首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The A-type phospholipases (PLAs) are key players in glycerophospholipid (GPL) homeostasis and in mammalian cells; Ca2+-independent PLA-β (iPLAβ) in particular has been implicated in this essential process. However, the regulation of this enzyme, which is necessary to avoid futile competition between synthesis and degradation, is not understood. Recently, we provided evidence that the efflux of the substrate molecules from the bilayer is the rate-limiting step in the hydrolysis of GPLs by some secretory (nonhomeostatic) PLAs. To study whether this is the case with iPLAβ as well, a mass spectrometric assay was employed to determine the rate of hydrolysis of multiple saturated and unsaturated GPL species in parallel using micelles or vesicle bilayers as the macrosubstrate. With micelles, the hydrolysis decreased with increasing acyl chain length independent of unsaturation, and modest discrimination between acyl positional isomers was observed, presumably due to the differences in the structure of the sn-1 and sn-2 acyl-binding sites of the protein. In striking contrast, no significant discrimination between positional isomers was observed with bilayers, and the rate of hydrolysis decreased with the acyl chain length logarithmically and far more than with micelles. These data provide compelling evidence that efflux of the substrate molecule from the bilayer, which also decreases monotonously with acyl chain length, is the rate-determining step in iPLAβ-mediated hydrolysis of GPLs in membranes. This finding is intriguing as it may help to understand how homeostatic PLAs are regulated and how degradation and biosynthesis are coordinated.  相似文献   

2.
Cytosolic phospholipase A2 alpha (cPLA2α) plays a key role in signaling in mammalian cells by releasing arachidonic acid (AA) from glycerophospholipids (GPLs) but the factors determining the specificity of cPLA2α for AA-containing GPLs are not well understood. Accordingly, we investigated those factors by determining the activity of human cPLA2α towards a multitude of GPL species present in micelles or bilayers. Studies on isomeric PC sets containing a saturated acyl chain of 6 to 24 carbons in the sn1 or sn2 position in micelles showed an abrupt decrease in hydrolysis when the length of the sn1 or sn2 chain exceeded 17 carbons suggesting that the acyl binding cavity on the enzyme is of the corresponding length. Notably, the saturated isomer pairs were hydrolyzed identically in micelles as well as in bilayers suggesting promiscuous binding of acyl chains to the active site of cPLA2α. Such promiscuous binding would explain the previous finding that cPLA2α has both PLA1 and PLA2 activities. Interestingly, increasing the length of either the sn1 or sn2 acyl chain inhibited the hydrolysis in bilayers far more than that in micelles suggesting that with micelles (loosely packed) substrate accommodation at the active site of cPLA2α is rate-limiting, while with bilayers (tightly packed) upward movement of the substrate from the bilayer (efflux) is the rate-limiting step. With the AA-containing PCs, the length of the saturated acyl chain also had a much stronger effect on hydrolysis in bilayers vs. micelles in agreement with this model. In contrast to saturated PCs, a marked isomer preference was observed for AA-containing PCs both in micelles and bilayers. In conclusion, these data significantly help to understand the mode of action and specificity of cPLA2α.  相似文献   

