首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
血管内皮细胞生长因子研究进展   总被引:5,自引:0,他引:5  
从不同侧面阐述了血管内皮细胞生长因子(VEGF)在新生血管形成中的作用.VEGF诱导新生血管形成,具有血管渗透性,是新生血管形成的主要调控者之一.VEGF mRNA不同剪接,形成5种VEGF变异体(isoform)即VEGF121-206.VEGF诱导新生血管的调控过程、拮抗VEGF成为大家竞相研究的领域.  相似文献   

2.
目的:研究担载血管内皮生长因子(VEGF)的乳液法电纺纤维膜的亲水性能、外观形态和机械性能,纤维膜中VEGF的包封率和体外释放动力学,为评价其能否应用于血管再生领域的研究奠定基础。方法:将VEGF水溶液通过W/O乳液法制备成缓释VEGF的生物可降解的丙交酯-乙交酯共聚物(PLGA)静电纺丝纤维膜,对该纤维膜的接触角、外观形态、机械性能进行表征,Elisa法测定该纤维膜的体外14天的释放行为,分别观察纤维膜释放0天、7天、14天后的电镜图。结果:加入VEGF后,纤维膜的接触角由140.0°减小到136.1°,亲水性增强,具有类似细胞外基质(ECMs)网状结构和良好的力学性能,纤维膜第1天的突释不超过载药量的50%,电镜图下显示纤维膜释放1周时纤维发生断裂。结论:通过乳液法制备的担载VEGF的电纺纤维膜具有良好的物理性能,能够持续缓释VEGF,可作为血管再生的组织工程支架进行深入研究。  相似文献   

3.
血管内皮生长因子受体信号转导通路与肿瘤血管生成   总被引:2,自引:0,他引:2  
血管内皮生长因子是促进血管生成的重要调节因子.它能促进内皮细胞增殖、迁移,阻止内皮细胞凋亡、管腔网状结构退化,增加血管渗透性.所有这些作用都是通过血管内皮生长因子受体信号转导通路实现的.它们在肿瘤血管生成、肿瘤生长中起着重要的作用.以血管内皮生长因子受体信号转导通路为靶点是开发肿瘤血管生成抑制剂的理想策略.  相似文献   

4.
Disruption of endothelial cell-cell contact is a key event in many cardiovascular diseases and a characteristic of pathologically activated vascular endothelium. The CCM (cerebral cavernous malformation) family of proteins (KRIT1 (Krev-interaction trapped 1), PDCD10, and CCM2) are critical regulators of endothelial cell-cell contact and vascular homeostasis. Here we show novel regulation of vascular endothelial growth factor (VEGF) signaling in KRIT1-depleted endothelial cells. Loss of KRIT1 and PDCD10, but not CCM2, increases nuclear β-catenin signaling and up-regulates VEGF-A protein expression. In KRIT1-depleted cells, increased VEGF-A levels led to increased VEGF receptor 2 (VEGFR2) activation and subsequent alteration of cytoskeletal organization, migration, and barrier function and to in vivo endothelial permeability in KRIT1-deficient animals. VEGFR2 activation also increases β-catenin phosphorylation but is only partially responsible for KRIT1 depletion-dependent disruption of cell-cell contacts. Thus, VEGF signaling contributes to modifying endothelial function in KRIT1-deficient cells and microvessel permeability in Krit1+/− mice; however, VEGF signaling is likely not the only contributor to disrupted endothelial cell-cell contacts in the absence of KRIT1.  相似文献   

5.
6.
7.
Here we report that VEGF-A and IGF-1 differ in their ability to stabilize newly formed blood vessels and endothelial cell tubes. Although VEGF-A failed to support an enduring vascular response, IGF-1 stabilized neovessels generated from primary endothelial cells derived from various vascular beds and mouse retinal explants. In these experimental systems, destabilization/regression was driven by lysophosphatidic acid (LPA). Because previous studies have established that Erk antagonizes LPA-mediated regression, we considered whether Erk was an essential component of IGF-dependent stabilization. Indeed, IGF-1 lost its ability to stabilize neovessels when the Erk pathway was inhibited pharmacologically. Furthermore, stabilization was associated with prolonged Erk activity. In the presence of IGF-1, Erk activity persisted longer than in the presence of VEGF or LPA alone. These studies reveal that VEGF and IGF-1 can have distinct inputs in the angiogenic process. In contrast to VEGF, IGF-1 stabilizes neovessels, which is dependent on Erk activity and associated with prolonged activation.  相似文献   

8.

