首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Abstract

The Angiopoietin-1 (Angpt1)/Tie2 signaling pathway is important in regulating vascular function. Angpt1-induced Tie2 activation promotes vascular endothelial cell survival and reduces vascular leakage. Angiopoietin-2 (Angpt2), a weak agonist/antagonist of Tie2, opposes and regulates Angpt1 action. The Tie family of receptor tyrosine kinases, Tie2 and Tie1, exist as either homo-or heterodimers. The molecular complex between the receptors is also crucial in controlling Angpt1 signaling; hence, the molecular balance between Angpt1:Angpt2 and Tie2:Tie1 is important in determining endothelial integrity and vascular stability. This review presents evidence of the change observed in the Angiopoietin/Tie molecules in various pathophysiological conditions and discusses the potential clinical applications of these molecules in vascular complications.  相似文献   

2.
Summary Previous studies have shown that a circumscribed region of the anterior hypothalamus of the rhesus monkey is lined by tanycyte ependyma and it has been suggested that this ependyma which links the third ventricle with the pars tuberalis may have a functional role in the hypothalamic regulation of anterior pituitary function (Anand Kumar and Knowles, 1967a). In view of the known sexual differences in the hypothalamic regulation of pituitary gonadotropin secretion the present investigation was made to determine whether any structural differences were evident in the tanycyte ependyma in male and female rhesus monkeys.The results of this investigation are based on light and electron microscopic studies of the hypothalamus in 24 rhesus monkeys comprising 12 adult females, 11 sexually mature males and a two month old sexually immature male.The tanycyte ependyma in the rhesus monkey is double layered. There are bulbous projections on the ventricular surface of the cells in the ependymal layer nearest to the ventricle (the first layer of ependyma). These bulbous projections vary in size in relation to the menstrual cycle. They are well developed during mid-cycle and regressed during menstruation. In the males, where the secretion of pituitary gonadotropins does not occur cyclically as in the females, there was no marked variation in the bulbous projections between different individuals as in the female monkeys.In the sexually mature males, but not in the females, the two layers of ependyma are separated by a distinct space. The absence of such a space in the sexually immature male suggests that this difference may be related to sexual maturity.In the adult males the cells in the ependymal layer below the first layer of ependyma have microvilli which extend into the space between the ependymal layers. In the females where such a space is not present, microvilli were not evident.The precise functional significance of the tanycyte ependyma is not known. It is hoped that the results of the present investigation would draw attention to the need for a more detailed examination of the physiological role of the tanycyte ependyma in relation to reproduction.The expenses for this investigation were met from a grant made by the Ford Foundation to Professor Sir Solly Zuckerman and the electron microscope was provided by the Medical Research Council. I am indebted to Sir Solly for his interest in this work.  相似文献   

3.
ObjectivesWe aimed to investigate the underlying mechanism of endothelial cells (ECs) proliferation in anti‐Thy‐1 nephritis.Materials and methodsWe established anti‐Thy‐1 nephritis and co‐culture system to explore the underlying mechanism of ECs proliferation in vivo and in vitro. EdU assay kit was used for measuring cell proliferation. Immunohistochemical staining and immunofluorescence staining were used to detect protein expression. ELISA was used to measure the concentration of protein in serum and medium. RT‐qPCR and Western blot were used to qualify the mRNA and protein expression. siRNA was used to knock down specific protein expression.ResultsIn anti‐Thy‐1 nephritis, ECs proliferation was associated with mesangial cells (MCs)‐derived vascular endothelial growth factor A (VEGFA) and ECs‐derived angiopoietin2 (Angpt2). In vitro co‐culture system activated MCs‐expressed VEGFA to promote vascular endothelial growth factor receptor2 (VEGFR2) activation, Angpt2 expression and ECs proliferation, but inhibit TEK tyrosine kinase (Tie2) phosphorylation. MCs‐derived VEGFA stimulated Angpt2 expression in ECs, which inhibited Tie2 phosphorylation and promoted ECs proliferation. And decline of Tie2 phosphorylation induced ECs proliferation. In anti‐Thy‐1 nephritis, promoting Tie2 phosphorylation could alleviate ECs proliferation.ConclusionsOur study showed that activated MCs promoted ECs proliferation through VEGFA/VEGFR2 and Angpt2/Tie2 pathway in experimental mesangial proliferative glomerulonephritis (MPGN) and in vitro co‐culture system. And enhancing Tie2 phosphorylation could alleviate ECs proliferation, which will provide a new idea for MPGN treatment.  相似文献   

