首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundDoxorubicin (DOX) is a widely used antitumor drug. However, its clinical application is limited for its serious cardiotoxicity. The mechanism of DOX-induced cardiotoxicity is attributed to the increasing of cell stress in cardiomyocytes, then following autophagic and apoptotic responses. Our previous studies have demonstrated the protective effect of Shenmai injection (SMI) on DOX-induced cardiotoxicity via regulation of inflammatory mediators for releasing cell stress.PurposeTo further investigate whether SMI attenuates the DOX-induced cell stress in cardiomyocytes, we explored the mechanism underlying cell stress as related to Jun N-terminal kinase (JNK) activity and the regulation of autophagic flux to determine the mechanism by which SMI antagonizes DOX-induced cardiotoxicity.Study designThe DOX-induced cardiotoxicity model of autophagic cell death was established in vitro to disclose the protected effects of SMI on oxidative stress, autophagic flux and JNK signaling pathway. Then the autophagic mechanism of SMI antagonizing DOX cardiotoxicity was validated in vivo.ResultsSMI was able to reduce the DOX-induced cardiomyocyte apoptosis associated with inhibition of activation of the JNK pathway and the accumulation of reactive oxygen species (ROS). Besides, SMI antagonized DOX cardiotoxicity, regulated cardiomyocytes homeostasis by restoring DOX-induced cardiomyocytes autophagy. Under specific circumstances, SMI depressed autophagic process by reducing the Beclin 1-Bcl-2 complex dissociation which was activated by DOX via stimulating the JNK signaling pathway. At the same time, SMI regulated lysosomal pH to restore the autophagic flux which was blocked by DOX in cardiomyocytes.ConclusionSMI regulates cardiomyocytes apoptosis and autophagy by controlling JNK signaling pathway, blocking DOX-induced apoptotic pathway and autophagy formation. SMI was also found to play a key role in restoring autophagic flux for counteracting DOX-damaged cardiomyocyte homeostasis.  相似文献   

2.
Caloric restriction (CR) is a dietary intervention known to enhance cardiovascular health. The glucose analog 2-deoxy-D-glucose (2-DG) mimics CR effects in several animal models. However, whether 2-DG is beneficial to the heart remains obscure. Here, we tested the ability of 2-DG to reduce cardiomyocyte death triggered by doxorubicin (DOX, 1 μm), an antitumor drug that can cause heart failure. Treatment of neonatal rat cardiomyocytes with 0.5 mm 2-DG dramatically suppressed DOX cytotoxicity as indicated by a decreased number of cells that stained positive for propidium iodide and reduced apoptotic markers. 2-DG decreased intracellular ATP levels by 17.9%, but it prevented DOX-induced severe depletion of ATP, which may contribute to 2-DG-mediated cytoprotection. Also, 2-DG increased the activity of AMP-activated protein kinase (AMPK). Blocking AMPK signaling with compound C or small interfering RNA-mediated knockdown of the catalytic subunit markedly attenuated the protective effects of 2-DG. Conversely, AMPK activation by pharmacological or genetic approach reduced DOX cardiotoxicity but did not produce additive effects when used together with 2-DG. In addition, 2-DG induced autophagy, a cellular degradation pathway whose activation could be either protective or detrimental depending on the context. Paradoxically, despite its ability to activate autophagy, 2-DG prevented DOX-induced detrimental autophagy. Together, these results suggest that the CR mimetic 2-DG can antagonize DOX-induced cardiomyocyte death, which is mediated through multiple mechanisms, including the preservation of ATP content, the activation of AMPK, and the inhibition of autophagy.  相似文献   

