breeding and handling advantages relative to nonhuman primates, making the pig an optimal species for preclinical experimentation. During the last several years, porcine animal models have gained a great deal of importance23,30 in cardiovascular diseases,6,33 ischemia–reperfusion injury,10 transplant surgery, and many other areas of biomedical research.17 In particular, the pig has been identified as an ideal cell, tissue, and organ donor for xenotransplantation. Because differences exist between species, it is necessary to take the physiologic differences between pigs and humans into account when developing animal models and when analyzing the results obtained by using these models.Our early studies revealed differences in the process of coagulation between pigs and humans.5 Currently we know little about which functions of platelets are conserved between species or about porcine GPIb–IX–V and its differences from the human complex. In the current study, we cloned the coding sequences of porcine GPIbα and compared its nucleotide sequence, deduced protein sequence, and 3D structure model with those of human GPIbα, focusing on important functional domains and vWF interaction sites. We also investigated the ability of porcine platelets to be agglutinated or activated when treated with ristocetin. This work represents a step toward understanding the value and limitations of the pig as a preclinical model for coagulation-related studies.  相似文献   

20.
Previous spectroscopic studies on the phycocyanobilin-containing peptide beta-2T from Synechococcus sp. 6301 C-phycocyanin and the phycoerythrobilin-containing peptide beta-2TP from Porphyridium cruentum B-phycoerythrin indicated a different single thioether mode of attachment, postulated to be through the D-ring of the tetrapyrrole, in contrast to the A-ring linkage established for the other singly linked bilins in these proteins (Bishop, J.E., Lagarias, J.C., Nagy, J. O., Schoenleber, R.W., Rapoport, H., Klotz, A.V., and Glazer, A.N. (1986) J. Biol. Chem. 261, 6790-6796; Klotz, A.V., Glazer, A.N., Bishop, J.E., Nagy, J.O., and Rapoport, H. (1986) J. Biol. Chem. 261, 6797-6805). The crystal structure of Agmenellum quadruplicatum C-phycocyanin at 2.5-A resolution (Schirmer, T., Bode, W., and Huber, R. (1987) J. Mol. Biol., 196, 677-695) supports an A-ring linkage for all three phycocyanobilins. Consequently we have re-evaluated our proposed structural assignments by further 1H NMR studies. Two-dimensional homonuclear correlated and nuclear Overhauser enhancement spectroscopic data presented here show that all three bilins in Synechococcus 6301 C-phycocyanin are attached solely through the A-ring, complementary to the crystallographic data. The evidence from the NMR data for all bilin peptides examined includes the dipoledipole interactions of the 5-H with the 3-H, 3'-H, and a pyrrole methyl group (7-CH3); the corresponding interactions would not be possible in a D-ring-linked bilin. The 5-H also consistently exhibits allylic J-coupling to the 3-H, supporting A-ring linkage assignment. These data are inconsistent with the alternative D-ring linkage assignment since this would involve J-coupling through five bonds. Examination of the phycoerythrobilin beta-2 position in B-phycoerythrin also reveals an A-ring type of attachment by similar criteria. We conclude that all singly linked bilins are attached through the A-ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号