首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used electron microscopy to examine the structure of human DNA pol gamma, the heterotrimeric mtDNA replicase implicated in certain mitochondrial diseases and aging models. Separate analysis of negatively stained preparations of the catalytic subunit, pol gammaA, and of the holoenzyme including a dimeric accessory factor, pol gammaB(2), permitted unambiguous identification of the position of the accessory factor within the holoenzyme. The model explains protection of a partial chymotryptic cleavage site after residue L(549) of pol gammaA upon binding of the accessory subunit. This interaction region is near residue 467 of pol gammaA, where a disease-related mutation has been reported to impair binding of the B subunit. One pol gammaB subunit dominates contacts with the catalytic subunit, while the second B subunit is largely exposed to solvent. A model for pol gamma is discussed that considers the effects of known mutations in the accessory subunit and the interaction of the enzyme with DNA.  相似文献   

2.
The mitochondrial replication machinery in human cells includes the DNA polymerase γ holoenzyme and the TWINKLE helicase. Together, these two factors form a processive replication machinery, a replisome, which can use duplex DNA as template to synthesize long stretches of single-stranded DNA. We here address the importance of the smaller, accessory B subunit of DNA polymerase γ and demonstrate that this subunit is absolutely required for replisome function. The duplex DNA binding activity of the B subunit is needed for coordination of POLγ holoenzyme and TWINKLE helicase activities at the mtDNA replication fork. In the absence of proof for direct physical interactions between the components of the mitochondrial replisome, these functional interactions may explain the strict interdependence of TWINKLE and DNA polymerase γ for mitochondrial DNA synthesis. Furthermore, mutations in TWINKLE as well as in the catalytic A and accessory B subunits of the POLγ holoenzyme, may cause autosomal dominant progressive external ophthalmoplegia, a disorder associated with deletions in mitochondrial DNA. The crucial importance of the B subunit for replisome function may help to explain why mutations in these three proteins cause an identical syndrome.  相似文献   

3.
Mitochondrial DNA polymerase (pol gamma) is the sole DNA polymerase responsible for replication and repair of animal mitochondrial DNA. Here, we address the molecular mechanism by which the human holoenzyme achieves high processivity in nucleotide polymerization. We have determined the crystal structure of human pol gamma-beta, the accessory subunit that binds with high affinity to the catalytic core, pol gamma-alpha, to stimulate its activity and enhance holoenzyme processivity. We find that human pol gamma-beta shares a high level of structural similarity to class IIa aminoacyl tRNA synthetases, and forms a dimer in the crystal. A human pol gamma/DNA complex model was developed using the structures of the pol gamma-beta dimer and the bacteriophage T7 DNA polymerase ternary complex, which suggests multiple regions of subunit interaction between pol gamma-beta and the human catalytic core that allow it to encircle the newly synthesized double-stranded DNA, and thereby enhance DNA binding affinity and holoenzyme processivity. Biochemical properties of a novel set of human pol gamma-beta mutants are explained by and test the model, and elucidate the role of the accessory subunit as a novel type of processivity factor in stimulating pol gamma activity and in enhancing processivity.  相似文献   

4.
Common causes of human mitochondrial diseases are mutations affecting DNA polymerase (Pol) γ, the sole polymerase responsible for DNA synthesis in mitochondria. Although the polymerase and exonuclease active sites are located on the catalytic subunit Pol γA, in holoenzyme both activities are regulated by the accessory subunit Pol γB. Several patients with severe neurological and muscular disorders were reported to carry the Pol γA substitutions R232G or R232H, which lie outside of either active site. We report that Arg232 substitutions have no effect on independent Pol γA activities but show major defects in the Pol γA-Pol γB holoenzyme, including decreased polymerase and increased exonuclease activities, the latter with decreased selectivity for mismatches. We show that Pol γB facilitates distinguishing mismatched from base-paired primer termini and that Pol γA Arg232 is essential for mediating this regulatory function of the accessory subunit. This study provides a molecular basis for the disease symptoms exhibited by patients carrying those substitutions.  相似文献   