3.
The bilayer phase transitions of six kinds of mixed-chain phosphatidylcholines (PCs) with an unsaturated acyl chain in the sn-1 or sn-2 position, 1-oleoyl-2-stearoyl- (OSPC), 1-stearoyl-2-oleoyl- (SOPC), 1-oleoyl-2-palmitoyl- (OPPC), 1-palmitoyl-2-oleoyl- (POPC), 1-oleoyl-2-myristoyl- (OMPC) and 1-myristoyl-2-oleoyl-sn-glycero-3-phosphocholine (MOPC), were observed by means of differential scanning calorimetry (DSC) and high-pressure light transmittance measurements. Bilayer membranes of SOPC, POPC and MOPC with an unsaturated acyl chain in the sn-2 position exhibited only one phase transition, which was identified as the main transition between the lamellar gel (Lβ) and liquid crystalline (Lα) phases. On the other hand, the bilayer membranes of OSPC, OPPC and OMPC with an unsaturated acyl chain in the sn-1 position exhibited not only the main transition but also a transition from the lamellar crystal (Lc) to the Lβ (or Lα) phase. The stability of their gel phases was markedly affected by pressure and chain length of the saturated acyl chain in the sn-2 position. Considering the effective chain lengths of unsaturated mixed-chain PCs, the difference in the effective chain length between the sn-1 and sn-2 acyl chains was proven to be closely related to the temperature difference of the main transition. That is, a mismatch of the effective chain length promotes a temperature difference of the main transition between the positional isomers. Anomalously small volume changes of the Lc/Lα transition for the OPPC and OMPC bilayers were found despite their large enthalpy changes. This behavior is attributable to the existence of a cis double bond and to significant inequivalence between the sn-1 and sn-2 acyl chains, which brings about a small volume change for chain melting due to loose chain packing, corresponding to a large partial molar volume, even in the Lc phase. Further, the bilayer behavior of unsaturated mixed-chain PCs containing an unsaturated acyl chain in the sn-1 or sn-2 position was well explained by the chemical-potential diagram of a lipid in each phase.  相似文献   

4.
N-(Oleoyl)galactosylceramide with perdeuterated acyl chain was prepared by partial synthesis, and studied by wide line 2H-NMR in phospholipid liposomes. Spectra were obtained for low glycolipid concentrations in bilayers of dimyristoyl-, distearoyl-, and 1-palmitoyl-2-oleoylphosphatidylcholines. In an attempt to isolate the effects of glycosphingolipid fatty acid cis unsaturation on glycolipid behaviour in membranes, spectral findings related to the above species were compared to literature NMR data for pure 1-palmitoyl-2-oleoylphosphatidylcholine bilayers in which the oleoyl chain of the phospholipid had been deuterated, and to analogously deuterated glycerol based lipids in Acholeplasma laidlawii membranes. The results for N-(oleoyl-d33)galactosylceramide proved to be qualitatively and quantitatively very similar to published data dealing with glycerol based lipids at comparable temperatures. In addition, the results were strikingly similar for glycolipids dispersed in saturated and unsaturated phospholipid host matrices. It would appear that the primary effects of cis 9,10 fatty acid unsaturation in glycosphingolipids (at low concentration in fluid phospholipid membranes) are the same as those of fatty acid cis unsaturation in glycerolipids. It further appears that the overall dynamic behaviour of N-(oleoyl)galactosylceramide in fluid phospholipid membranes is very similar to that of glycerolipids with comparable acyl chains.  相似文献   

5.
Polyunsaturated phospholipids are common in biological membranes and affect the lateral structure of bilayers. We have examined how saturated sphingomyelin (SM; palmitoyl and stearoyl SM (PSM and SSM, respectively)) and phosphatidylcholine (PC; dipalmitoyl PC and 1-palmitoyl-2-stearoyl PC (DPPC and PSPC, respectively)) segregate laterally to form ordered gel phases in increasingly unsaturated PC bilayers (sn-1: 16:0 and sn-2: 18:1...22:6; or sn-1 and sn-2: 18:1…22:6). The formation of gel phases was determined from the lifetime analysis of trans-parinaric acid. Using calorimetry, we also determined gel phase formation by PSM and DPPC in unsaturated PC mixed bilayers. Comparing PSM with DPPC, we observed that PSM formed a gel phase with less order than DPPC at comparable bilayer concentrations. The same was true when SSM was compared with PSPC. Furthermore, we observed that at equal saturated phospholipid concentration, the gel phases formed were less ordered in unsaturated PCs having 16:0 in sn-1, as compared to PCs having unsaturated acyl chains in both sn-1 and sn-2. The gel phases formed by the saturated phospholipids in unsaturated PC bilayers did not appear to achieve properties similar to pure saturated phospholipid bilayers, suggesting that complete lateral phase separation did not occur. Based on scanning calorimetry analysis, the melting of the gel phases formed by PSM and DPPC in unsaturated PC mixed bilayers (at 45 mol % saturated phospholipid) had low cooperativity and hence most likely were of mixed composition, in good agreement with trans-parinaric acid lifetime data. We conclude that both interfacial properties of the saturated phospholipids and their chain length, as well as the presence of 16:0 in sn-1 of the unsaturated PCs and the total number of cis unsaturations and acyl chain length (18 to 22) of the unsaturated PCs, all affected the formation of gel phases enriched in saturated phospholipids, under the conditions used.  相似文献   