3.
The efficacy of doxorubicin (DOX) as an antitumor agent is greatly limited by the induction of cardiomyopathy, which results from mitochondrial dysfunction and iron-catalyzed oxidative stress in the cardiomyocyte. Metformin (MET) has been seen to have a protective effect against the oxidative stress induced by DOX in cardiomyocytes through its modulation of ferritin heavy chain (FHC), the main iron-storage protein. This study aimed to assess the involvement of FHC as a pivotal molecule in the mitochondrial protection offered by MET against DOX cardiotoxicity. The addition of DOX to adult mouse cardiomyocytes (HL-1 cell line) increased the cytosolic and mitochondrial free iron pools in a time-dependent manner. Simultaneously, DOX inhibited complex I activity and ATP generation and induced the loss of mitochondrial membrane potential. The mitochondrial dysfunction induced by DOX was associated with the release of cytochrome c to the cytosol, the activation of caspase 3, and DNA fragmentation. The loss of iron homeostasis, mitochondrial dysfunction, and apoptosis induced by DOX were prevented by treatment with MET 24 h before the addition of DOX. The involvement of FHC and NF-κB was determined through siRNA-mediated knockdown. Interestingly, the presilencing of FHC or NF-κB with specific siRNAs blocked the protective effect induced by MET against DOX cardiotoxicity. These findings were confirmed in isolated primary neonatal rat cardiomyocytes. In conclusion, these results deepen our knowledge of the protective action of MET against DOX-induced cardiotoxicity and suggest that therapeutic strategies based on FHC modulation could protect cardiomyocytes from the mitochondrial damage induced by DOX by restoring iron homeostasis.  相似文献   

4.
(-)-Epigallocatechin-3-O-gallate(EGCG), the highest catechins from green tea, has promisingly been found to sensitize the efficacy of several chemotherapy agents like doxorubicin (DOX) in hepatocellular carcinoma (HCC) treatment. However, the detailed mechanisms by which EGCG augments the chemotherapeutic efficacy remain unclear. Herein, this study was designed to determine the synergistic impacts of EGCG and DOX on hepatoma cells and particularly to reveal whether the autophagic flux is involved in this combination strategy for the HCC. Electron microscopy and fluorescent microscopy confirmed that DOX significantly increased autophagic vesicles in hepatoma Hep3B cells. Western blot and trypan blue assay showed that the increasing autophagy flux by DOX impaired about 45% of DOX-induced cell death in these cells. Conversely, both qRT-PCR and western blotting showed that EGCG played dose-dependently inhibitory role in autophagy signaling, and that markedly promoted cellular growth inhibition. Amazingly, the combined treatment caused a synergistic effect with 40 to 60% increment on cell death and about 45% augmentation on apoptosis versus monotherapy pattern. The DOX-induced autophagy was abolished by this combination therapy. Rapamycin, an autophagic agonist, substantially impaired the anticancer effect of either DOX or combination with EGCG treatment. On the other hand, using small interference RNA targeting chloroquine autophagy-related gene Atg5 and beclin1 to inhibit autophagy signal, hepatoma cell death was dramatically enhanced. Furthermore, in the established subcutaneous Hep3B cells xenograft tumor model, about 25% reduction in tumor growth as well as 50% increment of apoptotic cells were found in combination therapy compared with DOX alone. In addition, immunohistochemistry analysis indicated that the suppressed tendency of autophagic hallmark microtubule-associated protein light chain 3 (LC3) expressions was consistent with thus combined usage in vitro. Taken together, the current study suggested that EGCG emerges as a chemotherapeutic augmenter and synergistically enhances DOX anticancer effects involving autophagy inhibition in HCC.  相似文献   