4.
The endothelial angiopoietin (Angpt)/Tie2 ligand receptor system maintains vascular quiescence and modulates the response to injury. Angpt-1 is considered the natural Tie2 agonist and receptor ligation leads to its phosphorylation inducing various protective downstream pathways. The natural antagonist – Angpt-2 – appears to inhibit these protective effects. In sepsis, the balance between both ligands is shifted in favor for Angpt-2 and the vasculature is highly dysfunctional, activated and leaky. Circulating levels of Angpt-2 strongly predict mortality in septic patients. Consistently, experimental strategies that target Angpt-2 (e.g. antibody, RNAi, etc.) can protect the vascular barrier and improve survival. However, in vitro is has also been shown that Angpt-2 can act as a dose-dependent Tie2 agonist/antagonist. Based on this, people have wondered if Angpt-2 is per se injurious or if it might have protective effects dependent on the scenario. A recent paper by Safioleas and colleagues showed survival benefits after a therapeutic injection of recombinant Angpt-2 in experimental pyelonephritis. Here, we discuss their counter-intuitive but interesting findings and put them into a global context with respect to the existent literature in the angiopoietin/Tie2 sepsis field.  相似文献   

5.
Angiopoietin-1 (Angpt1) signaling via the Tie2 receptor regulates vascular and hematopoietic systems. To investigate the role of Angpt1-Tie2 signaling in hematopoiesis, we prepared conditionally inducible transgenic (Tg) mice expressing a genetically engineered Angpt1, cartridge oligomeric matrix protein (COMP)-Angpt1. The effects of COMP-Angpt1 overexpression in osteoblasts on hematopoiesis were then investigated by crossing COMP-Angpt1 Tg mice with Col1a1-Cre Tg mice. Interestingly, peripheral blood analyses showed that 4 week (wk)-old (but not 8 wk-old) Col1a1-Cre+/COMP-Angpt1+ mice had a lower percentage of circulating B cells and a higher percentage of myeloid cells than Col1a1-Cre?/COMP-Angpt1+ (control) mice. Although there were no significant differences in the immunophenotypic hematopoietic stem and progenitor cell (HSPC) populations between Col1a1-Cre+/COMP-Angpt1+ and control mice, lineage?Sca-1+c-Kit+ (LSK) cells isolated from 8 wk-old Col1a1-Cre+/COMP-Angpt1+ mice showed better long-term bone marrow reconstitution ability. These data indicate that Angpt1-Tie2 signaling affects the differentiation capacity of hematopoietic lineages during development and increases the stem cell activity of HSCs.  相似文献   

6.
Summary Light-and electron-microscopic immunocytochemistry (LM-ICC and EM-ICC) were used to visualize luteinizing hormone-releasing hormone (LHRH) in fibres associated with ventricular ependyma and tanycytes of the median eminence. LM-ICC suggests that LHRH fibers appear to enter the third ventricle. However, with EM-ICC, LHRH fibers are in fact found within ependymal canaliculi formed by adjacent ependymal cells. The canaliculi contain other myelinated and unmyelinated axons in addition to immunoreactive LHRH fibers. Thin slips of ependymal and tanycyte processes project into the canaliculi and enclose axons to varying degrees. At the median eminence many LHRH fibers bend sharply downwards from their ventricular course and travel with tanycytic processes towards their common destination — the perivascular space of the hypophysial-portal vascular system. Here, EM-ICC reveals that LHRH fibers closely contact basal processes of tanycytes. Lateral processes from tanycytes form glioplasmic sheaths which surround some individual LHRH fibers. A few LHRH terminals contact the perivascular space directly but more often are separated from the perivascular space by intervening glia. It is hypothesized that: (1) glia of this region responds to the physiological state of the animal and may determine the degree of LHRH secretion by varying the extent of glial investment of LHRH terminals; and (2) may play a role during development by providing direction and support for LHRH fibers similar to that described for radial and other glial cells.  相似文献   