6.
Atomic force microscopy (AFM) is employed to reveal the morphological changes of the supported phospholipid bilayers hydrolyzed by a phospholipase A2 (PLA2) enzyme in a buffer solution at room temperature. Based on the high catalytic selectivity of PLA2 toward l-enantiomer phospholipids, five kinds of supported bilayers made of l- and d-dipalmitoylphosphatidylcholines (DPPC), including l-DPPC (upper leaflet adjacent to solution)/l-DPPC (bottom leaflet) (or l/l in short), l/d, d/l, d/d, and racemic ld/ld, were prepared on a mica surface in gel-phase, to explicate the kinetics and mechanism of the enzyme-induced hydrolysis reaction in detail. AFM observations for the l/l bilayer show that the hydrolysis rate for l-DPPC is significantly increased by PLA2 and most of the hydrolysis products desorb from substrate surface in 40 min. As d-enantiomers are included in the bilayer, the hydrolysis rate is largely decreased in comparison with the l/l bilayer. The time used to hydrolyze the as-prepared bilayers by PLA2 increases in the sequence of l/l, l/d, ld/ld, and d/l (d/d is inert to the enzyme action). d-enantiomers in the enantiomer hybrid bilayers remain on the mica surface at the end of the hydrolysis reaction. It was confirmed that the hydrolysis reaction catalyzed by PLA2 preferentially occurs at the edges of pits or defects on the bilayer surface. The bilayer structures are preserved during the hydrolysis process. Based on these observations, a novel kinetics model is proposed to quantitatively account for the PLA2-catalyzed hydrolysis of the supported phospholipid bilayers. The model simulation demonstrates that PLA2 mainly binds with lipids at the perimeter of defects in the upper leaflet and leads to a hydrolysis reaction, yielding species soluble to the solution phase. The lipid molecules underneath subsequently flip up to the upper leaflet to maintain the hydrophilicity of the bilayer structure. Our analysis shows that d-enantiomers in the hybrid bilayers considerably reduce the hydrolysis rate by its ineffective binding with PLA2.  相似文献   

7.
Cardiolipin, a major component of mitochondria, is critical for mitochondrial functioning including the regulation of cytochrome c release during apoptosis and proper electron transport. Mitochondrial cardiolipin with its unique bulky amphipathic structure is a potential substrate for phospholipase A2 (PLA2) in vivo. We have developed mass spectrometric methodology for analyzing PLA2 activity toward various cardiolipin forms and demonstrate that cardiolipin is a substrate for sPLA2, cPLA2 and iPLA2, but not for Lp-PLA2. Our results also show that none of these PLA2s have significant PLA1 activities toward dilyso-cardiolipin. To understand the mechanism of cardiolipin hydrolysis by PLA2, we also quantified the release of monolyso-cardiolipin and dilyso-cardiolipin in the PLA2 assays. The sPLA2s caused an accumulation of dilyso-cardiolipin, in contrast to iPLA2 which caused an accumulation of monolyso-cardiolipin. Moreover, cardiolipin inhibits iPLA2 and cPLA2, and activates sPLA2 at low mol fractions in mixed micelles of Triton X-100 with the substrate 1-palmitoyl-2-arachidonyl-sn-phosphtidylcholine. Thus, cardiolipin functions as both a substrate and a regulator of PLA2 activity and the ability to assay the various forms of PLA2 is important in understanding its function.  相似文献   