5.
Kobayashi S  Xu X  Chen K  Liang Q 《Autophagy》2012,8(4):577-592
Hyperglycemia is linked to increased heart failure among diabetic patients. However, the mechanisms that mediate hyperglycemia-induced cardiac damage remain poorly understood. Autophagy is a cellular degradation pathway that plays important roles in cellular homeostasis. Autophagic activity is altered in the diabetic heart, but its functional role has been unclear. In this study, we determined if mimicking hyperglycemia in cultured cardiomyocytes from neonatal rats and adult mice could affect autophagic activity and myocyte viability. High glucose (17 or 30 mM) reduced autophagic flux compared with normal glucose (5.5 mM) as indicated by the difference in protein levels of LC3-II (microtubule-associated protein 1 light chain 3 form II) or the changes of punctate fluorescence patterns of GFP-LC3 and mRFP-LC3 in the absence and presence of the lysosomal inhibitor bafilomycin A(1). Unexpectedly, the inhibited autophagy turned out to be an adaptive response that functioned to limit high glucose cardiotoxicity. Indeed, suppression of autophagy by 3-methyladenine or short hairpin RNA-mediated silencing of the Becn1 or Atg7 gene attenuated high glucose-induced cardiomyocyte death. Conversely, upregulation of autophagy with rapamycin or overexpression of Becn1 or Atg7 predisposed cardiomyocytes to high glucose toxicity. Mechanistically, the high glucose-induced inhibition of autophagy was mediated at least partly by increased mTOR signaling that likely inactivated ULK1 through phosphorylation at serine 467. Together, these findings demonstrate that high glucose inhibits autophagy, which is a beneficial adaptive response that protects cardiomyocytes against high glucose toxicity. Future studies are warranted to determine if autophagy plays a similar role in diabetic heart in vivo.  相似文献   

6.
目的:探讨熊去氧胆酸(UDCA)对阿霉素(DOX)诱导的H9c2心肌细胞损伤的影响及机制。方法:体外培养H9c2细胞,1μM DOX和不同浓度UDCA处理H9c2,CCK-8法测定细胞活力;实时定量聚合酶链反应检测心肌细胞凋亡分子Bax及炎症因子IL-1β、IL-6的表达;Western blotting检测UDCA对DOX诱导的心肌细胞凋亡相关蛋白Bax、Bcl2、Caspase3表达水平变化。结果:与对照组相比,DOX组心肌细胞活力减弱;炎症因子IL-1β,IL-6表达上调;促凋亡分子Bax和cleaved Caspase3表达增多;抑制凋亡蛋白Bcl2下调(P<0.05)。与DOX组相比,UDCA+DOX组显著恢复心肌细胞活力;炎症因子IL-1β、IL-6表达下调;促凋亡分子Bax、cleaved Caspase3下调;抑制凋亡蛋白Bcl2表达上调(P<0.05)。结论:UDCA能缓解DOX诱导的H9c2心肌细胞损伤,其机制可能与抑制炎症及凋亡有关。本研究为阿霉素心肌毒性的防治提供新的实验基础及理论依据。  相似文献   

7.
Doxorubicin is a commonly used anthracycline chemotherapeutic drug. Its application for treatment has been impeded by its cardiotoxicity as it is detrimental and fatal. DNA damage, cardiac inflammation, oxidative stress and cell death are the critical links in DOX‐induced myocardial injury. Previous studies found that TLR9‐related signalling pathways are associated with the inflammatory response of cardiac myocytes, mitochondrial dysfunction and cardiomyocyte death, but it remains unclear whether TLR9 could influence DOX‐induced heart injury. Our current data imply that DOX‐induced cardiotoxicity is ameliorated by TLR9 deficiency both in vivo and in vitro, manifested as improved cardiac function and reduced cardiomyocyte apoptosis and oxidative stress. Furthermore, the deletion of TLR9 rescued DOX‐induced abnormal autophagy flux in vivo and in vitro. However, the inhibition of autophagy by 3‐MA abolished the protective effects of TLR9 deletion on DOX‐induced cardiotoxicity. Moreover, TLR9 ablation suppressed the activation of p38 MAPK during DOX administration and may promote autophagy via the TLR9‐p38 MAPK signalling pathway. Our study suggests that the deletion of TLR9 exhibits a protective effect on doxorubicin‐induced cardiotoxicity by enhancing p38‐dependent autophagy. This finding could be used as a basis for the development of a prospective therapy against DOX‐induced cardiotoxicity.  相似文献   