5.
DNA polymerase zeta (pol ζ) is exceptionally important for controlling mutagenesis and genetic instability. REV3L comprises the catalytic subunit, while REV7 (MAD2L2) is considered an accessory subunit. However, it has not been established that the role of REV7 in DNA damage tolerance is necessarily connected with mammalian pol ζ, and there is accumulating evidence that REV7 and REV3L have independent functions. Analysis of pol ζ has been hampered by difficulties in expression of REV3L in mammalian cells, and lack of a functional complementation system. Here, we report that REV7 interacts with full-length REV3L in vivo and we identify a new conserved REV7 interaction site in human REV3L (residues 1993–2003), distinct from the known binding site (residues 1877–1887). Mutation of both REV7-binding sites eliminates the REV3L–REV7 interaction. In vivo complementation shows that both REV7-binding sites in REV3L are necessary for preventing spontaneous chromosome breaks and conferring resistance to UV radiation and cisplatin. This demonstrates a damage-specific function of REV7 in pol ζ, in contrast to the distinct roles of REV3L and REV7 in primary cell viability and embryogenesis.  相似文献   

6.
Human DNA polymerase (pol) λ functions in base excision repair and non-homologous end joining. We have previously shown that DNA pol λ is involved in accurate bypass of the two frequent oxidative lesions, 7,8-dihydro-8-oxoguanine and 1,2-dihydro-2-oxoadenine during the S phase. However, nothing is known so far about the relationship of DNA pol λ with the S phase DNA damage response checkpoint. Here, we show that a knockdown of DNA pol λ, but not of its close homologue DNA pol β, results in replication fork stress and activates the S phase checkpoint, slowing S phase progression in different human cancer cell lines. We furthermore show that DNA pol λ protects cells from oxidative DNA damage and also functions in rescuing stalled replication forks. Its absence becomes lethal for a cell when a functional checkpoint is missing, suggesting a DNA synthesis deficiency. Our results provide the first evidence, to our knowledge, that DNA pol λ is required for cell cycle progression and is functionally connected to the S phase DNA damage response machinery in cancer cells.  相似文献   

7.
In addition to the well characterized processive replication reaction catalyzed by the DNA polymerase III holoenzyme on single-stranded DNA templates, the enzyme possesses an intrinsic strand displacement activity on flapped templates. The strand displacement activity is distinguished from the single-stranded DNA-templated reaction by a high dependence upon single-stranded DNA binding protein and an inability of γ-complex to support the reaction in the absence of τ. However, if γ-complex is present to load β2, a truncated τ protein containing only domains III–V will suffice. This truncated protein is sufficient to bind both the α subunit of DNA polymerase (Pol) III and χψ. This is reminiscent of the minimal requirements for Pol III to replicate short single-stranded DNA-binding protein (SSB)-coated templates where τ is only required to serve as a scaffold to hold Pol III and χ in the same complex (Glover, B., and McHenry, C. (1998) J. Biol. Chem. 273, 23476–23484). We propose a model in which strand displacement by DNA polymerase III holoenzyme depends upon a Pol III-τ-ψ-χ-SSB binding network, where SSB is bound to the displaced strand, stabilizing the Pol III-template interaction. The same interaction network is probably important for stabilizing the leading strand polymerase interactions with authentic replication forks. The specificity constant (kcat/Km) for the strand displacement reaction is ∼300-fold less favorable than reactions on single-stranded templates and proceeds with a slower rate (150 nucleotides/s) and only moderate processivity (∼300 nucleotides). PriA, the initiator of replication restart on collapsed or misassembled replication forks, blocks the strand displacement reaction, even if added to an ongoing reaction.  相似文献   