8.
Here we have characterized the Rickettsia prowazekii RP534 protein, a homologue of the Pseudomonas aeruginosa ExoU phospholipase A (PLA) secreted cytotoxin. Our studies showed that purified recombinant RP534 PLA possessed the predicted PLA2 and lyso-PLA2 activities based on what has been published for P. aeruginosa ExoU. RP534 also displayed PLA1 activity under the conditions tested, whereas ExoU did not. In addition, recombinant RP534 displayed a basal PLA activity that could hydrolyze phosphatidylcholine in the absence of any eukaryotic cofactors. Interestingly, the addition of bovine liver superoxide dismutase 1 (SOD1), a known activator of P. aeruginosa ExoU, resulted in an increased rate of RP534-catalyzed phospholipid hydrolysis, indicating that mechanisms of activation of the ExoU family of PLAs may be evolutionarily conserved. The mechanism of SOD1-dependent stimulation of RP534 was further examined using active site mutants and a fluorogenic phospholipid substrate whose hydrolysis by RP534 over a short time course is measureable only in the presence of SOD1. These studies suggest a mechanism by which SOD1 stimulates RP534 activity once it has bound to the substrate. We also show that antibody raised against RP534 was useful for immunoprecipitating active RP534 from R. prowazekii lysed cell extracts, thus verifying that this protein is expressed and active in rickettsiae isolated from embryonated hen egg yolk sacs.  相似文献   

9.
Deuterium nuclear magnetic resonance (2H-NMR) was used to investigate the structure and dynamics of the sn-2 hydrocarbon chain of semi-synthetical choline and ethanolamine plasmalogens in bilayers containing 0, 30, and 50 mol% cholesterol. The deuterium NMR spectra of the choline plasmalogen yielded well-resolved quadrupolar splittings which could be assigned to the corresponding hydrocarbon chain deuterons. The sn-2 acyl chain was found to adopt a similar conformation as observed in the corresponding diacyl phospholipid, however, the flexibility at the level of the C-2 methylene segment of the plasmalogen was increased. Deuterium NMR spectra of bilayers composed of the ethanolamine plasmalogen yielded quadrupolar splittings of the C-2 segment much larger than those of the corresponding diacyl lipids, suggesting that the sn-2 chain is oriented perpendicular to the membrane surface at all segments. Cholesterol increased the ordering of the choline plasmalogen acyl chain to the same extent as in diacyl lipid bilayers. T1 relaxation time measurements demonstrated only minor dynamical differences between choline plasmalogen and diacyl lipids in model membranes.  相似文献   

10.
The structure of unusual fatty acid (FA) components of triacylglycerols (TAGs) of mature sea buckthorn (Hippophae rhamnoides L.) mesocarp oil was determined by GLC and MS, and the positional-species composition (PSC) of these TAGs was estimated using the methods of TAG chemical deacylation, TLC, GLC, and computer calculation. It was shown that the unusual FAs comprised n-cis-Δ9-hexadecenoic, n-cis-Δ9,12-hexadecadienoic (palmitolinoleic), and n-cis-Δ11-octadecenoic (cis-vaccenic) acids. The hexadecenoic acid predominated in the oil, and in its distribution in TAGs, it was similar to the total FAs differing from them only in some prevalence in the triunsaturated TAGs and in the TAGs with a shorter acyl chain, as well as in the sn-2 position of TAGs. Palmitolinoleic (16:2) acid comprised only 5% of total FAs, and it was exclusively concentrated in the sn-2 position of TAGs. As regards its distribution between various positional types and forms of TAGs, the 16:2 acid was similar to oleate and total FAs. As compared to the total TAGs, the TAGs with 16:2 acid were characterized by a lower FA chain length as well as by a highest unsaturation. The TAGs with vaccenic acid (V-TAGs) considerably exceeded O-TAGs, i.e., the TAGs containing oleic acid, another 18:1 positional isomer, both in their content in the total TAGs and in their unsaturation. In the composition of positional types and fractions of various unsaturation, O-TAGs were similar to the total TAGs, while V-TAGs were characterized by a very unusual structure, viz., a very high triunsaturated TAG level and an extremely low concentration of 1,3-disaturated-2-monounsaturated TAGs. In addition, oleic acid, like most other unsaturated FAs, was incorporated predominantly in the sn-2 position of TAGs, while vaccenic acid, being also unsaturated, was nevertheless by 90% concentrated in the sn-1,3 positions of V-TAGs. Unusual FAs were related to each other in the mechanism of their biosynthesis. In fact, hexadecenoic acid biosynthesis produced by palmitic acid desaturation, was, on the one hand, further desaturated forming palmitolinoleic acid, and, on the other hand, converted to vaccenic acid via C2 elongation.  相似文献   

