首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Methylation of proteins involved in translation   总被引:3,自引:0,他引:3  
  相似文献   

5.
6.
7.
8.
5' S-isobutyl-adenosine (SIBA), a structural analogue of S-adenosylhomocysteine, reversibly blocks the multiplication of herpes simplex type 1 virus. In the presence of SIBA, viral protein synthesis is inhibited. After removing SIBA the synthesis of proteins starts rapidly again. The new polypeptides are mainly alpha proteins (Honess and Roizman, J. Virol. 14:8-19, 1974,), normally the first to be synthesized after infection. The rapid synthesis of proteins after release of inhibition seems to be directed by mRNA formed in the presence of SIBA as indicated by experiments using actinomycin D but which was undermethylated as shown by analysis of methyl groups on RNA. SIBA inhibits the methylation of mRNA and especially that of the 5' cap. Capping of mRNA thus seems to be essential for efficient translation. The analogue affected various methylations to different extents.  相似文献   

9.
The 7-methylguanosine cap added to the 5' end of mRNA is required for efficient gene expression in eukaryotes. In mammals, methylation of the guanosine cap is catalyzed by RNMT (RNA guanine-7 methyltransferase), an enzyme previously thought to function as a monomer. We have identified an obligate component of the mammalian cap methyltransferase, RAM (RNMT-Activating Mini protein)/Fam103a1, a previously uncharacterized protein. RAM consists of an N-terminal RNMT-activating domain and a C-terminal RNA-binding domain. As monomers RNMT and RAM have a relatively weak affinity for RNA; however, together their RNA affinity is significantly increased. RAM is required for efficient cap methylation in vitro and in vivo, and is indirectly required to maintain mRNA expression levels, for mRNA translation and for cell viability. Our findings demonstrate that RAM is an essential component of the core gene expression machinery.  相似文献   

10.
Myc influences global chromatin structure   总被引:13,自引:0,他引:13       下载免费PDF全文
  相似文献   

11.
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (SAM). As the sole methyl-donor for methylation of DNA, RNA, and proteins, SAM levels affect gene expression by changing methylation patterns. Expression of MAT2A, the catalytic subunit of isozyme MAT2, is positively correlated with proliferation of cancer cells; however, how MAT2A promotes cell proliferation is largely unknown. Given that the protein synthesis is induced in proliferating cells and that RNA and protein components of translation machinery are methylated, we tested here whether MAT2 and SAM are coupled with protein synthesis. By measuring ongoing protein translation via puromycin labeling, we revealed that MAT2A depletion or chemical inhibition reduced protein synthesis in HeLa and Hepa1 cells. Furthermore, overexpression of MAT2A enhanced protein synthesis, indicating that SAM is limiting under normal culture conditions. In addition, MAT2 inhibition did not accompany reduction in mechanistic target of rapamycin complex 1 activity but nevertheless reduced polysome formation. Polysome-bound RNA sequencing revealed that MAT2 inhibition decreased translation efficiency of some fraction of mRNAs. MAT2A was also found to interact with the proteins involved in rRNA processing and ribosome biogenesis; depletion or inhibition of MAT2 reduced 18S rRNA processing. Finally, quantitative mass spectrometry revealed that some translation factors were dynamically methylated in response to the activity of MAT2A. These observations suggest that cells possess an mTOR-independent regulatory mechanism that tunes translation in response to the levels of SAM. Such a system may acclimate cells for survival when SAM synthesis is reduced, whereas it may support proliferation when SAM is sufficient.  相似文献   

12.
13.
14.
15.
The 2,2,7-trimethylguanosine (TMG) cap structure is characteristic of certain eukaryotic small nuclear and small nucleolar RNAs. Prior studies have suggested that cap trimethylation might be contingent on cis-acting elements in the RNA substrate, protein components of a ribonucleoprotein complex, or intracellular localization of the RNA substrate. However, the enzymatic requirements for TMG cap formation remain obscure because TMG synthesis has not been reconstituted in vitro from defined components. Tgs1 is a conserved eukaryal protein that was initially identified as being required for RNA cap trimethylation in vivo in budding yeast. Here we show that purified recombinant fission yeast Tgs1 catalyzes methyl transfer from S-adenosylmethionine (AdoMet) to m7GTP and m7GDP. Tgs1 also methylates the cap analog m(7)GpppA but is unreactive with GTP, GDP, GpppA, m2,2,7GTP, m2,2,7GDP, ATP, CTP, UTP, and ITP. The products of methyl transfer to m7GTP and m7GDP formed under conditions of excess methyl acceptor are 2,7-dimethyl GTP and 2,7-dimethyl GDP, respectively. Under conditions of limiting methyl acceptor, the initial m2,7GDP product is converted to m2,2,7GDP in the presence of excess AdoMet. We conclude that Tgs1 is guanine-specific, that N7 methylation must precede N2 methylation, that Tgs1 acts via a distributive mechanism, and that the chemical steps of TMG synthesis do not require input from RNA or protein cofactors.  相似文献   

16.
17.
18.
The proto-oncogenes c-, L-, and N-myc can all be translated by the alternative method of internal ribosome entry whereby the ribosome is recruited to a complex structural element (an internal ribosome entry segment [IRES]). Ribosome recruitment is dependent upon the presence of IRES-trans-acting factors (ITAFs) that act as RNA chaperones and allow the mRNA to attain the correct conformation for the interaction of the 40S subunit. One of the major challenges for researchers in this area is to determine whether there are groups of ITAFs that regulate the IRES-mediated translation of subsets of mRNAs. We have identified four proteins, termed GRSF-1 (G-rich RNA sequence binding factor 1), YB-1 (Y-box binding protein 1), PSF (polypyrimidine tract binding protein-associated splicing factor), and its binding partner, p54nrb, that bind to the myc family of IRESs. We show that these proteins positively regulate the translation of the Myc family of oncoproteins (c-, L-, and N-Myc) in vivo and in vitro. Interestingly, synthesis from the unrelated IRESs, BAG-1 and Apaf-1, was not affected by YB-1, GRSF-1, or PSF levels in vivo, suggesting that these three ITAFs are specific to the myc IRESs. Myc proteins play a role in cell proliferation; therefore, these results have important implications regarding the control of tumorigenesis.  相似文献   

19.
General RNA binding proteins render translation cap dependent.   总被引:17,自引:2,他引:15       下载免费PDF全文
Translation in rabbit reticulocyte lysate is relatively independent of the presence of the mRNA m7G cap structure and the cap binding protein, eIF-4E. In addition, initiation occurs frequently at spurious internal sites. Here we show that a critical parameter which contributes to cap-dependent translation is the amount of general RNA binding proteins in the extract. Addition of several general RNA binding proteins, such as hnRNP A1, La autoantigen, pyrimidine tract binding protein (hnRNP I/PTB) and the major core protein of cytoplasmic mRNP (p50), rendered translation in a rabbit reticulocyte lysate cap dependent. These proteins drastically inhibited the translation of an uncapped mRNA, but had no effect on translation of a capped mRNA. Based on these and other results, we suggest that one function of general mRNA binding proteins in the cytoplasm is to promote ribosome binding by a 5' end, cap-mediated mechanism, and prevent spurious initiations at aberrant translation start sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号