8.
DNA polymerase δ (pol δ) is one of the two main replicative polymerases in eukaryotes; it synthesizes the lagging DNA strand and also functions in DNA repair. In previous work, we demonstrated that heterozygous expression of the pol δ L604G variant in mice results in normal life span and no apparent phenotype, whereas a different substitution at the same position, L604K, is associated with shortened life span and accelerated carcinogenesis. Here, we report in vitro analysis of the homologous mutations at position Leu-606 in human pol δ. Four-subunit human pol δ variants that harbor or lack 3′ → 5′-exonucleolytic proofreading activity were purified from Escherichia coli. The pol δ L606G and L606K holoenzymes retain catalytic activity and processivity similar to that of wild type pol δ. pol δ L606G is highly error prone, incorporating single noncomplementary nucleotides at a high frequency during DNA synthesis, whereas pol δ L606K is extremely accurate, with a higher fidelity of single nucleotide incorporation by the active site than that of wild type pol δ. However, pol δ L606K is impaired in the bypass of DNA adducts, and the homologous variant in mouse embryonic fibroblasts results in a decreased rate of replication fork progression in vivo. These results indicate that different substitutions at a single active site residue in a eukaryotic polymerase can either increase or decrease the accuracy of synthesis relative to wild type and suggest that enhanced fidelity of base selection by a polymerase active site can result in impaired lesion bypass and delayed replication fork progression.  相似文献   

9.
Mitochondrial DNA polymerase gamma (pol gamma) is responsible for replication and repair of mtDNA and is mutated in individuals with genetic disorders such as chronic external ophthalmoplegia and Alpers syndrome. pol gamma is also an adventitious target for toxic side effects of several antiviral compounds, and mutation of its proofreading exonuclease leads to accelerated aging in mouse models. We have used a variety of physical and functional approaches to study the interaction of the human pol gamma catalytic subunit with both the wild-type accessory factor, pol gammaB, and a deletion derivative that is unable to dimerize and consequently is impaired in its ability to stimulate processive DNA synthesis. Our studies clearly showed that the functional human holoenzyme contains two subunits of the processivity factor and one catalytic subunit, thereby forming a heterotrimer. The structure of pol gamma seems to be variable, ranging from a single catalytic subunit in yeast to a heterodimer in Drosophila and a heterotrimer in mammals.  相似文献   

10.
In eukaryotic DNA replication, DNA polymerase ε (Polε) is responsible for leading strand synthesis, whereas DNA polymerases α and δ synthesize the lagging strand. The human Polε (hPolε) holoenzyme is comprised of the catalytic p261 subunit and the noncatalytic p59, p17, and p12 small subunits. So far, the contribution of the noncatalytic subunits to hPolε function is not well understood. Using pre-steady-state kinetic methods, we established a minimal kinetic mechanism for DNA polymerization and editing catalyzed by the hPolε holoenzyme. Compared with the 140-kDa N-terminal catalytic fragment of p261 (p261N), which we kinetically characterized in our earlier studies, the presence of the p261 C-terminal domain (p261C) and the three small subunits increased the DNA binding affinity and the base substitution fidelity. Although the small subunits enhanced correct nucleotide incorporation efficiency, there was a wide range of rate constants when incorporating a correct nucleotide over a single-base mismatch. Surprisingly, the 3′→5′ exonuclease activity of the hPolε holoenzyme was significantly slower than that of p261N when editing both matched and mismatched DNA substrates. This suggests that the presence of p261C and the three small subunits regulates the 3′→5′ exonuclease activity of the hPolε holoenzyme. Together, the 3′→5′ exonuclease activity and the variable mismatch extension activity modulate the overall fidelity of the hPolε holoenzyme by up to 3 orders of magnitude. Thus, the presence of p261C and the three noncatalytic subunits optimizes the dual enzymatic activities of the catalytic p261 subunit and makes the hPolε holoenzyme an efficient and faithful replicative DNA polymerase.  相似文献   