11.
Lysophospholipid acyltransferases (LPLATs) incorporate a fatty acid into the hydroxyl group of lysophospholipids (LPLs) and are critical for determining the fatty acid composition of phospholipids. Previous studies have focused mainly on their molecular identification and their substrate specificity regarding the polar head groups and acyl-CoAs. However, little is known about the positional specificity of the hydroxyl group of the glycerol backbone (sn-2 or sn-1) at which LPLATs introduce a fatty acid. This is mainly due to the instability of LPLs used as an acceptor, especially for LPLs with a fatty acid at the sn-2 position of the glycerol backbone (sn-2-LPLs), which are essential for the enzymatic assay to determine the positional specificity. In this study, we established a method to determine the positional specificity of LPLAT by preparing stable sn-2-LPLs in combination with PLA2 digestion, and applied the method for determining the positional specificity of several LPLATs including LPCAT1, LYCAT and LPCAT3. We found that LPCAT1 introduced palmitic acid both at the sn-1 and sn-2 positions of palmitoyl-LPC, while LYCAT and LPCAT3 specifically introduced stearic acid at the sn-1 position of LPG and arachidonic acid at the sn-2 position of LPC, respectively. The present method for evaluating the positional specificity could also be used for biochemical characterization of other LPLATs.  相似文献   

12.
《Experimental mycology》1994,18(2):180-192
MacKichan, J. K., Tuininga, A. R., and Kerwin, J. L. 1994. Preliminary characterization of phospholipase A2 in Lagenidium giganteum. Experimental Mycology 18, 180-192. Phospholipase A2 (PLA2) hydrolyses the fatty acyl ester bond at the sn-2 position in glycerophospholipids. To better understand its regulatory roles, factors affecting PLA2 activity in Lagenidium giganteum were investigated: divalent ions; chelators: inhibitors; pH; and substrate concentration. PLA2 activity of L. giganteum whole cell homogenates was determined using 1-stearoyl-2-[1-14C]arachidonoyl phosphatidylcholine as substrate. The divalent cations Ca2+, Mg2+, and Mn2+ all enhanced PLA2 activity, while Co2+, Fe2+, and Zn2+ were either slightly inhibitory or without effect. High concentrations of EGTA enhanced activity, low concentrations of the chelators were slightly inhibitory, while high concentrations of EDTA had little effect. EGTA, which has a higher affinity for Ca2+ and Mn2+ than Mg2+, reduced hydrolysis less than a comparable concentration of EDTA. Two pH optima were found, at both acid (ca. 5.5) and alkaline (ca. 11.5) levels. Four classical inhibitors, nordihydroguaiaretic acid, ellagic acid, gossypol, and 4-bromophenacylbromide, reduced PLA2 activity by about 80% at 5 mM concentration, 50% with 1 mM inhibitor, and had no effect at 100 μM. The relatively high levels of these compounds needed to inhibit PLA2 hydrolysis may have been due to the presence of a cocktail of enzymes, some of which were not susceptible to inhibition. All inhibitors at 1 mM concentration in live cell cultures effectively shut down oosporogenesis, without adverse effects to the mycelia. PLA2 activity was highest in the late oospore stage of the life cycle, although the enzymes were probably not metabolically active in these stationary cultures. Cultures grown on cholesterol-supplemented defined media had significantly higher levels of PLA2 activity relative to cultures grown on sterol-free media. The enzyme was found to be associated primarily with microsomal membranes, but there was significant activity in cytosolic fractions. Separation of cell homogenates by column chromatography revealed that there were at least nine enzymes capable of cleaving fatty acids in the sn -2 position of phospholipids.  相似文献   

