首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A homologue of a free secretory component (SC) was identified in chicken intestinal secretion by criteria based on its antigenic relationship with intestinal secretory IgA (SIgA), molecular size, sugar content, and electrophoretic mobility, as well as its elution characteristic from ion-exchange chromatography. SC was obtained in a form free from IgA from the intestinal secretion by salting out and DEAE chromatography, followed by density ultracentrifuguation or Sephadex G-200 gel-filtration. However, the free SC revealed some antigenic deficiency when compared to bound SC of intestinal SIgA and showed a failure of binding to serum-type-polymeric IgA of biliary IgA in vitro. Several kinds of chicken external secretions were examined for detection of SC and immunoglobulin classes of IgG, IgA, and IgM. In spite of the wide distribution of immunoglobulins in the external secretions, SC antigen could be detected only in intestinal secretion. Most IgA in the secretions had a molecular structure of a tetramer of serum-type IgA, lacking in SC and having 17S to 18.5S and 600,000 to 700,000 daltons. On the other hand, IgA in the intestinal secretion showed close similarity to the mammalian SIgA, associated with SC and having 11.2S and 350,000 daltons. Presence of antibody activity in the intestinal IgA to avian reovirus was confirmed by plaque reduction tests.  相似文献   

2.
分泌型IgA (SIgA) 在机体的粘膜免疫中具有重要作用,在外分泌道中比单体IgA和IgG抗体具有更好的抗感染活性。为了表达抗禽流感病毒H5N1人-鼠嵌合分泌型IgA抗体,首先以本室先前构建的稳定表达IgA的中国仓鼠卵巢细胞 (CHO) 细胞系为基础,共转染分泌片和J链表达质粒,然后用抗生素Zeocin选择阳性克隆细胞,利用倍比稀释的方法筛选分泌SIgA的单克隆细胞,通过Western blotting分析培养上清中SIgA的表达情况。结果表明,在CHO细胞中成功表达了SIgA抗体,上述研究为研制分泌型  相似文献   

3.
Intestinal microfold (M) cells possess a high transcytosis capacity and are able to transport a broad range of materials including particulate antigens, soluble macromolecules, and pathogens from the intestinal lumen to inductive sites of the mucosal immune system. M cells are also the primary pathway for delivery of secretory IgA (SIgA) to the gut-associated lymphoid tissue. However, although the consequences of SIgA uptake by M cells are now well known and described, the mechanisms whereby SIgA is selectively bound and taken up remain poorly understood. Here we first demonstrate that both the Cα1 region and glycosylation, more particularly sialic acid residues, are involved in M cell–mediated reverse transcytosis. Second, we found that SIgA is taken up by M cells via the Dectin-1 receptor, with the possible involvement of Siglec-5 acting as a co-receptor. Third, we establish that transcytosed SIgA is taken up by mucosal CX3CR1+ dendritic cells (DCs) via the DC-SIGN receptor. Fourth, we show that mucosal and systemic antibody responses against the HIV p24-SIgA complexes administered orally is strictly dependent on the expression of Dectin-1. Having deciphered the mechanisms leading to specific targeting of SIgA-based Ag complexes paves the way to the use of such a vehicle for mucosal vaccination against various infectious diseases.  相似文献   

4.
The precise mechanisms underlying the interaction between intestinal bacteria and the host epithelium lead to multiple consequences that remain poorly understood at the molecular level. Deciphering such events can provide valuable information as to the mode of action of commensal and probiotic microorganisms in the gastrointestinal environment. Potential roles of such microorganisms along the privileged target represented by the mucosal immune system include maturation prior, during and after weaning, and the reduction of inflammatory reactions in pathogenic conditions. Using human intestinal epithelial Caco-2 cell grown as polarized monolayers, we found that association of a Lactobacillus or a Bifidobacterium with nonspecific secretory IgA (SIgA) enhanced probiotic adhesion by a factor of 3.4-fold or more. Bacteria alone or in complex with SIgA reinforced transepithelial electrical resistance, a phenomenon coupled with increased phosphorylation of tight junction proteins zonula occludens-1 and occludin. In contrast, association with SIgA resulted in both enhanced level of nuclear translocation of NF-κB and production of epithelial polymeric Ig receptor as compared with bacteria alone. Moreover, thymic stromal lymphopoietin production was increased upon exposure to bacteria and further enhanced with SIgA-based complexes, whereas the level of pro-inflammatory epithelial cell mediators remained unaffected. Interestingly, SIgA-mediated potentiation of the Caco-2 cell responsiveness to the two probiotics tested involved Fab-independent interaction with the bacteria. These findings add to the multiple functions of SIgA and underscore a novel role of the antibody in interaction with intestinal bacteria.  相似文献   

