首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Human obesity is characterized by chronic low-grade inflammation in white adipose tissue and is often associated with hypertension. The potential induction of indoleamine 2,3-dioxygenase-1 (IDO1), the rate-limiting enzyme in tryptophan/kynurenine degradation pathway, by proinflammatory cytokines, could be associated with these disorders but has remained unexplored in obesity. Using immunohistochemistry, we detected IDO1 expression in white adipose tissue of obese patients, and we focused on its contribution in the regulation of vascular tone and on its immunoregulatory effects. Concentrations of tryptophan and kynurenine were measured in sera of 36 obese and 15 lean women. The expression of IDO1 in corresponding omental and subcutaneous adipose tissues and liver was evaluated. Proinflammatory markers and T-cell subsets were analyzed in adipose tissue via the expression of CD14, IL-18, CD68, TNFα, CD3ε, FOXP3 [a regulatory T-cell (Treg) marker] and RORC (a Th17 marker). In obese subjects, the ratio of kynurenine to tryptophan, which reflects IDO1 activation, is higher than in lean subjects. Furthermore, IDO1 expression in both adipose tissues and liver is increased and is inversely correlated with arterial blood pressure. Inflammation is associated with a T-cell infiltration in obese adipose tissue, with predominance of Th17 in the omental compartment and of Treg in the subcutaneous depot. The Th17/Treg balance is decreased in subcutaneous fat and correlates with IDO1 activation. In contrast, in the omental compartment, despite IDO1 activation, the Th17/Treg balance control is impaired. Taken together, our results suggest that IDO1 activation represents a local compensatory mechanism to limit obesity-induced inflammation and hypertension.  相似文献   

3.
Mammalian cells rely on cellular uptake of the essential amino acid tryptophan. Tryptophan sequestration by up-regulation of the key enzyme for tryptophan degradation, indoleamine 2,3-dioxygenase (IDO), e.g., in cancer and inflammation, is thought to suppress the immune response via T cell starvation. Additionally, the excreted tryptophan catabolites (kynurenines) induce apoptosis of lymphocytes. Whereas tryptophan transport systems have been identified, the molecular nature of kynurenine export remains unknown. To measure cytosolic tryptophan steady-state levels and flux in real time, we developed genetically encoded fluorescence resonance energy transfer nanosensors (FLIPW). The transport properties detected by FLIPW in KB cells, a human oral cancer cell line, and COS-7 cells implicate LAT1, a transporter that is present in proliferative tissues like cancer, in tryptophan uptake. Importantly, we found that this transport system mediates tryptophan/kynurenine exchange. The tryptophan influx/kynurenine efflux cycle couples tryptophan starvation to elevation of kynurenine serum levels, providing a two-pronged induction of apoptosis in neighboring cells. The strict coupling protects cells that overproduce IDO from kynurenine accumulation. Consequently, this mechanism may contribute to immunosuppression involved in autoimmunity and tumor immune escape.  相似文献   

4.
Indoleamine 2,3‐dioxygenase (IDO), a tryptophan degrading enzyme, is a potent immunomodulatory factor. IDO expression in fibroblasts selectively induces apoptosis in immune cells but not in primary skin cells. However, the mechanism(s) of this selective effect of IDO‐induced low tryptophan environment is not elucidated. The aim of present study was to investigate whether the activity of general control non‐derepressible‐2(GCN2) kinase stress‐responsive pathway and its known inhibitor, protein IMPACT homolog, in immune and skin cells are differentially regulated in response to IDO‐induced low tryptophan environment. IDO‐expressing human fibroblasts were co‐cultured with Jurkat cells, human T cells, fibroblasts, or keratinocytes. Activation of GCN2 pathway was significantly higher in immune cells exposed to IDO‐expressing environment relative to that of skin cells. In contrast, IMPACT was highly and constitutively expressed in skin cells while its expression was very low in stimulated T cells and undetectable in Jurkat cells. A significant IDO‐induced suppressive as well as apoptotic effect was demonstrated in IMPACT knocked down fibroblasts co‐cultured with IDO‐expressing fibroblasts. Proliferation of Jurkat cells, stably transduced with IMPACT‐expressing vector, was rescued significantly in tryptophan‐deficient but not IDO‐expressing environment. This may be due to the ability of IMPACT to recover the effects of IDO‐mediated tryptophan depletion (GCN2 dependent) but not the effects of IDO‐generated cytotoxic metabolites. These findings collectively suggest for the first time that high expression of protein IMPACT homolog in non‐immune cells such as skin cells acts as a protective mechanism against IDO‐induced GCN2 activation, therefore, makes them resistant to the amino acid‐deprived environment caused by IDO. J. Cell. Physiol. 225: 196–205, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Indoleamine 2,3-dioxygenase (IDO) is induced by proinflammatory cytokines and by CTLA-4-expressing T cells and constitutes an important mediator of peripheral immune tolerance. In chronic hepatitis C, we found upregulation of IDO expression in the liver and an increased serum kynurenine/tryptophan ratio (a reflection of IDO activity). Huh7 cells supporting hepatitis C virus (HCV) replication expressed higher levels of IDO mRNA than noninfected cells when stimulated with gamma interferon or when cocultured with activated T cells. In infected chimpanzees, hepatic IDO expression decreased in animals that cured the infection, while it remained high in those that progressed to chronicity. For both patients and chimpanzees, hepatic expression of IDO and CTLA-4 correlated directly. Induction of IDO may dampen T-cell reactivity to viral antigens in chronic HCV infection.  相似文献   