13.
Mitochondrial cardiolipin undergoes extensive remodeling of its acyl groups to generate uniformly substituted species, such as tetralinoleoyl-cardiolipin, but the mechanism of this remodeling has not been elucidated, except for the fact that it requires tafazzin. Here we show that purified recombinant Drosophila tafazzin exchanges acyl groups between cardiolipin and phosphatidylcholine by a combination of forward and reverse transacylations. The acyl exchange is possible in the absence of phospholipase A2 because it requires only trace amounts of lysophospholipids. We show that purified tafazzin reacts with various phospholipid classes and with various acyl groups both in sn-1 and sn-2 position. Expression studies in Sf9 insect cells suggest that the effect of tafazzin on cardiolipin species is dependent on the cellular environment and not on enzymatic substrate specificity. Our data demonstrate that tafazzin catalyzes general acyl exchange between phospholipids, which raises the question whether pattern formation in cardiolipin is the result of the equilibrium distribution of acyl groups between multiple phospholipid species.  相似文献   

14.
Phospholipase A2 and Its Role in Brain Tissue   总被引:6,自引:4,他引:2  
Abstract: Phospholipase A2 (PLA2) is the name for the class of lipolytic enzymes that hydrolyze the acyl group from the sn-2 position of glycerophospholipids, generating free fatty acids and lysophospholipids. The products of the PLA2-catalyzed reaction can potentially act as second messengers themselves, or be further metabolized to eicosanoids, platelet-activating factor, and lysophosphatidic acid. All of these are recognized as bioactive lipids that can potentially alter many ongoing cellular processes. The presence of PLA2 in the central nervous system, accompanied by the relatively large quantity of potential substrate, poses an interesting dilemma as to the role PLA2 has during both physiologic and pathologic states. Several different PLA2 enzymes exist in brain, some of which have been partially characterized. They are classified into two subtypes, CA2+-dependent and Ca2+-independent, based on their catalytic dependence on Ca2+. Under physiologic conditions, PLA2 may be involved in phospholipid turnover, membrane remodeling, exocytosis, detoxification of phospholipid peroxides, and neurotransmitter release. However, under pathological situations, increased PLA2 activity may result in the loss of essential membrane glycerophospholipids, resulting in altered membrane permeability, ion homeostasis, increased free fatty acid release, and the accumulation of lipid peroxides. These processes, along with loss of ATP, may be responsible for the loss of membrane phospholipid and subsequent neuronal injury found in ischemia, spinal cord injury, and other neurodegenerative diseases. This review outlines the current knowledge of the PLA2 found in the central nervous system and attempts to define the role of PLA2 during both physiologic and pathologic conditions.  相似文献   