7.
Summary The structural organization of the rostral, lateral and postinfundibular regions of the median eminence (ME) of 5-day cyclic diestrous rats was studied with light and electron microscopic methods. The ependymal cells lining (i) the floor of the infundibular recess (IR) at rostral levels, (ii) the lateral extensions of the IR, and (iii) the floor of the premammillary recess appear to represent the same type of tanycyte ependyma (1 tanycytes). In the entire width of the rostral and postinfundibular palisade regions, as well as in the lateral palisade region of the preinfundibular ME, the processes of the 1 tanycytes form a continuous cuff. This cuff separates the nerve endings from the blood vessels and the pars tuberalis. At this level, synaptoid contacts between neurosecretory axons and the ependymal cuff can be observed. The ultrastructural characteristics of the 1 tanycytes are described and their ependymal endings tentatively classified into three types. In the lateral regions of the ME, the Golgi study revealed the presence of two fiber systems: (i) one possessing a latero-medial trajectory and distributed in the subependymal region; (ii) the other formed by a loose longitudinal tract originating from neurons of the arcuate nucleus. Some functional implications of the cellular organization of the rat ME are discussed.Supported by Grants from PLAMIRH (92.171.2.77) and from the Dirección de Investigaciones, Universidad Austral (S-77-28)The authors wish to thank Miss Rosario Andrade, Mrs. Elizabeth Santibáñez and Mr. Armando Bilbao for their assistance  相似文献   

8.
The ependymal multiciliated epithelium in the brain restricts the cerebrospinal fluid to the cerebral ventricles and regulates its flow. We report here that mice deficient for myosin IXa (Myo9a), an actin-dependent motor molecule with a Rho GTPase–activating (GAP) domain, develop severe hydrocephalus with stenosis and closure of the ventral caudal 3rd ventricle and the aqueduct. Myo9a is expressed in maturing ependymal epithelial cells, and its absence leads to impaired maturation of ependymal cells. The Myo9a deficiency further resulted in a distorted ependyma due to irregular epithelial cell morphology and altered organization of intercellular junctions. Ependymal cells occasionally delaminated, forming multilayered structures that bridged the CSF-filled ventricular space. Hydrocephalus formation could be significantly attenuated by the inhibition of the Rho-effector Rho-kinase (ROCK). Administration of ROCK-inhibitor restored maturation of ependymal cells, but not the morphological distortions of the ependyma. Similarly, down-regulation of Myo9a by siRNA in Caco-2 adenocarcinoma cells increased Rho-signaling and induced alterations in differentiation, cell morphology, junction assembly, junctional signaling, and gene expression. Our results demonstrate that Myo9a is a critical regulator of Rho-dependent and -independent signaling mechanisms that guide epithelial differentiation. Moreover, Rho-kinases may represent a new target for therapeutic intervention in some forms of hydrocephalus.  相似文献   

9.
Vascular leak is a key driver of organ injury in diseases, and strategies that reduce enhanced permeability and vascular inflammation are promising therapeutic targets. Activation of the angiopoietin‐1 (ANG1)‐Tie2 tyrosine kinase signaling pathway is an important regulator of vascular quiescence. Here we describe the design and construction of a new soluble ANG1 mimetic that is a potent activator of endothelial Tie2 in vitro and in vivo. Using a chimeric fusion strategy, we replaced the extracellular matrix (ECM) binding and oligomerization domain of ANG1 with a heptameric scaffold derived from the C‐terminus of serum complement protein C4‐binding protein α. We refer to this new fusion protein biologic as Hepta‐ANG1, which forms a stable heptamer and induces Tie2 phosphorylation in cultured cells, and in the lung following intravenous injection of mice. Injection of Hepta‐ANG1 ameliorates vascular endothelial growth factor‐ and lipopolysaccharide‐induced vascular leakage, in keeping with the known functions of Angpt1‐Tie2 in maintaining quiescent vascular stability. The new Hepta‐ANG1 fusion is easy to produce and displays remarkable stability with high multimericity that can potently activate Tie2. It could be a new candidate ANG1 mimetic therapy for treatments of inflammatory vascular leak, such as acute respiratory distress syndrome and sepsis.  相似文献   