11.
L. Giot  R. Chanet  M. Simon  C. Facca    G. Faye 《Genetics》1997,146(4):1239-1251
The POL3 encoded catalytic subunit of DNA polymerase δ possesses a highly conserved C-terminal cysteine-rich domain in Saccharomyces cerevisiae. Mutations in some of its cysteine codons display a lethal phenotype, which demonstrates an essential function of this domain. The thermosensitive mutant pol3-13, in which a serine replaces a cysteine of this domain, exhibits a range of defects in DNA repair, such as hypersensitivity to different DNA-damaging agents and deficiency for induced mutagenesis and for recombination. These phenotypes are observed at 24°, a temperature at which DNA replication is almost normal; this differentiates the functions of POL3 in DNA repair and DNA replication. Since spontaneous mutagenesis and spontaneous recombination are efficient in pol3-13, we propose that POL3 plays an important role in DNA repair after irradiation, particularly in the error-prone and recombinational pathways. Extragenic suppressors of pol3-13 are allelic to sdp5-1, previously identified as an extragenic suppressor of pol3-11. SDP5, which is identical to HYS2, encodes a protein homologous to the p50 subunit of bovine and human DNA polymerase δ. SDP5 is most probably the p55 subunit of Polδ of S. cerevisiae and seems to be associated with the catalytic subunit for both DNA replication and DNA repair.  相似文献   

12.
Mutations in POLG, encoding POLγA, the catalytic subunit of the mitochondrial DNA polymerase, cause a spectrum of disorders characterized by mtDNA instability. However, the molecular pathogenesis of POLG-related diseases is poorly understood and efficient treatments are missing. Here, we generate the PolgA449T/A449T mouse model, which reproduces the A467T change, the most common human recessive mutation of POLG. We show that the mouse A449T mutation impairs DNA binding and mtDNA synthesis activities of POLγ, leading to a stalling phenotype. Most importantly, the A449T mutation also strongly impairs interactions with POLγB, the accessory subunit of the POLγ holoenzyme. This allows the free POLγA to become a substrate for LONP1 protease degradation, leading to dramatically reduced levels of POLγA in A449T mouse tissues. Therefore, in addition to its role as a processivity factor, POLγB acts to stabilize POLγA and to prevent LONP1-dependent degradation. Notably, we validated this mechanism for other disease-associated mutations affecting the interaction between the two POLγ subunits. We suggest that targeting POLγA turnover can be exploited as a target for the development of future therapies.  相似文献   

13.
Two novel human and mouse DNA polymerases of the polX family   总被引:17,自引:3,他引:14       下载免费PDF全文
We describe here two novel mouse and human DNA polymerases: one (pol λ) has homology with DNA polymerase β while the other one (pol µ) is closer to terminal deoxynucleotidyltransferase. However both have DNA polymerase activity in vitro and share similar structural organization, including a BRCT domain, helix–loop–helix DNA-binding motifs and polymerase X domain. mRNA expression of pol λ is highest in testis and fetal liver, while expression of pol µ is more lymphoid, with highest expression both in thymus and tonsillar B cells. An unusually large number of splice variants is observed for the pol µ gene, most of which affect the polymerase domain. Expression of mRNA of both polymerases is down-regulated upon treatment by DNA damaging agents (UV light, γ-rays or H2O2). This suggests that their biological function may differ from DNA translesion synthesis, for which several DNA polymerase activities have been recently described. Possible functions are discussed.  相似文献   

14.
DNA polymerase (pol) λ is homologous to pol β and has intrinsic polymerase and terminal transferase activities. However, nothing is known about the amino acid residues involved in these activites. In order to precisely define the nucleotide-binding site of human pol λ, we have mutagenised two amino acids, Tyr505 and the neighbouring Phe506, which were predicted by structural homology modelling to correspond to the Tyr271 and Phe272 residues of pol β, which are involved in nucleotide binding. Our analysis demonstrated that pol λ Phe506Arg/Gly mutants possess very low polymerase and terminal transferase activities as well as greatly reduced abilities for processive DNA synthesis and for carrying on translesion synthesis past an abasic site. The Tyr505Ala mutant, on the other hand, showed an altered nucleotide binding selectivity to perform the terminal transferase activity. Our results suggest the existence of a common nucleotide-binding site for the polymerase and terminal transferase activities of pol λ, as well as distinct roles of the amino acids Tyr505 and Phe506 in these two catalytic functions.  相似文献   