15.
Sonicated dispersions of 1,2-dipalmitoylsn-glycero-3-phosphorylcholine and of 1,3-dipalmitoylglycero-2-phosphorylcholine were examined by proton nuclear magnetic resonance (NMR) as a function of temperature. The —(CH2)n)— peak in the spectrum of the sn-3-isomer of dipalmitoylphosphatidylcholine showed the characteristic dramatic changes in the peak intensity and width associated with the phase transition between the liquid crystalline and gel states of the phospholipid. This occurred over a 2–3°C temperature range with the midpoint of the transition at 38.5°C. With the 2-isomer the change in phase took place over a similar temperature range but the midpoint was at 33.8°C. This lower phase transition temperature is presumably the result of increased acyl chain mobility caused by the increased separation of the two acyl chains by the centre carbon of the glycerol backbone. The effect of sonication of the broadening of the range and lowering of the midpoint temperature of the phase transition from that of the corresponding unsonicated dispersions was similar with each isomer. This suggests that the overall geometry of the sonicated vesicles of the isomers is similar.  相似文献   

16.
Lipid modifications of proteins are widespread in nature and play an important role in numerous biological processes. The nonreceptor tyrosine kinase Src is equipped with an N-terminal myristoyl chain and a cluster of basic amino acids for the stable membrane association of the protein. We used 2H NMR spectroscopy to investigate the structure and dynamics of the myristoyl chain of myr-Src(2-19), and compare them with the hydrocarbon chains of the surrounding phospholipids in bilayers of varying surface potentials and chain lengths. The myristoyl chain of Src was well inserted in all bilayers investigated. In zwitterionic 1,2-dimyristoyl-sn-glycero-3-phosphocholine membranes, the myristoyl chain of Src was significantly longer and appears “stiffer” than the phospholipid chains. This can be explained by an equilibrium between the attraction attributable to the insertion of the myristoyl chain and the Born repulsion. In a 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-[phospho-L-serine] membrane, where attractive electrostatic interactions come into play, the differences between the peptide and the phospholipid chain lengths were attenuated, and the molecular dynamics of all lipid chains were similar. In a much thicker 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dipalmitoyl-sn-glycero-3-[phospho-L-serine]/cholesterol membrane, the length of the myristoyl chain of Src was elongated nearly to its maximum, and the order parameters of the Src chain were comparable to those of the surrounding membrane.  相似文献   

17.
Lipids play critical roles in several major chronic diseases of our times, including those that involve inflammatory sequelae such as metabolic syndrome including obesity, insulin sensitivity, and cardiovascular diseases. However, defining the substrate specificity of enzymes of lipid metabolism is a challenging task. For example, phospholipase A2 (PLA2) enzymes constitute a superfamily of degradative, biosynthetic, and signaling enzymes that all act stereospecifically to hydrolyze and release the fatty acids of membrane phospholipids. This review focuses on how membranes interact allosterically with enzymes to regulate cell signaling and metabolic pathways leading to inflammation and other diseases. Our group has developed “substrate lipidomics” to quantify the substrate phospholipid specificity of each PLA2 and coupled this with molecular dynamics simulations to reveal that enzyme specificity is linked to specific hydrophobic binding subsites for membrane phospholipid substrates. We have also defined unexpected headgroup and acyl chain specificity for each of the major human PLA2 enzymes, which explains the observed specificity at a structural level. Finally, we discovered that a unique hydrophobic binding site—and not each enzyme’s catalytic residues or polar headgroup binding site—predominantly determines enzyme specificity. We also discuss how PLA2s release specific fatty acids after allosteric enzyme association with membranes and extraction of the phospholipid substrate, which can be blocked by stereospecific inhibitors. After decades of work, we can now correlate PLA2 specificity and inhibition potency with molecular structure and physiological function.  相似文献   

18.
Release of lipid vesicle content induced by the amphipathic peptide δ-lysin was investigated as a function of lipid acyl chain length and degree of unsaturation for a series of phosphatidylcholines. Dye efflux and peptide binding were examined for three homologous lipid series: di-monounsaturated, di-polyunsaturated, and asymmetric phosphatidylcholines, with one saturated and one monounsaturated acyl chain. Except for the third series, peptide activity correlated with the first moment of the lateral pressure profile, which is a function of lipid acyl chain structure. In vesicles composed of asymmetric phosphatidylcholines, peptide binding and dye efflux are enhanced compared to symmetric, unsaturated lipids with similar pressure profiles. We attribute this to the entropically more favorable interaction of δ-lysin with partially saturated phospholipids. We find that lipid acyl chain structure has a major impact on the activity of δ-lysin and is likely to be an important factor contributing to the target specificity of amphipathic peptides.  相似文献   