6.
The activity of indoleamine 2, 3-dioxygenase (IDO; E.C. 1.13.11.42) catalyzes the oxidative cleavage of tryptophan to form kynurenine. IDO activity consumes superoxide anions; therefore, we postulated that over-expression of IDO might mitigate superoxide-anion dependent, oxidative modification of cellular proteins in vitro. We prepared and characterized RAW 264.7 macrophages that were stably transfected with either an IDO expression vector or the control (empty) vector. We detected IDO mRNA, protein, and enzyme activity in the IDO-transfected macrophages, but not in the macrophages transfected with the empty vector. To generate superoxide anions in situ, we treated the IDO-and control-transfected cultures with xanthine or hypoxanthine, and then used ELISA methods to quantitate the relative levels of oxidatively modified proteins in total cell lysates. The levels of protein carbonyls were similar in IDO-transfected and vector-transfected macrophages; however, protein nitration was significantly less in IDO-transfected cells compared to control transfectants. In addition, steady-state levels of superoxide anions were significantly lower in the IDO-transfected cultures compared with control transfectants. Our results are consistent with the concept that, besides degrading tryptophan, IDO activity may protect cells from oxidative damage.  相似文献   

7.
The human immunodeficiency virus type 1-associated cognitive-motor disorder, including the AIDS dementia complex, is characterized by brain functional abnormalities that are associated with injury initiated by viral infection of the brain. Indoleamine 2,3-dioxygenase (IDO), the first and rate-limiting enzyme in tryptophan catabolism in extrahepatic tissues, can lead to neurotoxicity through the generation of quinolinic acid and immunosuppression and can alter brain chemistry via depletion of tryptophan. Using the simian immunodeficiency virus (SIV)-infected rhesus macaque model of AIDS, we demonstrate that cells of the macrophage lineage are the main source for expression of IDO in the SIV-infected monkey brain. Animals with SIV encephalitis have the highest levels of IDO mRNA, and the level of IDO correlates with gamma interferon (IFN-gamma) and viral load levels. In vitro studies on mouse microglia reveal that IFN-gamma is the primary inducer of IDO expression. These findings demonstrate the link between IDO expression, IFN-gamma levels, and brain pathology signs observed in neuro-AIDS.  相似文献   

8.
Using immunocytochemical techniques, we report here direct evidence of kynurenine (Kyn) presence and localization in the lung and brain. Kyn is a metabolite of tryptophan and 5-hydroxytryptophan, produced by indoleamine 2,3-dioxygenase (IDO). Whereas IDO has been quantitated in tissues from lung, brain, and other organs, Kyn has only been identified in brain (by HPLC), and its specific localization has not been determined. We reacted alternate serial paraffin sections with antisera raised in rabbits against a L-Kyn-albumin conjugate, and with anti-5HT (serotonin, 5-hydroxytryptamine), using the PAP method. Kyn-like immunoreactivity in the lung was specifically localized to cells of the bronchiolar epithelium resembling basal cells. Taller epithelial cells in the bronchi and dorsal trachea were likewise positive whereas neuroepithelial bodies were negative. Immunoreactivity in the brain was typically localized to cells localized in the ependyma of the walls of all ventricles, and to nerve fibers. The cellular Kyn-like reactivity was totally separate from that of anti-5HT, the latter uniquely staining argyrophil lung neuroendocrine cells and raphae neurons of the brain. Our findings suggest a route of tryptophan metabolism in the lung and brain alternate to the common pathway leading to 5-hydroxyindoleacetic acid via 5-HT. This route is of physiologic and pathologic significance as many metabolites are pharmacologically active.  相似文献   