8.
《Autophagy》2013,9(4):577-592
Hyperglycemia is linked to increased heart failure among diabetic patients. However, the mechanisms that mediate hyperglycemia-induced cardiac damage remain poorly understood. Autophagy is a cellular degradation pathway that plays important roles in cellular homeostasis. Autophagic activity is altered in the diabetic heart, but its functional role has been unclear. In this study, we determined if mimicking hyperglycemia in cultured cardiomyocytes from neonatal rats and adult mice could affect autophagic activity and myocyte viability. High glucose (17 or 30 mM) reduced autophagic flux compared with normal glucose (5.5 mM) as indicated by the difference in protein levels of LC3-II (microtubule-associated protein 1 light chain 3 form II) or the changes of punctate fluorescence patterns of GFP-LC3 and mRFP-LC3 in the absence and presence of the lysosomal inhibitor bafilomycin A1. Unexpectedly, the inhibited autophagy turned out to be an adaptive response that functioned to limit high glucose cardiotoxicity. Indeed, suppression of autophagy by 3-methyladenine or short hairpin RNA-mediated silencing of the Becn1 or Atg7 gene attenuated high glucose-induced cardiomyocyte death. Conversely, upregulation of autophagy with rapamycin or overexpression of Becn1 or Atg7 predisposed cardiomyocytes to high glucose toxicity. Mechanistically, the high glucose-induced inhibition of autophagy was mediated at least partly by increased mTOR signaling that likely inactivated ULK1 through phosphorylation at serine 467. Together, these findings demonstrate that high glucose inhibits autophagy, which is a beneficial adaptive response that protects cardiomyocytes against high glucose toxicity. Future studies are warranted to determine if autophagy plays a similar role in diabetic heart in vivo.  相似文献   

9.
BackgroundDoxorubicin (DOX) is an anti-tumor agent that is widely used in clinical setting for cancer treatment. The application of the DOX, however, is limited by its cardiac toxicity which can induce heart failure through an undefined mechanism. Mitofusin 2 (Mfn2) is a mitochondrial GTPase fusion protein that is located on the outer membrane of mitochondria (OMM). The Mfn2 plays an important role in mitochondrial fusion and fission. The aim of this study is to identify the role of the Mfn2 in DOX-induced cardiomyocyte apoptosis.MethodsCultured neonatal rat cardiomyocytes were used in this study. Mfn2 expression in cardiomyocytes was determined after the cardiomyocytes were challenged with DOX. Cardiomyocyte mitochondrial fission, mitochondrial reactive oxygen species (ROS) production was assessed with mitochondrial fragmentation and MitoSOX fluorescence probe, respectively. Cardiomyocyte apoptosis was determined with caspase3 activity and TUNEL staining.ResultsChallenging of the cardiomyocytes with DOX resulted in increasing in cardiomyocyte oxidative stress and apoptosis. In addition, levels of Mfn2 in cardiomyocytes were decreased after the cells were challenged with DOX which was associated with increased mitochondrial fission (fragmentation) and mitochondrial ROS production. An increase in cardiomyocyte levels of Mfn2 attenuated the DOX-induced increase in mitochondrial fission and prevented cardiomyocyte mitochondrial ROS production. An increase in cardiomyocyte levels of Mfn2 or pretreatment of cardiomyocytes with an anti-oxidant, Mito-tempo, also prevented the DOX-induced cardiomyocyte apoptosis.ConclusionOur results indicate that DOX results in a decreased cardiomyocyte Mfn2 expression which promotes mitochondrial fission and ROS production further leads to cardiomyocyte apoptosis.  相似文献   