10.
Angiopoietins are ligands of the Tie2 receptor that control angiogenic remodeling in a context-dependent manner. Tie signaling is involved in multiple steps of the angiogenic remodeling process during development, including destabilization of existing vessels, endothelial cell migration, tube formation and the subsequent stabilization of newly formed tubes by mesenchymal cells. Beyond this critical role in blood vessel development, recent studies suggest a wider role for Tie2 and angiopoietins in lymphangiogenesis and the development of the hematopoietic system, as well as a possible role in the regulation of certain non-endothelial cells. The outcome of Tie signaling depends on which vascular bed is involved, and crosstalk between different VEGFs has an important modulating effect on the properties of the angiopoietins. Signaling through the Tie1 receptor is not well understood, but Tie1 may have both angiopoietin-dependent and ligand-independent functions. Changes in the expression of Tie receptors and angiopoietins occur in many pathological conditions, and mutations in the Tie2 gene are found in familial cases of vascular disease.  相似文献   

11.
A Kiss  A Mitro 《Acta anatomica》1978,100(4):521-531
The ependyma was investigated in five areas of the rat ventricle system by means of both light and electron microscopy. The columnar, cuboidal and flattened types of the ependymal cells were mainly seen. All of them were seen in the fourth ventricle, while in the aqueductus cerebri and in the central canal the flattened type of the cell was lacking. An unusual variation as to the form of the ependymal cells was found on the roof of the fourth ventricle. Three groups of intraventricular structures were found in all investigated parts of the ventricle system: supraependymal globular structures containing irregularly arranged cristae, supraependymal protrusions appearing as homogeneous contents, and nerve profiles including nerve endings and nerve axons. The morphological characteristics of the ependyma and intraventricular profiles in the fourth ventricle allow to suppose a certain role of these structures in the exchange of various materials between the CSF, ependyma and neuropile.  相似文献   

12.
Summary A well developed system of ependymal glial cells with long basilar processes stretching to the surface of the brain (tanycytes, Horstmann, 1954) has been described in the basal hypothalamus of Coturnix quail. The tanycytes both in the median eminence and the ventro-lateral hypothalamus form a link between the third ventricle and the hypophysial circulation. The processes of the ventro-lateral tanycytes terminate in the region of the infundibular sulcus in apposition to a loose network of vessels which are continuous with the primary plexus of the hypophysial portal system.Within the median eminence, the subependymal capillary network connects the vasculature of the contra-lateral sides of hypothalamus. There are no direct connections with the hypophysial portal vessels.With the aid of the light and electron microscope the ventricular ependyma was divided into a dorsal typical region and two glandular regions (ventro-lateral and ventral). Each region contains different forms of tanycyte. One of the two forms of tanycyte (designated type 3) associated with the ventro-lateral glandular ependyma has no contact with the third ventricle.Ultrastructural studies on the glandular ependyma failed to show any obvious differences between castrated, oestrogen or testosterone implanted, and sexually mature or immature quail.The possibility that the tanycyte-vascular system may have a neuroendocrine role is discussed.I am indebted to Professor A. Oksche, Dept. of Anatomy, University of Giessen for providing research facilities and to The Royal Society for additional financial support.  相似文献   

13.
The angiopoietins act through the endothelial receptor tyrosine kinase Tie2 to regulate vessel maturation in angiogenesis and control quiescence and stability of established vessels. The activating ligand, Ang1 (angiopoietin-1), is constitutively expressed by perivascular cells, and the ability of endothelial cells to respond to the ligand is controlled at the level of the Ang1 receptor. This receptor interacts with the related protein Tie1 on the cell surface, and Tie1 inhibits Ang1 signalling through Tie2. The responsiveness of endothelium to Ang1 is determined by the relative levels of Tie2 and the inhibitory co-receptor Tie1 in the cells. Tie1 undergoes regulated ectodomain cleavage which is stimulated by a range of factors including VEGF (vascular endothelial growth factor), inflammatory cytokines and changes in shear stress. Ectodomain cleavage of Tie1 relieves inhibition of Tie2 and enhances Ang1 signalling. This mechanism regulates Ang1 signalling without requiring changes in the level of the ligand and allows Ang1 signalling to be co-ordinated with other signals in the cellular environment. Regulation of signalling at the level of receptor responsiveness may be an important adaptation in systems in which an activating ligand is normally present in excess or where the ligand provides a constitutive maintenance signal.  相似文献   