9.
We describe the distribution of indoleamine 2,3-dioxygenase 1 (IDO1) in vascular endothelium of human first-trimester and term placenta. Expression of IDO1 protein on the fetal side of the interface extended from almost exclusively sub-trophoblastic capillaries in first-trimester placenta to a nearly general presence on villous vascular endothelia at term, including also most bigger vessels such as villous arteries and veins of stem villi and vessels of the chorionic plate. Umbilical cord vessels were generally negative for IDO1 protein. In the fetal part of the placenta positivity for IDO1 was restricted to vascular endothelium, which did not co-express HLA-DR. This finding paralleled detectability of IDO1 mRNA in first trimester and term tissue and a high increase in the kynurenine to tryptophan ratio in chorionic villous tissue from first trimester to term placenta. Endothelial cells isolated from the chorionic plate of term placenta expressed IDO1 mRNA in contrast to endothelial cells originating from human umbilical vein, iliac vein or aorta. In first trimester decidua we found endothelium of arteries rather than veins expressing IDO1, which was complementory to expression of HLA-DR. An estimation of IDO activity on the basis of the ratio of kynurenine and tryptophan in blood taken from vessels of the chorionic plate of term placenta indicated far higher values than those found in the peripheral blood of adults. Thus, a gradient of vascular endothelial IDO1 expression is present at both sides of the feto-maternal interface.  相似文献   

10.
The obligate intracellular apicomplexan parasites, e.g. Toxoplasma gondii and Plasmodium species, induce an IFNγ-driven induction of host indoleamine 2,3-dioxygenase (IDO), the first and rate-limiting enzyme of tryptophan catabolism in the kynurenine pathway. Induction of IDO1 supposedly depletes cellular levels of tryptophan in host cells, which is proposed to inhibit the in vitro growth of auxotrophic pathogens. In vivo function of IDO during infections, however, is not clear, let alone controversial. We show that Eimeria falciformis, an apicomplexan parasite infecting the mouse caecum, induces IDO1 in the epithelial cells of the organ, and the enzyme expression coincides with the parasite development. The absence or inhibition of IDO1/2 and of two downstream enzymes in infected animals is detrimental to the Eimeria growth. The reduced parasite yield is not due to a lack of an immunosuppressive effect of IDO1 in the parasitized IDO1(-/-) or inhibitor-treated mice because they did not show an accentuated Th1 and IFNγ response. Noticeably, the parasite development is entirely rescued by xanthurenic acid, a by-product of tryptophan catabolism inducing exflagellation in male gametes of Plasmodium in the mosquito mid-gut. Our data demonstrate a conceptual subversion of the host defense (IFNγ, IDO) by an intracellular pathogen for progression of its natural life cycle. Besides, we show utility of E. falciformis, a monoxenous parasite of a well appreciated host, i.e. mouse, to identify in vivo factors underlying the parasite-host interactions.  相似文献   

11.
12.
Indoleamine 2,3-dioxygenase (IDO) is an enzyme that suppresses adaptive T-cell immunity by catabolizing tryptophan from the cellular microenvironment. Inhibition of IDO pathway might enhance the efficacy of immunotherapeutic strategies for cancer. We synthesized 1-alkyl-tryptophan targeted IDO inhibitors and compared their effects on IDO expression and activity in dendritic cells (DCs) with the common IDO inhibitor 1-methyl-dl-tryptophan (1-MT). The IDO gene expression was examined by RT-PCR and realtime PCR. The toxicity of these analogs on the proliferation of DCs was detected by MTT assay. All of these analogs inhibited IDO expression and activity induced by IFN-γ and showed no cytotoxicity to DCs at 100 μM. 1-MT intensively suppressed IDO1 expression and activity in DCs, and 1-propyl-tryptophan (1-PT) and 1-isopropyl-tryptophan (1-isoPT) moderately inhibited them. 1-Butyl-tryptophan (1-BT) and 1-ethyl-tryptophan (1-ET) mainly inhibited IDO2 expression. Our results suggest that those analogs differed in their inhibitory activity on IDO expression may give us a clue for developing active IDO inhibitors.  相似文献   