5.
In addition to fulfilling its function of immune exclusion at mucosal surfaces, secretory IgA (SIgA) Ab exhibits the striking feature to adhere selectively to M cells in the mouse and human intestinal Peyer's patches (PPs). Subsequent uptake drives the SIgA Ab to dendritic cells (DCs), which become partially activated. Using freshly isolated mouse DCs, we found that the interaction with SIgA was tissue and DC subtype dependent. Only DCs isolated from PPs and mesenteric lymph nodes interacted with the Ab. CD11c(+)CD11b(+) DCs internalized SIgA, while CD11c(+)CD19(+) DCs only bound SIgA on their surface, and no interaction occurred with CD11c(+)CD8alpha(+) DCs. We next examined whether SIgA could deliver a sizeable cargo to PP DCs in vivo by administering SIgA-Shigella flexneri immune complexes into a mouse ligated intestinal loop containing a PP. We found that such immune complexes entered the PPs and were internalized by subepithelial dome PP DCs, in contrast to S. flexneri alone that did not penetrate the intestinal epithelium in mice. Dissemination of intraepithelial S. flexneri delivered as immune complexes was limited to PPs and mesenteric lymph nodes. We propose that preexisting SIgA Abs associated with microbes contribute to mucosal defense by eliciting responses that prevent overreaction while maintaining productive immunity.  相似文献   

6.
M cells of intestinal epithelia overlying lymphoid follicles endocytose luminal macromolecules and microorganisms and deliver them to underlying lymphoid tissue. The effect of luminal secretory IgA antibodies on adherence and transepithelial transport of antigens and microorganisms by M cells is unknown. We have studied the interaction of monoclonal IgA antibodies directed against specific enteric viruses, or the hapten trinitrophenyl (TNP), with M cells. To produce monospecific IgA antibodies against mouse mammary tumor virus (MMTV) and reovirus type 1, Peyer's patch cells from mucosally immunized mice were fused with myeloma cells, generating hybridomas that secreted virus-specific IgA antibodies in monomeric and polymeric forms. One of two anti-MMTV IgA antibodies specifically bound the viral surface glycoprotein gp52, and 3 of 10 antireovirus IgA antibodies immunoprecipitated sigma 3 and mu lc surface proteins. 35S-labeled IgA antibodies injected intravenously into rats were recovered in bile as higher molecular weight species, suggesting that secretory component had been added on passage through the liver. Radiolabeled or colloidal gold-conjugated mouse IgA was injected into mouse, rat, and rabbit intestinal loops containing Peyer's patches. Light microscopic autoradiography and EM showed that all IgA antibodies (antivirus or anti-TNP) bound to M cell luminal membranes and were transported in vesicles across M cells. IgA-gold binding was inhibited by excess unlabeled IgA, indicating that binding was specific. IgG-gold also adhered to M cells and excess unlabeled IgG inhibited IgA-gold binding; thus binding was not isotype-specific. Immune complexes consisting of monoclonal anti-TNP IgA and TNP-ferritin adhered selectively to M cell membranes, while TNP-ferritin alone did not. These results suggest that selective adherence of luminal antibody to M cells may facilitate delivery of virus-antibody complexes to mucosal lymphoid tissue, enhancing subsequent secretory immune responses or facilitating viral invasion.  相似文献   