14.
In this study, we tested the hypothesis that the Angiopoietin 1 (Ang1)/Tie2 pathway mediates simvastatin-induced vascular integrity and migration of neuroblasts after stroke. Rats were subjected to 2 hrs of middle cerebral artery occlusion (MCAo) and treated, starting 1 day after stroke with or without simvastatin (1 mg/kg, daily) for 7 days. Simvastatin treatment significantly decreased blood–brain barrier (BBB) leakage and concomitantly, increased Ang1, Tie2 and Occludin expression in the ischaemic border (IBZ) compared to the MCAo control group. Simvastatin also significantly increased doublecortin (DCX, a marker of migrating neuroblasts) expression in the IBZ compared to control MCAo rats. DCX was highly expressed around vessels. To further investigate the signalling pathway of simvastatin-induced vascular stabilization and angiogenesis, rat brain microvascular endothelial cell (RBMEC) culture was employed. The data show that simvastatin treatment of RBMEC increased Ang1 and Tie2 gene and protein expression and promoted phosphorylated-Tie2 activity. Simvastatin significantly increased endothelial capillary tube formation, an index of angiogenesis, compared to non-treated control. Inhibition of Ang1 or knockdown of Tie2 gene expression in endothelial cells significantly attenuated simvastatin-induced capillary tube formation. In addition, simvastatin significantly increased subventricular zone (SVZ) explant cell migration compared to non-treatment control. Inhibition of Ang1 significantly attenuated simvastatin-induced SVZ cell migration. Simvastatin treatment of stroke increases Ang1/Tie2 expression and thereby reduces BBB leakage and promotes vascular stabilization. Ang1/Tie2 expression induced by simvastatin treatment promotes neuroblast micro-vascular coupling after stroke.  相似文献   

15.
Tie2 is a receptor tyrosine kinase expressed predominantly in endothelial cells. A missense mutation in the intracellular domain of Tie2 resulting in an arginine to tryptophan substitution causes an inherited form of vascular dysmorphogenesis, venous malformation (VM). The signalling pathways activated by mutant Tie2 and responsible for formation and maintenance of the abnormal vessels in VM are not known. In this study, we have sought to define these pathways by identifying phosphoproteins interacting with mutant Tie2 expressed in endothelial cells. We find R849W Tie2 is constitutively active in endothelium and recruits and phosphorylates a 52 kDa protein. This protein is identified as p52 ShcA. We show endothelial cells expressing VM-mutant Tie2 are protected from cell death and expression of dominant-negative ShcA inhibits the anti-apoptotic activity of the mutant receptor. Suppression of this pro-survival signalling could be a therapeutic option for inducing regression of lesional vessels.  相似文献   

16.
Sunopsis Monoamine oxidase (MAO) activity has been demonstrated histochemically in rat hypothalamic ependyma using the sulphate-tetrazolium and coupled peroxidatic techniques with tryptamine, tyramine, 5-hydroxytryptamine and benzylamine as substrates. Both methods were applied to cryostat sections with and without exposure to selective amine oxidase inhibitors, including the selective A-MAO inhibitor clorgyline, and the B-MAO inhibitor deprenyl. Our results show that both cuboidal-columnar and tanycyte ependyma contain one or more forms of MAO not generally present in the hypothalamus. It is suggested that ependymal MAO may form an amine-barrier system modulating the movement and effect within the hypothalamus of specific cerebrospinal fluid or blood monoamines.  相似文献   

17.
Vascularization defects in genetic recombinant mice have defined critical roles for a number of specific receptor tyrosine kinases. Here we evaluated whether an endothelium-expressed receptor tyrosine phosphatase, CD148 (DEP-1/PTPeta), participates in developmental vascularization. A mutant allele, CD148(DeltaCyGFP), was constructed to eliminate CD148 phosphatase activity by in-frame replacement of cytoplasmic sequences with enhanced green fluorescent protein sequences. Homozygous mutant mice died at midgestation, before embryonic day 11.5 (E11.5), with vascularization failure marked by growth retardation and disorganized vascular structures. Structural abnormalities were observed as early as E8.25 in the yolk sac, prior to the appearance of intraembryonic defects. Homozygous mutant mice displayed enlarged vessels comprised of endothelial cells expressing markers of early differentiation, including VEGFR2 (Flk1), Tal1/SCL, CD31, ephrin-B2, and Tie2, with notable lack of endoglin expression. Increased endothelial cell numbers and mitotic activity indices were demonstrated. At E9.5, homozygous mutant embryos showed homogeneously enlarged primitive vessels defective in vascular remodeling and branching, with impaired pericyte investment adjacent to endothelial structures, in similarity to endoglin-deficient embryos. Developing cardiac tissues showed expanded endocardial projections accompanied by defective endocardial cushion formation. These findings implicate a member of the receptor tyrosine phosphatase family, CD148, in developmental vascular organization and provide evidence that it regulates endothelial proliferation and endothelium-pericyte interactions.  相似文献   