19.
The phospholipid acyl chain composition and order, the hydrogen bonding, and properties of the phospholipid headgroup all influence cholesterol/phospholipid interactions in hydrated bilayers. In this study, we examined the influence of hydrogen bonding on sphingomyelin (SM) colipid interactions in fluid uni- and multilamellar vesicles. We have compared the properties of oleoyl or palmitoyl SM with comparable dihydro-SMs, because the hydrogen bonding properties of SM and dihydro-SM differ. The association of cholestatrienol, a fluorescent cholesterol analog, with oleoyl sphingomyelin (OSM) was significantly stronger than its association with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, in bilayers with equal acyl chain order. The association of cholestatrienol with dihydro-OSM, which lacks a trans double bond in the sphingoid base, was even stronger than the association with OSM, suggesting an important role for hydrogen bonding in stabilizing sterol/SM interactions. Furthermore, with saturated SM in the presence of 15 mol % cholesterol, cholesterol association with fluid dihydro-palmitoyl SM bilayers was stronger than seen with palmitoyl SM under similar conditions. The different hydrogen bonding properties in OSM and dihydro-OSM bilayers also influenced the segregation of palmitoyl ceramide and dipalmitoylglycerol into an ordered phase. The ordered, palmitoyl ceramide-rich phase started to form above 2 mol % in the dihydro-OSM bilayers but only above 6 mol % in the OSM bilayers. The lateral segregation of dipalmitoylglycerol was also much more pronounced in dihydro-OSM bilayers than in OSM bilayers. The results show that hydrogen bonding is important for sterol/SM and ceramide/SM interactions, as well as for the lateral segregation of a diglyceride. A possible molecular explanation for the different hydrogen bonding in SM and dihydro-SM bilayers is presented and discussed.  相似文献   

20.
Production of hydroxy fatty acids (HFAs) in transgenic crops represents a promising strategy to meet our demands for specialized plant oils with industrial applications. The expression of Ricinus communis (castor) OLEATE 12-HYDROXYLASE (RcFAH12) in Arabidopsis has resulted in only limited accumulation of HFAs in seeds, which probably results from inefficient transfer of HFAs from their site of synthesis (phosphatidylcholine; PC) to triacylglycerol (TAG), especially at the sn-1/3 positions of TAG. Phospholipase As (PLAs) may be directly involved in the liberation of HFAs from PC, but the functions of their over-expression in HFA accumulation and distribution at TAG in transgenic plants have not been well studied. In this work, the functions of lecithin:cholesterol acyltransferase-like PLAs (LCAT-PLAs) in HFA biosynthesis were characterized. The LCAT-PLAs were shown to exhibit homology to LCAT and mammalian lysosomal PLA2, and to contain a conserved and functional Ser/His/Asp catalytic triad. In vitro assays revealed that LCAT-PLAs from the HFA-accumulating plant species Physaria fendleri (PfLCAT-PLA) and castor (RcLCAT-PLA) could cleave acyl chains at both the sn-1 and sn-2 positions of PC, and displayed substrate selectivity towards sn-2-ricinoleoyl-PC over sn-2-oleoyl-PC. Furthermore, co-expression of RcFAH12 with PfLCAT-PLA or RcLCAT-PLA, but not Arabidopsis AtLCAT-PLA, resulted in increased occupation of HFA at the sn-1/3 positions of TAG as well as small but insignificant increases in HFA levels in Arabidopsis seeds compared with RcFAH12 expression alone. Therefore, PfLCAT-PLA and RcLCAT-PLA may contribute to HFA turnover on PC, and represent potential candidates for engineering the production of unusual fatty acids in crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号