7.
In addition to being instrumental to the protection of mucosal epithelia, secretory IgA (SIgA) adheres to and is transported by intestinal Peyer's patch (PP) M cells. The possible functional reason for this transport is unknown. We have thus examined in mice the outcome of SIgA delivered from the intestinal lumen to the cells present in the underlying organized mucosa-associated lymphoreticular tissue. We show selective association of SIgA with dendritic cells and CD4(+) T and B lymphocytes recovered from PP in vitro. In vivo, exogenously delivered SIgA is able to enter into multiple PP lining the intestine. In PP, SIgA associates with and is internalized by dendritic cells in the subepithelial dome region, whereas the interaction with CD4(+) T cells is limited to surface binding. Interaction between cells and SIgA is mediated by the IgA moiety and occurs for polymeric and monomeric molecular forms. Thus, although immune exclusion represents the main function of SIgA, transport of the Ab by M cells might promote Ag sampling under neutralizing conditions essential to the homeostasis of mucosal surfaces.  相似文献   

8.
Cryptosporidium parvum antigens were characterized by immunoblot analysis of sera and intestinal secretions of BALB/c mice orally infected with 10(5) oocysts. A major band at 17 kDa under non-reduced conditions and at 18 kDa under reduced conditions was recognized by anti-C. parvum IgA and IgG in serum and intestinal secretions from day 15 post-infection. This recognition persisted throughout the experiment (day 30). Mouse-serum antibodies raised against the 17-kDa purified antigen (P17) showed no cross-reactivity with other C. parvum antigens. Immunofluorescence study revealed that this antigen is located on the sporozoite. It is suggested that this antigen could be a good candidate for studies of mucosal immune response to C. parvum and for vaccination.  相似文献   

9.
Variable lymphocyte receptors (VLRs) are unconventional adaptive immune receptors relatively recently discovered in the phylogenetically ancient jawless vertebrates, lamprey and hagfish. VLRs bind antigens using a leucine-rich repeat fold and are the only known adaptive immune receptors that do not utilize an immunoglobulin fold for antigen recognition. While immunoglobulin antibodies have been studied extensively, there are comparatively few studies on antigen recognition by VLRs, particularly for protein antigens. Here we report isolation, functional and structural characterization of three VLRs that bind the protein toll-like receptor 5 (TLR5) from zebrafish. Two of the VLRs block binding of TLR5 to its cognate ligand flagellin in functional assays using reporter cells. Co-crystal structures revealed that these VLRs bind to two different epitopes on TLR5, both of which include regions involved in flagellin binding. Our work here demonstrates that the lamprey adaptive immune system can be used to generate high-affinity VLR clones that recognize different epitopes and differentially impact natural ligand binding to a protein antigen.  相似文献   

10.
Abstract In a previous study we analyzed the molecular forms of monoclonal IgA class-switch variants (moIgA variants) and their transport into murine respiratory secretions. The aim of the present study is to characterize the transport of moIgA variants into bile and intestinal secretions so that their applicability in a passive immunization model of the gut can be evaluated. Different moIgA variants were directly isolated from IgG1 and IgG2a producing hybridoma clones specific for the same surface determinants of bacterial enteric pathogens ( Salmonella typhimurium and Campylobacter jejuni ) as their respective parent IgG clones. Hepatobiliary transport experiments clearly revealed the selective transport of biologically active polymeric forms of the IgA variants into the murine and rat bile after intravenous injection. Biotinylation of polymeric IgA variants prior to intravenous injection resulted in the recovery of functional, labeled SIgA. Moreover biotin-labeled polymeric IgA variant was recovered in bile with an increased molecular weight, suggesting that the secretory component had been added during passage through the liver. When IgA variant and IgG parent clones were both used in a murine backpack tumor model for passive immunization, IgA variant was selectively transported into intestinal secretions in comparison to IgG. The experimental model described here is suitable for use in comparative studies on the role of IgA and IgG with identical specificity in invasive infections of the intestinal tract.  相似文献   