13.
Members of the protein disulfide isomerase (PDI) family play a critical role in catalyzing the formation of disulfide bonds in secretory proteins, and most of these enzymes have a wide tissue distribution. However, the pancreas-specific PDI homolog was previously suggested to be exclusively expressed in the pancreas (thus commonly referred to as PDIp). In the present study, we found that PDIp was also highly expressed in several other tissues in mice, including the stomach, cecum, ileum, adrenal glands, epididymis, and prostate. Notably, in the digestive organs, such as the stomach and pancreas, very high levels of PDIp were selectively expressed in the digestive enzyme-secreting cells (e.g., gastric chief cells and pancreatic acinar cells). This observation suggests that PDIp may function as a protein-folding catalyst for secretory digestive enzymes. In ileum, PDIp was exclusively expressed in Paneth cells. In addition, high levels of PDIp expression were also detected in normal human pancreas, but its expression was mostly absent in human pancreatic duct adenocarcinoma and pancreatic cancer cell lines. The absence of PDIp expression in pancreatic adenocarcinoma may serve as an additional biomarker for pancreatic cancer.  相似文献   

14.
Ferulic acid (FA) is a phenol compound found in plants that has anti-inflammatory properties. Indoleamine 2, 3-dioxygenase (IDO) is a tryptophan catabolic enzyme induced in immune cells, including glial cells, during inflammation. Enhanced IDO expression leads to reduced tryptophan levels and increased levels of toxic metabolites, including quinolinic acid. Therefore, inhibition of IDO expression may be effective in suppressing progression of neurodegenerative diseases. In this study, we examined the effect of FA in microglial cells on IDO expression levels and related inflammatory signal molecules. FA suppressed LPS-induced IDO mRNA expression and also suppressed nuclear translocation of NF-κB and phosphorylation of p38 MAPK. However, FA did not affect the production of LPS-induced inflammatory mediators and phosphorylation of JNK. Our results indicate that FA suppresses LPS-induced IDO mRNA expression, which may be mediated by inhibition of the NF-κB and p38 MAPK pathways in microglial cells.  相似文献   

15.
Background: Cervical cancer is a common malignant disease in female patients accompanied by activation of autophagy in tumor cells. However, the exact regulatory factors of autophagy and its effects on the immune response remain unknown.Methods: The induction of autophagy in HeLa and SiHa cells treated with IFN-γ, tryptophan depletion, kynurenine and epacadostat was detected by western blot analysis and by an autophagy detection kit. Following co-culture with pre-treated HeLa and SiHa cells, U937 cells were analyzed by flow cytometry to detect CD80, CD86, CD163 and CD206 expression and the induction of phagocytosis.Results: IFN-γ caused a significant increase in the autophagy levels of HeLa and SiHa cells by promoting indoleamine-2,3-dioxygenase-1 (IDO1) expression. The induction of phagocytosis in HeLa and SiHa cells and the expression levels of CD80 and CD86 in U937 cells were increased significantly following treatment with recombinant human IFN-γ. This effect was associated with the induction of tumor cell autophagy. IFN-γ treatment and IDO1 overexpression promoted tryptophan depletion and kynurenine accumulation in cervical cancer cells. The latter was more potent in inducing autophagy of cervical cancer cells and promoting phagocytosis of macrophages. In vivo, IDO1 overexpression restricted tumor growth in C57 mice and enhanced the induction of phagocytosis in macrophages.Conclusions: IFN-γ promoted induction of autophagy and macrophage phagocytosis in cervical cancer cells possibly via IDO1 expression and kynurenine metabolism.  相似文献   

16.
17.
Indoleamine 2,3-dioxygenase (IDO) is one of the initial and rate-limiting enzymes involved in the catabolism of the essential amino acid tryptophan. In cultured cells, the induction of IDO leads to depletion of tryptophan and tryptophan starvation. Recent studies suggest that modulation of tryptophan concentration via IDO plays a fundamental role in innate immune responses. Induction of IDO by interferon-γ in macrophages and dendritic cells results in tryptophan depletion and suppresses the immune-mediated activation of fibroblasts and T, B, and natural killer cells. To assess the role of IDO in collagen-induced arthritis (CIA), a model of rheumatoid arthritis characterized by a primarily Th1-like immune response, activity of IDO was inhibited by 1-methyl-tryptophan (1-MT) in vivo. The results showed significantly increased incidence and severity of CIA in mice treated with 1-MT. Activity of IDO, as determined by measuring the levels of kynurenine/tryptophan ratio in the sera, was increased in the acute phase of arthritis and was higher in collagen-immunized mice that did not develop arthritis. Treatment with 1-MT resulted in an enhanced cellular and humoral immune response and a more dominant polarization to Th1 in mice with arthritis compared with vehicle-treated arthritic mice. The results demonstrated that development of CIA was associated with increased IDO activity and enhanced tryptophan catabolism in mice. Blocking IDO with 1-MT aggravated the severity of arthritis and enhanced the immune responses. These findings suggest that IDO may play an important and novel role in the negative feedback of CIA and possibly in the pathogenesis of rheumatoid arthritis.  相似文献   