Rationale

Neonatal respiratory distress syndrome is a restrictive lung disease characterized by surfactant deficiency. Decreased vascular endothelial growth factor (VEGF), which demonstrates important roles in angiogenesis and vasculogenesis, has been implicated in the pathogenesis of restrictive lung diseases. Current animal models investigating VEGF in the etiology and outcomes of RDS require premature delivery, hypoxia, anatomically or temporally limited inhibition, or other supplemental interventions. Consequently, little is known about the isolated effects of chronic VEGF inhibition, started at birth, on subsequent developing lung structure and function.

Objectives

To determine whether inducible, mesenchyme-specific VEGF inhibition in the neonatal mouse lung results in long-term modulation of AECII and whole lung function.

Methods

Triple transgenic mice expressing the soluble VEGF receptor sFlt-1 specifically in the mesenchyme (Dermo-1/rtTA/sFlt-1) were generated and compared to littermate controls at 3 months to determine the impact of neonatal downregulation of mesenchymal VEGF expression on lung structure, cell composition and function. Reduced tissue VEGF bioavailability has previously been demonstrated with this model.

Measurements and Main Results

Triple transgenic mice demonstrated restrictive lung pathology. No differences in gross vascular development or protein levels of vascular endothelial markers was noted, but there was a significant decrease in perivascular smooth muscle and type I collagen. Mutants had decreased expression levels of surfactant protein C and hypoxia inducible factor 1-alpha without a difference in number of type II pneumocytes.

Conclusions

These data show that mesenchyme-specific inhibition of VEGF in neonatal mice results in late restrictive disease, making this transgenic mouse a novel model for future investigations on the consequences of neonatal RDS and potential interventions.  相似文献   

9.
血管内皮生长因子(vascular endothelial growth factor,VEGF)是一种多功能的细胞因子,其主要作用是促进血管内皮细胞增殖和增加血管通透性,是肿瘤及正常组织血管生成的中心调控因素。以VEGF为靶点的肿瘤血管靶向性治疗成为近几年肿瘤治疗的新途径。斑马鱼作为一种重要的模式生物,被广泛用于胚胎的分子发育机制、疾病模型的构建以及药物筛选等研究中。文章对斑马鱼作为心血管系统研究模型的优势及其血管研究方法做一阐述,重点对斑马鱼VEGF及其受体的最新研究进展做了介绍,并展望了其发展前景。  相似文献   

10.
11.
PEG-PEI共聚物介导VEGF165基因转染及对内皮细胞生长的影响   总被引:2,自引:0,他引:2  
为了考察PEG-PEI共聚物作为基因载体介导VEGF165基因的能力,合成不同接枝量的PEG-PEI共聚物,考察共聚物的细胞毒性,同时采用PCR技术获得上下游含有HindⅢ和BamHⅠ酶切位点的目的基因VEGF165,与pEGFP-C1构建重组质粒pEGFP-VEGF165,将PEG-PEI作为基因载体,与pEGFP-VEGF165通过自组装成DNA复合物,使其转染脐静脉内皮细胞(HUVEc),测定发荧光细胞百分数获得转染率,利用ELISA、RT-PCR检测VEGF的表达,用MTT法考察VEGF165转染HUVEc后对内皮细胞生长的影响.结果显示,形成PEG-PEI共聚物后可显著降低PEI的细胞毒性.作为基因载体介导pEGFP-VEGF165转染HUVEc后,在荧光显微镜下可见强绿色荧光蛋白表达,转染率与接枝PEG的量及N/P有关,PEG-PEI(5-25-1)在N/P=30时转染率达到最大值,比PEI显著提高.转染后血管内皮生长因子(VEGF)蛋白表达及mRNA水平均有显著提高,且可有效地刺激内皮细胞增殖.研究表明,PEG-PEI共聚物可做为基因载体,有效地介导pEGFP-VEGF165基因的传递.  相似文献   