11.
Transforming growth factor-β (TGF-β) has been implicated as having a role in inflammatory responses by inducing cellular infiltration and the release of inflammatory cytokines. In this study, the IEC-6 rat intestinal epithelial cell line was used as a model to assess the effect of TGF-β1 on the expression of various plasma membrane determinants. TGF-β1 induced a dose-dependent increase in the percentage of cells expressing surface secretory component (SC) and class I major histocompatibility (MHC) antigens. However, the expression of class II MHC was unaffected. In contrast, epidermal growth factor had no effect on any of the surface proteins studied. The TGF-β1-enhanced expression of SC was accompanied by an enhanced binding of polymeric, but not monomeric, immunoglobulin A (IgA). Preincubation of the TGF-β1-treated cells with an anti-human β-galactosyltransferase (β-GT) antiserum did not block the binding of the anti-SC antibody, indicating that the TGF-β-induced increase in SC staining was due to SC expression and not the polymeric immunoglobulin-binding enzyme, β-GT. These results indicate that TGF-β1 may be important in immune functions involving intestinal epithelial cells by enhancing the expression of surface class I MHC antigens and SC, a protein responsible for the transport of polymeric IgA into the intestinal lumen.  相似文献   

12.
Immature dendritic cells (DC) reside in peripheral tissues, where they pick up and process incoming pathogens via scavenger receptors or FcR such as FcgammaR and FcepsilonR. At mucosal surfaces, IgA is the main Ig to protect the body from incoming pathogens. In addition, DC are present in high numbers at these sites. We detected expression of FcalphaR (CD89) on the CD14+ population of CD34+ progenitor-derived DC and on monocyte-derived DC (MoDC). However, CD89 expression was strongly decreased upon differentiation from monocyte to DC. We found only minimal binding of serum IgA to MoDC but strong binding of secretory IgA (SIgA). The SIgA binding to MoDC could not be blocked by anti-CD89 blocking Abs. DC efficiently internalized SIgA, but not serum IgA, and uptake of SIgA could be blocked by specific sugars or partially by Ab reactive with mannose receptor. Importantly, binding and uptake of SIgA was not accompanied by signs of DC maturation, such as increased expression of CD86 and CD83 or induction of cytokine secretion. These data indicate that SIgA can interact with DC not via CD89, but via carbohydrate-recognizing receptors like mannose receptor and suggest that uptake of SIgA-containing immune complexes by immature DC may be a mechanism to modulate mucosal immune responses.  相似文献   

13.
The oral mucosal pellicle is a layer of absorbed salivary proteins, including secretory IgA (SIgA), bound onto the surface of oral epithelial cells and is a useful model for all mucosal surfaces. The mechanism by which SIgA concentrates on mucosal surfaces is examined here using a tissue culture model with real saliva. Salivary mucins may initiate the formation of the mucosal pellicle through interactions with membrane-bound mucins on cells. Further protein interactions with mucins may then trigger binding of other pellicle proteins. HT29 colon cell lines, which when treated with methotrexate (HT29-MTX) produce a gel-forming mucin, were used to determine the importance of these mucin-mucin interactions. Binding of SIgA to cells was then compared using whole mouth saliva, parotid (mucin-free) saliva and a source of purified SIgA. Greatest SIgA binding occurred when WMS was incubated with HT29-MTX expressing mucus. Since salivary MUC5B was only able to bind to cells which produced mucus and purified SIgA showed little binding to the same cells we conclude that most SIgA binding to mucosal cells occurs because SIgA forms complexes with salivary mucins which then bind to cells expressing membrane-bound mucins. This work highlights the importance of mucin interactions in the development of the mucosal pellicle.  相似文献   

14.
Intravenous administration of polyclonal and monoclonal antibodies has proven to be a clinically valid approach in the treatment, or at least relief, of many acute and chronic pathologies, such as infection, immunodeficiency, and a broad range of autoimmune conditions. Plasma-derived IgG or recombinant IgG are most frequently used for intravenous or subcutaneous administration, whereas a few IgM-based products are available as well. We have established recently that secretory-like IgA and IgM can be produced upon association of plasma-derived polymeric IgA and IgM with a recombinant secretory component. As a next step toward potential future mucosal administration, we sought to unravel the mechanisms by which these secretory Igs protect epithelial cells located at the interface between the environment and the inside of the body. By using polarized epithelial Caco-2 cell monolayers and Shigella flexneri as a model enteropathogen, we found that polyspecific plasma-derived SIgA and SIgM fulfill many protective functions, including dose-dependent recognition of the antigen via formation of aggregated immune complexes, reduction of bacterial infectivity, maintenance of epithelial cell integrity, and inhibition of proinflammatory cytokine/chemokine production by epithelial cells. In this in vitro model devoid of other cellular or molecular interfering partners, IgM and secretory IgM showed stronger bacterial neutralization than secretory IgA. Together, these data suggest that mucosally delivered antibody preparations may be most effective when combining both secretory-like IgA and IgM, which, together, play a crucial role in preserving several levels of epithelial cell integrity.  相似文献   

