首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
GATA1 is a master regulator of erythropoiesis, expression of which is regulated by multiple discrete cis-acting elements. In this study, we examine the activity of a promoter-proximal double GATA (dbGATA) motif, using a Gata1 bacterial artificial chromosome (BAC)-transgenic green fluorescent protein (GFP) reporter (G1BAC-GFP) mouse system. Deletion of the dbGATA motif led to significant reductions in GFP expression in hematopoietic progenitors, while GFP expression was maintained in erythroblasts. Consistently, in mice with a germ line deletion of the dbGATA motif (Gata1ΔdbGATA mice), GATA1 expression in progenitors was significantly decreased. The suppressed GATA1 expression was associated with a compensatory increase in GATA2 levels in progenitors. When we crossed Gata1ΔdbGATA mice with Gata2 hypomorphic mutant mice (Gata2fGN/fGN mice), the Gata1ΔdbGATA::Gata2fGN/fGN compound mutant mice succumbed to a significant decrease in the progenitor population, whereas both groups of single mutant mice maintained progenitors and survived to adulthood, indicating the functional redundancy between GATA1 and GATA2 in progenitors. Meanwhile, the effects of the dbGATA site deletion on Gata1 expression were subtle in erythroblasts, which showed increased GATA1 binding and enhanced accumulation of active histone marks around the 1st-intron GATA motif of the ΔdbGATA locus. These results thus reveal a novel role of the dbGATA motif in the maintenance of Gata1 expression in hematopoietic progenitors and a functional compensation between the dbGATA site and the 1st-intron GATA motif in erythroblasts.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Although previous studies have shown that GATA1 is required for mast cell differentiation, the effects of the complete ablation of GATA1 in mast cells have not been examined. Using conditional Gata1 knockout mice (Gata1/y), we demonstrate here that the complete ablation of GATA1 has a minimal effect on the number and distribution of peripheral tissue mast cells in adult mice. The Gata1/y bone marrow cells were capable of differentiating into mast cells ex vivo. Microarray analyses showed that the repression of GATA1 in bone marrow mast cells (BMMCs) has a small impact on the mast cell-specific gene expression in most cases. Interestingly, however, the expression levels of mast cell tryptases in the mouse chromosome 17A3.3 were uniformly reduced in the GATA1 knockdown cells, and GATA1 was found to bind to a 500-bp region at the 5′ end of this locus. Revealing a sharp contrast to that observed in the Gata1-null BMMCs, GATA2 deficiency resulted in a significant loss of the c-Kit+ FcεRIα+ mast cell fraction and a reduced expression of several mast cell-specific genes. Collectively, GATA2 plays a more important role than GATA1 in the regulation of most mast cell-specific genes, while GATA1 might play specific roles in mast cell functions.  相似文献   

18.
19.
20.
The functions of actin family members during development are poorly understood. To investigate the role of beta-actin in mammalian development, a beta-actin knockout mouse model was used. Homozygous beta-actin knockout mice are lethal at embryonic day (E)10.5. At E10.25 beta-actin knockout embryos are growth retarded and display a pale yolk sac and embryo proper that is suggestive of altered erythropoiesis. Here we report that lack of beta-actin resulted in a block of primitive and definitive hematopoietic development. Reduced levels of Gata2, were associated to this phenotype. Consistently, ChIP analysis revealed multiple binding sites for beta-actin in the Gata2 promoter. Gata2 mRNA levels were almost completely rescued by expression of an erythroid lineage restricted ROSA26-promotor based GATA2 transgene. As a result, erythroid differentiation was restored and the knockout embryos showed significant improvement in yolk sac and embryo vascularization. These results provide new molecular insights for a novel function of beta-actin in erythropoiesis by modulating the expression levels of Gata2 in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号