12.
Endothelial cell migration induced in response to vascular endothelial growth factor (VEGF) is an essential step of angiogenesis. It depends in part on the activation of the p38/MAPKAP kinase-2/LIMK1/annexin-A1 (ANXA1) signaling axis. In the present study, we obtained evidence indicating that miR-196a specifically binds to the 3'-UTR region of ANXA1 mRNA to repress its expression. In accordance with the role of ANXA1 in cell migration and angiogenesis, the ectopic expression of miR-196a is associated with decreased cell migration in wound closure assays, and the inhibitory effect of miR-196a is rescued by overexpressing ANXA1. This finding highlights the fact that ANXA1 is a required mediator of VEGF-induced cell migration. miR-196a also reduces the formation of lamellipodia in response to VEGF suggesting that ANXA1 regulates cell migration by securing the formation of lamellipodia at the leading edge of the cell. Additionally, in line with the fact that cell migration is an essential step of angiogenesis, the ectopic expression of miR-196a impairs the formation of capillary-like structures in a tissue-engineered model of angiogenesis. Here again, the effect of miR-196a is rescued by overexpressing ANXA1. Moreover, the presence of miR-196a impairs the VEGF-induced in vivo neo-vascularization in the Matrigel Plug assay. Interestingly, VEGF reduces the expression of miR-196a, which is associated with an increased level of ANXA1. Similarly, the inhibition of miR-196a with an antagomir results in an increased level of ANXA1. We conclude that the VEGF-induced decrease of miR-196a expression may participate to the angiogenic switch by maintaining the expression of ANXA1 to levels required to enable p38-ANXA1-dependent endothelial cell migration and angiogenesis in response to VEGF.  相似文献   

13.
用改进的重叠PCR引入血管内皮生长因子基因突变   总被引:2,自引:0,他引:2  
血管内皮生长因子(vascular endothelial growth factor, VEGF)的PCR产物克隆于T载体上,经转化JM109感受态菌株后,随机挑取8个白斑菌落,混合后制成混合模板.采用3条引物,做两轮重叠PCR反应,获得了VEGF的突变基因,经PCR鉴定,酶切鉴定和测序分析表明所得基因为目的产物.实践证明这种突变方法简单快速,为下一步实验大量引入突变奠定了实验基础.  相似文献   

14.
15.
16.
17.
18.
人血管内皮生长因子受体配体结合域   总被引:1,自引:0,他引:1  
  相似文献   

19.
Vascular endothelial growth factor (VEGF) is produced either as a pro-angiogenic or anti-angiogenic protein depending upon splice site choice in the terminal, eighth exon. Proximal splice site selection (PSS) in exon 8 generates pro-angiogenic isoforms such as VEGF165, and distal splice site selection (DSS) results in anti-angiogenic isoforms such as VEGF165b. Cellular decisions on splice site selection depend upon the activity of RNA-binding splice factors, such as ASF/SF2, which have previously been shown to regulate VEGF splice site choice. To determine the mechanism by which the pro-angiogenic splice site choice is mediated, we investigated the effect of inhibition of ASF/SF2 phosphorylation by SR protein kinases (SRPK1/2) on splice site choice in epithelial cells and in in vivo angiogenesis models. Epithelial cells treated with insulin-like growth factor-1 (IGF-1) increased PSS and produced more VEGF165 and less VEGF165b. This down-regulation of DSS and increased PSS was blocked by protein kinase C inhibition and SRPK1/2 inhibition. IGF-1 treatment resulted in nuclear localization of ASF/SF2, which was blocked by SPRK1/2 inhibition. Pull-down assay and RNA immunoprecipitation using VEGF mRNA sequences identified an 11-nucleotide sequence required for ASF/SF2 binding. Injection of an SRPK1/2 inhibitor reduced angiogenesis in a mouse model of retinal neovascularization, suggesting that regulation of alternative splicing could be a potential therapeutic strategy in angiogenic pathologies.  相似文献   

20.
VEGFR-2 tyrosine kinase receptor draws attention of the scientific fraternity in drug discovery for its important role in cancer, cardiopulmonary, cardiovascular diseases etc. Hence there is a need for novel VEGFR-2 inhibitors screening and testing for their biological activities. The 3D-structure was collected from PDB and stability was checked by using WHATIF and PROCHECK programs and subjected for virtual screening on Zinc database. We used virtual screening method to screen new VEGFR-2 blocker molecules based on their binding energies and then docked with active site on the receptor with the help of AUTODOCK software. Based on the results obtained top three molecules (VRB1-3) were selected and tested in Cardiomyocytes H9c2 cells for cell viability under hypoxic condition. The invitro studies showed VRB2 as the best molecule among the selected three molecules as well as with a standard commercial drug Sunitinib.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号