15.
Natural killer T (NKT) cells express a semi-invariant Vα14 T cell receptor (TCR) and recognize structurally diverse antigens presented by the antigen-presenting molecule CD1d that range from phosphoglycerolipids to α- and β-anomeric glycosphingolipids, as well as microbial α-glycosyl diacylglycerolipids. Recently developed antibodies that are specific for the complex of the prototypical invariant NKT (iNKT) cell antigen αGalCer (KRN7000) bound to mouse CD1d have become valuable tools in elucidating the mechanism of antigen loading and presentation. Here, we report the 3.1 Å resolution crystal structure of the Fab of one of these antibodies, L363, bound to mCD1d complexed with the αGalCer analog C20:2, revealing that L363 is an iNKT TCR-like antibody that binds CD1d-presented αGalCer in a manner similar to the TCR. The structure reveals that L363 depends on both the L and H chains for binding to the glycolipid-mCD1d complex, although only the L chain is involved in contacts with the glycolipid antigen. The H chain of L363 features residue Trp-104, which mimics the TCR CDR3α residue Leu-99, which is crucial for CD1d binding. We characterized the antigen-specificity of L363 toward several different glycolipids, demonstrating that whereas the TCR can induce structural changes in both antigen and CD1d to recognize disparate lipid antigens, the antibody L363 can only induce the F′ roof formation in CD1d but fails to reorient the glycolipid headgroup necessary for binding. In summary, L363 is a powerful tool to study mechanism of iNKT cell activation for structural analogs of KRN7000, and our study can aid in the design of antibodies with altered antigen specificity.  相似文献   

16.
The authors describe a method of obtaining monospecific serum against secretory IgA and the corresponding standard. An immunochemically pure (11.6S) secretory human IgA was extracted from the colostrum by salt fractionation and gel-filtration through Sephadex G-200 and Sepharose 6B; this IgA was used as an antigen for the immunization and the standard for the quantitative determination of SIgA in the secretions. Monospecific anti-SC-serum was obtained by successive exhaustion of the antiserum against the S IgA immunosorbents prepared from normal human serum and the serum of a patient suffering from A myeloma containing polymeric IgA forms.  相似文献   

17.
To investigate the role of B cells and antibody in the immune response of mice to the murine intestinal parasite Giardia muris, we used mice treated from birth with rabbit anti-IgM antisera (aIgM). Such mice developed in serum and in gut secretions extreme Ig deficiency (IgM, IgA, and IgG) relative to control animals. The aIgM-treated mice showed no anti-G. muris antibody in serum or in gut wash material. Infections of G. muris in these mice were chronic, with a high load of parasite present in the small bowel, as reflected by prolonged cyst excretion (greater than 11 wk) and high trophozoite counts. In contrast, normal, untreated mice or NRS-treated animals developed anti-parasite IgA and IgG antibody in serum, demonstrated IgA antibody against the parasite in gut washings, and expelled the parasite within 9 wk. These effects of aIgM treatment on the murine response to primary infection with G. muris were demonstrated in two strains of mice: BALB/c and (C57BL/6 X C3H/He) F1. It was also observed that the response to G. muris infection in untreated animals was characterized by higher than normal total secretion of IgA into the gut and a concomitant increase in the serum polymeric IgA level. Mice treated with aIgM had a marked decrease of both monomeric and polymeric IgA in serum, and little detectable IgA in the intestinal lumen. These experiments provide the first demonstration that anti-IgM treatment suppresses a specific intestinal antibody response to antigen, and provide evidence that B cells and antibody play a role in the development of an effective response to a primary infection with G. muris in mice.  相似文献   