18.
Histo‐blood group antigens (HBGA) are genetically determined glycoproteins and glycolipids expressed not only on human erythrocytes but also in vertebrate tissues. Direct evidence for the immunobiological importance of their tissue localization in the evolutionary aspect is still lacking. The present study examines the expression of A and B HBGA in the stomach of free‐living vertebrates belonging to: Chondrichthyes, Actinopterygii, Amphibia, Reptilia, Aves, and Mammalia. HBGA were detected immunohistochemically on stomach paraffin sections from 11 species. In all classes from Actinopterygii to Mammalia HBGA expression was confined to stomach mucosa only. Antigenic heterogeneity in the pattern of expression and localization was observed. Smooth muscle tissue, endothelial and red blood cells were immunonegative, except for the reptile Emys orbicularis. Our results present the first comparative evidence for the expression of HBGA in the stomach of 11 free‐living vertebrate species from six classes, some of which have never been studied so far. It could be assumed that A and B antigens are constant and conservative structures with almost similar tissue localization. Their immunobiological role in the animal gastrointestinal tract might be possibly related to cell differentiation and homeostasis maintenance which would contribute to sustain the evolutionary stable ABH antigen cellular expression.  相似文献   

19.
Summary Using immunocytochemical techniques, we report here direct evidence of kynurenine (Kyn) presence and localization in the lung and brain. Kyn is a metabolite of tryptophan and 5-hydroxytryptophan, produced by indoleamine 2, 3-dioxygenase (IDO). Whereas IDO has been quantitated in tissues from lung, brain, and other organs, Kyn has only been identified in brain (by HPLC), and its specific localization has not been determined.We reacted alternate serial paraffin sections with anti-sera raised in rabbits against a l-Kyn-albumin conjugate, and with anti-5HT (serotonin, 5-hydroxytryptamine), using the PAP method. Kyn-like immunoreactivity in the lung was specifically localized to cells of the bronchiolar epithelium resembling basal cells. Taller epithelial cells in the bronchi and dorsal trachea were likewise positive whereas neuroepithelial bodies were negative. Immunoreactivity in the brain was typically localized to cells localized in the ependyma of the walls of all ventricles, and to nerve fibers. The cellular Kyn-like reactivity was totally separate from that of anti-5HT, the latter uniquely staining argyrophil lung neuroendocrine cells and raphae neurons of the brain. Our findings suggest a route of tryptophan metabolism in the lung and brain alternate to the common pathway leading to 5-hydroxyindoleacetic acid via 5-HT. This route is of physiologic and pathologic significance as many metabolites are pharmacologically active.Supported by the College of Agriculture and Life Sciences, University of Wisconsin-Madison and the Council for Tobacco Research USA, Inc. Grant #1437  相似文献   

20.
Alpha interferon (IFN-α) is an approved medication for chronic hepatitis B. Gamma interferon (IFN-γ) is a key mediator of host innate and adaptive antiviral immunity against hepatitis B virus (HBV) infection in vivo. In an effort to elucidate the antiviral mechanism of these cytokines, 37 IFN-stimulated genes (ISGs), which are highly inducible in hepatocytes, were tested for their ability to inhibit HBV replication upon overexpression in human hepatoma cells. One ISG candidate, indoleamine 2,3-dioxygenase (IDO), an IFN-γ-induced enzyme catalyzing tryptophan degradation, efficiently reduced the level of intracellular HBV DNA without altering the steady-state level of viral RNA. Furthermore, expression of an enzymatically inactive IDO mutant did not inhibit HBV replication, and tryptophan supplementation in culture completely restored HBV replication in IDO-expressing cells, indicating that the antiviral effect elicited by IDO is mediated by tryptophan deprivation. Interestingly, IDO-mediated tryptophan deprivation preferentially inhibited viral protein translation and genome replication but did not significantly alter global cellular protein synthesis. Finally, tryptophan supplementation was able to completely restore HBV replication in IFN-γ- but not IFN-α-treated cells, which strongly argues that IDO is the primary mediator of IFN-γ-elicited antiviral response against HBV in human hepatocyte-derived cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号