15.
We have examined function of the bacterial β replication clamp in the different steps of methyl-directed DNA mismatch repair. The mismatch-, MutS-, and MutL-dependent activation of MutH is unaffected by the presence or orientation of loaded β clamp on either 3′ or 5′ heteroduplexes. Similarly, β is not required for 3′ or 5′ mismatch-provoked excision when scored in the presence of γ complex or in the presence of γ complex and DNA polymerase III core components. However, mismatch repair does not occur in the absence of β, an effect we attribute to a requirement for the clamp in the repair DNA synthesis step of the reaction. We have confirmed previous findings that β clamp interacts specifically with MutS and MutL (López de Saro, F. J., Marinus, M. G., Modrich, P., and O''Donnell, M. (2006) J. Biol. Chem. 281, 14340–14349) and show that the mutator phenotype conferred by amino acid substitution within the MutS N-terminal β-interaction motif is the probable result of instability coupled with reduced activity in multiple steps of the repair reaction. In addition, we have found that the DNA polymerase III α catalytic subunit interacts strongly and specifically with both MutS and MutL. Because interactions of polymerase III holoenzyme components with MutS and MutL appear to be of limited import during the initiation and excision steps of mismatch correction, we suggest that their significance might lie in the control of replication fork events in response to the sensing of DNA lesions by the repair system.  相似文献   

16.
Polymerase δ is widely accepted as the lagging strand replicative DNA polymerase in eukaryotic cells. It forms a replication complex in the presence of replication factor C and proliferating cell nuclear antigen to perform efficient DNA synthesis in vivo. In this study, the human lagging strand holoenzyme was reconstituted in vitro. The rate of DNA synthesis of this holoenzyme, measured with a singly primed ssM13 DNA substrate, is 4.0 ± 0.4 nucleotides. Results from adenosine 5′-(3-thiotriphosphate) tetralithium salt (ATPγS) inhibition experiments revealed the nonprocessive characteristic of the human DNA polymerase (Pol δ) holoenzyme (150 bp for one binding event), consistent with data from chase experiments with catalytically inactive mutant Pol δAA. The ATPase activity of replication factor C was characterized and found to be stimulated ∼10-fold in the presence of both proliferating cell nuclear antigen and DNA, but the activity was not shut down by Pol δ in accord with rapid association/dissociation of the holoenzyme to/from DNA. It is noted that high concentrations of ATP inhibit the holoenzyme DNA synthesis activity, most likely due to its inhibition of the clamp loading process.  相似文献   

17.
The mitochondrial DNA polymerase as a target of oxidative damage   总被引:16,自引:0,他引:16       下载免费PDF全文
The mitochondrial respiratory chain is a source of reactive oxygen species (ROS) that are responsible for oxidative modification of biomolecules, including proteins. Due to its association with mitochondrial DNA, DNA polymerase γ (pol γ) is in an environment to be oxidized by hydrogen peroxide and hydroxyl radicals that may be generated in the presence of iron ions associated with DNA. We tested whether human pol γ was a possible target of ROS with H2O2 and investigated the effect on the polymerase activities and DNA binding efficiency. A 1 h treatment with 250 µM H2O2 significantly inhibited DNA polymerase activity of the p140 subunit and lowered its DNA binding efficiency. Addition of p55 to the p140 catalytic subunit prior to H2O2 treatment offered protection from oxidative inactivation. Oxidatively modified amino acid residues in pol γ  resulting from H2O2 treatment were observed in vitro as well as in vivo, in SV40-transfected human fibroblasts. Pol γ was detected as one of the major oxidized mitochondrial matrix proteins, with a detectable decline in polymerase activity. These results suggest pol γ as a target of oxidative damage, which may result in a reduction in mitochondrial DNA replication and repair capacities.  相似文献   