18.
The mammalian gastrointestinal (GI) tract harbors a diverse population of commensal species collectively known as the microbiota, which interact continuously with the host. From very early in life, secretory IgA (SIgA) is found in association with intestinal bacteria. It is considered that this helps to ensure self-limiting growth of the microbiota and hence participates in symbiosis. However, the importance of this association in contributing to the mechanisms ensuring natural host-microorganism communication is in need of further investigation. In the present work, we examined the possible role of SIgA in the transport of commensal bacteria across the GI epithelium. Using an intestinal loop mouse model and fluorescently labeled bacteria, we found that entry of commensal bacteria in Peyer''s patches (PP) via the M cell pathway was mediated by their association with SIgA. Preassociation of bacteria with nonspecific SIgA increased their dynamics of entry and restored the reduced transport observed in germ-free mice known to have a marked reduction in intestinal SIgA production. Selective SIgA-mediated targeting of bacteria is restricted to the tolerogenic CD11c+CD11b+CD8 dendritic cell subset located in the subepithelial dome region of PPs, confirming that the host is not ignorant of its resident commensals. In conclusion, our work supports the concept that SIgA-mediated monitoring of commensal bacteria targeting dendritic cells in the subepithelial dome region of PPs represents a mechanism whereby the host mucosal immune system controls the continuous dialogue between the host and commensal bacteria.  相似文献   

19.
《MABS-AUSTIN》2013,5(6):1585-1597
Recombinant Secretory IgA (SIgA) complexes have the potential to improve antibody-based passive immunotherapeutic approaches to combat many mucosal pathogens. In this report, we describe the expression, purification and characterization of a human SIgA format of the broadly neutralizing anti-HIV monoclonal antibody (mAb) 2G12, using both transgenic tobacco plants and transient expression in Nicotiana benthamiana as expression hosts (P2G12 SIgA). The resulting heterodecameric complexes accumulated in intracellular compartments in leaf tissue, including the vacuole. SIgA complexes could not be detected in the apoplast. Maximum yields of antibody were 15.2 μg/g leaf fresh mass (LFM) in transgenic tobacco and 25 μg/g LFM after transient expression, and assembly of SIgA complexes was superior in transgenic tobacco. Protein L purified antibody specifically bound HIV gp140 and neutralised tier 2 and tier 3 HIV isolates. Glycoanalysis revealed predominantly high mannose structures present on most N-glycosylation sites, with limited evidence for complex glycosylation or processing to paucimannosidic forms. O-glycan structures were not identified. Functionally, P2G12 SIgA, but not IgG, effectively aggregated HIV virions. Binding of P2G12 SIgA was observed to CD209 / DC-SIGN, but not to CD89 / FcalphaR on a monocyte cell line. Furthermore, P2G12 SIgA demonstrated enhanced stability in mucosal secretions in comparison to P2G12 IgG mAb.  相似文献   

20.
Intrauterine immunization of ovariectomized rats with SRBC is known to elicit pronounced IgA and IgG antibody responses in uterine secretions of immunized uteri. To determine whether secretory component (SC), the receptor for transporting polymeric IgA from tissues to mucosal surfaces, was also influenced by Ag, ovariectomized rats were immunized and boosted by placing SRBC into the lumena of individual uterine horns. In response to Ag, the levels of polymeric IgA, as well as free SC and SC bound to polymeric IgA, increased in uterine secretions. When ovariectomized animals were treated with estradiol, a fivefold increase in SC levels was observed in the immunized horns, indicating that a hormone response is superimposed on the Ag-induced stimulation of uterine SC. To determine whether IFN-gamma influences the presence of SC in uterine secretions, IFN-gamma was placed in the uterine lumena of ovariectomized nonimmunized rats. When uterine secretions were analyzed, significantly higher levels of SC were found in IFN-gamma-exposed uteri than were present in saline treated control animals. In contrast, intrauterine instillation of IFN-gamma had no effect on the levels of IgA in uterine secretions. This response was specific for IFN-gamma in that IFN-alpha/beta had no effect on uterine SC or IgA levels. These results indicate that intrauterine instillation of Ag, in addition to evoking pronounced antibody responses, stimulates the production of SC, which may be responsible for the transport of polymeric IgA from tissue to uterine secretions. Furthermore, they indicate that IFN-gamma placed in the uterine lumen stimulates SC production and suggest that the uterine SC response to Ag may be mediated by the action of IFN-gamma on uterine epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号