10.
Doxorubicin (DOX) is a broad spectrum anthracycline antibiotic used to treat a variety of cancers. Redox activation of DOX to form reactive oxygen species has been implicated in DOX-induced cardiotoxicity. In this work we investigated DOX-induced apoptosis in cultured bovine aortic endothelial cells and cardiomyocytes isolated from adult rat heart. Exposure of bovine aortic endothelial cells or myocytes to submicromolar levels of DOX induced significant apoptosis as measured by DNA fragmentation and terminal deoxynucleotidyltransferase-mediated nick-end labeling assays. Pretreatment of cells with 100 microm nitrone spin traps, N-tert-butyl-alpha-phenylnitrone (PBN) or alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN) dramatically inhibited DOX-induced apoptosis. Ebselen (20-50 microm), a glutathione peroxidase mimetic, also significantly inhibited apoptosis. DOX (0.5-1 microm) inactivated mitochondrial complex I by a superoxide-dependent mechanism. PBN (100 microm), POBN (100 microm), and ebselen (50 microm) restored complex I activity. These compounds also inhibited DOX-induced caspase-3 activation and cytochrome c release. PBN and ebselen also restored glutathione levels in DOX-treated cells. We conclude that nitrone spin traps and ebselen inhibit the DOX-induced apoptotic signaling mechanism and that this antiapoptotic mechanism may be linked in part to the inhibition in formation or scavenging of hydrogen peroxide. Therapeutic strategies to mitigate DOX cardiotoxicity should be reexamined in light of these emerging antiapoptotic mechanisms of antioxidants.  相似文献   

11.
12.
13.
The anthracycline antibiotic doxorubicin (DOX) is a potent cancer chemotherapeutic agent that exerts both acute and chronic cardiotoxicity. Here we show that in adult mouse cardiomyocytes, DOX activates (i) the pro-apoptotic p53, (ii) p38MAPK and JNK, (iii) Bax translocation, (iv) cytochrome c release, and (v) caspase 3. Further, it (vi) inhibits expression of anti-apoptotic Akt, Bcl-2 and Bcl-xL, and (vii) induces internucleosomal degradation and cell death. WNT1-inducible signaling pathway protein-1 (WISP1), a CCN family member and a matricellular protein, inhibits DOX-mediated cardiomyocyte death. WISP1 inhibits DOX-induced p53 activation, p38 MAPK and JNK phosphorylation, Bax translocation to mitochondria, and cytochrome c release into cytoplasm. Additionally, WISP1 reverses DOX-induced suppression of Bcl-2 and Bcl-xL expression and Akt inhibition. The pro-survival effects of WISP1 were recapitulated by the forced expression of mutant p53, wild-type Bcl-2, wild-type Bcl-xL, or constitutively active Akt prior to DOX treatment. WISP1 also induces the pro-survival factor Survivin via PI3K/Akt signaling. Overexpression of wild-type, but not mutant Survivin, blunts DOX cytotoxicity. Further, WISP1 stimulates PI3K–Akt-dependent GSK3β phosphorylation and β-catenin nuclear translocation. Importantly, WISP1 induces its own expression. Together, these results provide important insights into the cytoprotective effects of WISP1 in cardiomyocytes, and suggest a potential therapeutic role for WISP1 in DOX-induced cardiotoxicity.  相似文献   

14.
The use of the potent antitumor antibiotic doxorubicin (DOX) is hampered because of its severe cardiac toxicity that leads to the development of cardiomyopathy and heart failure. In this study, we have developed a cell culture model for DOX-induced myocardial injury using primary adult rat cardiomyocytes that were cultured in serum-free medium and exposed to 1 to 40 microM DOX. DOX caused a dose-dependent release of sarcosolic enzyme lactate dehydrogenase (LDH) from cultured myocytes. The release of LDH was prevented by the cell-permeable superoxide dismutase (SOD) mimetic (MnTBAP), but was unaffected by either cell-impermeable SOD enzyme, or manganese (II) sulfate. Ebselen, a glutathione peroxidase (GPx) mimetic, enhanced the protection of cardiomyocytes afforded by MnTBAP. DOX caused the increased formation of oxidants in cardiomyocytes, and MnTBAP lowered the amount of intracellular oxidants induced by DOX. In addition, DOX selectively inactivated aconitase in cardiomyocytes, and MnTBAP partially reversed this inactivation. Ebselen further amplified the protective effect of MnTBAP on aconitase activity. These results suggest that the SOD mimetic MnTBAP prevents DOX-induced damage to cardiomyocytes and that the GPx mimetic ebselen synergistically enhanced the cardioprotection afforded by MnTBAP. Relevance of these findings to minimizing cardiotoxicity in cancer treatment is discussed.  相似文献   