18.
DNA polymerase zeta (pol ζ) participates in several DNA transactions in eukaryotic cells that increase spontaneous and damage-induced mutagenesis. To better understand this central role in mutagenesis in vivo, here we report the fidelity of DNA synthesis in vitro by yeast pol ζ alone and with RFC, PCNA and RPA. Overall, the accessory proteins have little effect on the fidelity of pol ζ. Pol ζ is relatively accurate for single base insertion/deletion errors. However, the average base substitution fidelity of pol ζ is substantially lower than that of homologous B family pols α, δ and . Pol ζ is particularly error prone for substitutions in specific sequence contexts and generates multiple single base errors clustered in short patches at a rate that is unprecedented in comparison with other polymerases. The unique error specificity of pol ζ in vitro is consistent with Pol ζ-dependent mutagenic specificity reported in vivo. This fact, combined with the high rate of single base substitution errors and complex mutations observed here, indicates that pol ζ contributes to mutagenesis in vivo not only by extending mismatches made by other polymerases, but also by directly generating its own mismatches and then extending them.  相似文献   

19.
Eukaryotic DNA replication requires the coordinated activity of the multi-subunit DNA polymerases: Pol α, Pol δ and Pol . The conserved catalytic and regulatory B subunits associate in a constitutive heterodimer that represents the functional core of all three replicative polymerases. Here, we combine X-ray crystallography and electron microscopy (EM) to describe subunit interaction and 3D architecture of heterodimeric yeast Pol α. The crystal structure of the C-terminal domain (CTD) of the catalytic subunit bound to the B subunit illustrates a conserved mechanism of accessory factor recruitment by replicative polymerases. The EM reconstructions of Pol α reveal a bilobal shape with separate catalytic and regulatory modules. Docking of the B–CTD complex in the EM reconstruction shows that the B subunit is tethered to the polymerase domain through a structured but flexible linker. Our combined findings provide a structural template for the common functional architecture of the three major replicative DNA polymerases.  相似文献   

20.
Constitution of the twin polymerase of DNA polymerase III holoenzyme   总被引:19,自引:0,他引:19  
It is speculated that DNA polymerases which duplicate chromosomes are dimeric to provide concurrent replication of both leading and lagging strands. DNA polymerase III holoenzyme (holoenzyme), is the 10-subunit replicase of the Escherichia coli chromosome. A complex of the alpha (DNA polymerase) and epsilon (3'-5' exonuclease) subunits of the holoenzyme contains only one of each protein. Presumably, one of the eight other subunit(s) functions to dimerize the alpha epsilon polymerase within the holoenzyme. Based on dimeric subassemblies of the holoenzyme, two subunits have been elected as possible agents of polymerase dimerization, one of which is the tau subunit (McHenry, C. S. (1982) J. Biol. Chem. 257, 2657-2663). Here, we have used pure alpha, epsilon, and tau subunits in binding studies to determine whether tau can dimerize the polymerase. We find tau binds directly to alpha. Whereas alpha is monomeric, tau is a dimer in its native state and thereby serves as an efficient scaffold to dimerize the polymerase. The epsilon subunit does not associate directly with tau but becomes dimerized in the alpha epsilon tau complex by virtue of its interaction with alpha. We have analyzed the dimeric alpha epsilon tau complex by different physical methods to increase the confidence that this complex truly contains a dimeric polymerase. The tau subunit is comprised of the NH2-terminal two-thirds of tau but does not bind to alpha epsilon, identifying the COOH-terminal region of tau as essential to its polymerase dimerization function. The significance of these results with respect to the organization of subunits within the holoenzyme is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号