18.
BackgroundTherapeutic angiogenesis is a novel strategy for the treatment of ischemic diseases that involves promotion of angiogenesis in ischemic tissues via the use of proangiogenic agents. However, effective proangiogenic drugs that activate the Ang2/Tie2 signaling pathway remain scarce.PurposeWe aimed to investigate the proangiogenic activity of notoginsenoside R1 (NR1) isolated from total saponins of Panax notoginseng with regard to activation of the Ang2/Tie2 signaling pathway.MethodsWe examined the proangiogenic effects of NR1 by assessing the effects of NR1 on the proliferation, migration, invasion and tube formation of human umbilical vein endothelial cells (HUVECs). The aortic ring assay and vascular endothelial growth factor receptor inhibitor (VRI)-induced vascular regression in the zebrafish model were used to confirm the proangiogenic effects of NR1 ex vivo and in vivo. Furthermore, the molecular mechanism was investigated by Western blot analysis.ResultsWe found that NR1 promoted the proliferation, mobility and tube formation of HUVECs in vitro. NR1 also increased the number of sprouting vessels in rat aortic rings and rescued VRI-induced vascular regression in zebrafish. NR1-induced angiogenesis was dependent on Tie2 receptor activation mediated by increased autocrine Ang2 in HUVECs, and inhibition of the Ang2/Tie2 pathway abrogated the proangiogenic effects of NR1.ConclusionsOur results suggest that NR1 promotes angiogenesis by activating the Ang2/Tie2 signaling pathway. Thus, NR1-induced activation of the Ang2/Tie2 pathway is an effective proangiogenic approach. NR1 may be useful agent for the treatment of ischemic diseases.  相似文献   

19.
The tyrosine kinase receptor Tie2 was initially identified as a specific vascular growth factor that governed several properties of endothelial cells under both physiological and pathological conditions. It was subsequently found that angiopoietins, the natural ligands of Tie2, modulate Tie2-dependent signaling, which in turn regulates the survival and apoptosis of endothelial cells, controls vascular permeability, and regulates the capillary sprouting that occurs during normal angiogenesis such as through development and ovarian remodeling. Tie2 also seems to play a crucial role in several vascular abnormalities, such as familial venous malformations. Beyond its critical role in angiogenesis, Tie2 also appears to maintain the long-term population and quiescent status of hematopoietic stem cells in the bone marrow stem cell niche. In cancer, Tie2 was originally found to be overexpressed in tumoral vessels. More recently, our laboratory and others have found that Tie2 is also expressed outside the vascular compartment in several types of cancer, including leukemia and solid neoplasms such as gastric tumors, breast tumors, and gliomas. The role of Tie2 in these tumoral cells is currently being explored. In this regard, our group reported the importance of Tie2-expressing glioma cells in their adhesion to the tumoral microenvironment. Because cancer may be considered as a complex organ with several cellular lineages coexisting in the same tumor, the expression of Tie2 by different tumoral compartments makes this cellular receptor an attractive target for cancer therapy.  相似文献   

20.
The endothelial cell is the essential cell type forming the inner layer of the vasculature. Two families of receptor tyrosine kinases (RTKs) are almost completely endothelial cell specific: the vascular endothelial growth factor (VEGF) receptors (VEGFR1-3) and the Tie receptors (Tie1 and Tie2). Both are key players governing the generation of blood and lymphatic vessels during embryonic development. Because the growth of new blood and lymphatic vessels (or the lack thereof) is a central element in many diseases, the VEGF and the Tie receptors provide attractive therapeutic targets in various diseases. Indeed, several drugs directed to these RTK signaling pathways are already on the market, whereas many are in clinical trials. Here we review the VEGFR and Tie families, their involvement in developmental and pathological angiogenesis, and the different possibilities for targeting them to either block or enhance angiogenesis and lymphangiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号