15.
Doxorubicin (DOX) is a broad spectrum antitumor agent. However, its clinical utility is limited due to the well-known cardiotoxicity. Resveratrol (RSV) has been reported to exert cardioprotective effect in some cardiovascular diseases. In this study, we aimed to determine the effect of RSV on DOX-induced cardiotoxicity, and further explore the underlying mechanism in this process.Male Sprague-Dawley (SD) rats were randomly divided into four groups: CON, DOX, RSV, or DOX+RSV group (10 rats in each group). DOX treatment significantly decreased cardiac function, and increased the release of serum lactate dehydrogenase (LDH) and creatine kinase isoenzyme (CK-MB) in rat serum. Increased cell death and apoptosis of cardiomyocytes were also observed in DOX group in comparison with CON group. DOX treatment dramatically down-regulated expression of VEGF-B either in vivo or in vitro. In contrast, the combination of RSV and DOX markedly attenuated DOX-induced cardiotoxicity with the up-regulation of VEGF-B. Inhibition of VEGF-B by small interfering RNA (siRNA) abolished the protective effects of RSV on DOX-treated cardiomyocytes.Consequently,our findings indicated that RSV attenuates DOX-induced cardiotoxicity through up-regulation of VEGF-B.  相似文献   

16.
The clinical use of doxorubicin (DOX) is limited by its toxic effect. However, there is no specific drug that can prevent DOX-related cardiac injury. C1qTNF-related protein-6 (CTRP6) is a newly identified adiponectin paralog with many protective functions on metabolism and cardiovascular diseases. However, little is known about the effect of CTRP6 on DOX-induced cardiac injury. The present study aimed to investigate whether CTRP6 could protect against DOX-related cardiotoxicity. To induce acute cardiotoxicity, the mice were intraperitoneally injected with a single dose of DOX (15 mg/kg). Cardiomyocyte-specific CTRP6 overexpression was achieved using an adenoassociated virus system at 4 weeks before DOX injection. The data in our study demonstrated that CTRP6 messenger RNA and protein expression were decreased in DOX-treated hearts. CTRP6 attenuated cardiac atrophy induced by DOX injection and inhibited cardiac apoptosis and improved cardiac function in vivo. CTRP6 also promoted the activation of protein kinase B (AKT/PKB) signaling pathway in DOX-treated mice. CTRP6 prevented cardiomyocytes from DOX-induced apoptosis and activated the AKT pathway in vitro. CTRP6 lost its protection against DOX-induced cardiac injury in mice with AKT inhibition. In conclusion, CTRP6 protected the heart from DOX-cardiotoxicity and improves cardiac function via activation of the AKT signaling pathway.  相似文献   

17.
Doxorubicin (DOX) is an effective antitumor agent used in cancer treatment. Unfortunately, DOX is also toxic to skeletal muscle and can result in significant muscle wasting. The cellular mechanism(s) by which DOX induces toxicity in skeletal muscle fibers remains unclear. Nonetheless, DOX-induced toxicity is associated with increased generation of reactive oxygen species, oxidative damage, and activation of the calpain and caspase-3 proteolytic systems within muscle fibers. It is currently unknown if autophagy, a proteolytic system that can be triggered by oxidative stress, is activated in skeletal muscles following DOX treatment. Therefore, we tested the hypothesis that systemic administration of DOX leads to increased expression of autophagy markers in the rat soleus muscle. Our results reveal that DOX administration results in increased muscle mRNA levels and/or protein abundance of several important autophagy proteins, including: Beclin-1, Atg12, Atg7, LC3, LC3II-to-LCI ratio, and cathepsin L. Furthermore, given that endurance exercise increases skeletal muscle antioxidant capacity and protects muscle against DOX-induced oxidative stress, we performed additional experiments to determine whether exercise training before DOX administration would attenuate DOX-induced increases in expression of autophagy genes. Our results clearly show that exercise can protect skeletal muscle from DOX-induced expression of autophagy genes. Collectively, our findings indicate that DOX administration increases the expression of autophagy genes in skeletal muscle, and that exercise can protect skeletal muscle against DOX-induced activation of autophagy.  相似文献   

18.
Cardiomyopathy induced by doxorubicin (DOX) has long been a major impediment of clinical applications of this effective anticancer agent. Previous studies have shown that cardiac-specific metallothionein (MT)-overexpressing transgenic mice are highly resistant to DOX-induced cardiotoxicity. To investigate cellular and molecular mechanisms by which MT participates in this cytoprotection, transgenic mice containing high levels of cardiac MT and non-transgenic controls were treated intraperitoneally with DOX at a single dose of 15 mg/kg and sacrificed on the 4th day after treatment. Myocardial apoptosis was detected by a terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling assay and confirmed by electron microscopy of immunogold staining of apoptotic nuclei. Dual staining of cardiac alpha-sarcomeric actin using an immunohistochemical method further identified apoptotic myocytes. Apoptosis was significantly inhibited in the transgenic myocardium. The anti-apoptotic effect of MT was further revealed in primary cultures of neonatal mouse cardiomyocytes. Furthermore, DOX activated p38 mitogen-activated protein kinase (MAPK), which was critically involved in the apoptotic process, as demonstrated by inhibition of DOX-induced apoptosis by a p38-specific inhibitor, SB203580. Both DOX-induced p38 MAPK activation and apoptosis were dramatically inhibited in the transgenic cardiomyocytes. The results thus demonstrate that DOX induces apoptosis in cardiomyocytes both in vivo and in vitro and MT suppresses this effect through at least in part inhibition of p38 MAPK activation.  相似文献   

19.
Ischemia is known to potently stimulate autophagy in the heart, which may contribute to cardiomyocyte survival. In vitro, transfection with small interfering RNAs targeting Atg5 or Lamp-2 (an autophagy-related gene necessary, respectively, for the initiation and digestion step of autophagy), which specifically inhibited autophagy, diminished survival among cultured cardiomyocytes subjected to anoxia and significantly reduced their ATP content, confirming an autophagy-mediated protective effect against anoxia. We next examined the dynamics of cardiomyocyte autophagy and the effects of manipulating autophagy during acute myocardial infarction in vivo. Myocardial infarction was induced by permanent ligation of the left coronary artery in green fluorescent protein-microtubule-associated protein 1 light chain 3 (GFP-LC3) transgenic mice in which GFP-LC3 aggregates to be visible in the cytoplasm when autophagy is activated. Autophagy was rapidly (within 30 min after coronary ligation) activated in cardiomyocytes, and autophagic activity was particularly strong in salvaged cardiomyocytes bordering the infarcted area. Treatment with bafilomycin A1, an autophagy inhibitor, significantly increased infarct size (31% expansion) 24 h postinfarction. Interestingly, acute infarct size was significantly reduced (23% reduction) in starved mice showing prominent autophagy before infarction. Treatment with bafilomycin A1 reduced postinfarction myocardial ATP content, whereas starvation increased myocardial levels of amino acids and ATP, and the combined effects of bafilomycin A1 and starvation on acute infarct size offset one another. The present findings suggest that autophagy is an innate and potent process that protects cardiomyocytes from ischemic death during acute myocardial infarction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号