首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structure of Escherichia coli NhaA determined at pH 4 has provided insights into the mechanism of activity of a pH-regulated Na+/H+ antiporter. However, because NhaA is active at physiological pH (pH 6.5-8.5), many questions related to the active state of NhaA have remained unanswered. Our Cys scanning of the highly conserved transmembrane VIII at physiological pH reveals that (1) the Cys replacement G230C significantly increases the apparent Km of the antiporter to both Na+ (10-fold) and Li+ (6-fold). (2) Variants G223C and G230C cause a drastic alkaline shift of the pH profile of NhaA by 1 pH unit. (3) Residues Gly223-Ala226 line a periplasmic funnel at physiological pH as they do at pH 4. Both were modified by membrane-impermeant negatively charged 2-sulfonatoethyl methanethiosulfonate and positively charged 2-(trimethyl ammonium)-ethylmethanethiosulfonate sulfhydryl reagents that could reach Cys replacements from the periplasm via water-filled funnels only, whereas other Cys replacements on helix VIII were not accessible/reactive to the reagents. (4) Remarkably, the modification of variant V224C by 2-sulfonatoethyl methanethiosulfonate or 2-(trimethyl ammonium)-ethylmethanethiosulfonate totally inhibited antiporter activity, while N-ethyl maleimide modification had a very small effect on NhaA activity. Hence, the size—rather than the chemical modification or the charge—of the larger reagents interferes with the passage of ions through the periplasmic funnel. Taken together, our results at physiological pH reveal that amino acid residues in transmembrane VIII contribute to the cation passage of NhaA and its pH regulation.  相似文献   

2.
Kozachkov L  Herz K  Padan E 《Biochemistry》2007,46(9):2419-2430
The 3D structure of Escherichia coli NhaA, determined at pH 4, provided the first structural insights into the mechanism of antiport and pH regulation of a Na+/H+ antiporter. However, because NhaA is activated at physiological pH (pH 7.0-8.5), many questions pertaining to the active state of NhaA have remained open, including the physiological role of helix X. Using a structural-based evolutionary approach in silico, we identified a segment of most conserved residues in the middle of helix X. These residues were then used as targets for functional studies at physiological pH. Cysteine-scanning mutagenesis showed that Gly303, in the middle of the conserved segment, is an essential residue and Cys replacement of Lys300 retains only Li+/H+ antiporter activity, with a 20-fold increase in the apparent KM for Li+. Cys replacements of Leu296 and Gly299 increase the apparent KM of the Na+/H+ antiporter for both Na+ and Li+. Accessibility test to N-ethylmaleimide and 2-sulfonatoethyl methanethiosulfonate showed that G299C, K300C, and G303C are accessible to the cytoplasm. Suppressor mutations and site-directed chemical cross-linking identified a functional and/or structural interaction between helix X (G295C) and helix IVp (A130C). While these results were in accordance with the acid-locked crystal structure, surprisingly, conflicting data were also obtained; E78C of helix II cross-links very efficiently with several Cys replacements of helix X, and E78K/K300E is a suppressor mutation of K300E. These results reveal that, at alkaline pH, the distance between the conserved center of helix X and E78 of helix II is drastically decreased, implying a pH-induced conformational change of one or both helices.  相似文献   

3.
pH and Na+ homeostasis in all cells requires Na+/H+ antiporters. In most cases, their activity is tightly pH-regulated. NhaA, the main antiporter of Escherichia coli, has homologues in all biological kingdoms. The crystal structure of NhaA provided insights into the mechanism of action and pH regulation of an antiporter. However, the active site of NhaA remained elusive because neither Na+ nor Li+, the NhaA ligands, were observed in the structure. Using isothermal titration calorimetry, we show that purified NhaA binds Li+ in detergent micelles. This interaction is driven by an increase in enthalpy (ΔH of −8000 ± 300 cal/mol and ΔS of −15.2 cal/mol/degree at 283 K), involves a single binding site per NhaA molecule, and is highly specific and drastically dependent on pH; Li+ binding was observed only at pH 8.5. Combining mutational analysis with the isothermal titration calorimetry measurements revealed that Asp-163, Asp-164, Thr-132, and Asp-133 form the Li+ binding site, whereas Lys-300 plays an important role in pH regulation of the antiporter.  相似文献   

4.
The Na+/H+ exchanger isoform 1 is a ubiquitously expressed integral membrane protein. It resides on the plasma membrane of cells and regulates intracellular pH in mammals by extruding an intracellular H+ in exchange for one extracellular Na+. We characterized structural and functional aspects of the transmembrane segment (TM) VI (residues 227–249) by using cysteine scanning mutagenesis and high resolution NMR. Each residue of TM VI was mutated to cysteine in the background of the cysteineless NHE1 protein, and the sensitivity to water-soluble sulfhydryl-reactive compounds (2-(trimethylammonium)ethyl)methanethiosulfonate (MTSET) and (2-sulfonatoethyl)methanethiosulfonate (MTSES) was determined for those residues with significant activity remaining. Three residues were essentially inactive when mutated to Cys: Asp238, Pro239, and Glu247. Of the remaining residues, proteins with the mutations N227C, I233C, and L243C were strongly inhibited by MTSET, whereas amino acids Phe230, Gly231, Ala236, Val237, Ala244, Val245, and Glu248 were partially inhibited by MTSET. MTSES did not affect the activity of the mutant NHE1 proteins. The structure of a peptide representing TM VI was determined using high resolution NMR spectroscopy in dodecylphosphocholine micelles. TM VI contains two helical regions oriented at an approximate right angle to each other (residues 229–236 and 239–250) surrounding a central unwound region. This structure bears a resemblance to TM IV of the Escherichia coli protein NhaA. The results demonstrate that TM VI of NHE1 is a discontinuous pore-lining helix with residues Asn227, Ile233, and Leu243 lining the translocation pore.  相似文献   

5.
Sodium proton antiporters are essential enzymes that catalyze the exchange of sodium ions for protons across biological membranes. The crystal structure of NhaA has provided a basis to explore the mechanism of ion exchange and its unique regulation by pH. Here, the mechanism of the pH activation of the antiporter is investigated through functional and computational studies of several variants with mutations in the ion‐binding site (D163, D164). The most significant difference found computationally between the wild type antiporter and the active site variants, D163E and D164N, are low pKa values of Glu78 making them insensitive to pH. Although in the variant D163N the pKa of Glu78 is comparable to the physiological one, this variant cannot demonstrate the long‐range electrostatic effect of Glu78 on the pH‐dependent structural reorganization of trans‐membrane helix X and, hence, is proposed to be inactive. In marked contrast, variant D164E remains sensitive to pH and can be activated by alkaline pH shift. Remarkably, as expected computationally and discovered here biochemically, D164E is viable and active in Na+/H+ exchange albeit with increased apparent KM. Our results unravel the unique electrostatic network of NhaA that connect the coupled clusters of the “pH sensor” with the binding site, which is crucial for pH activation of NhaA. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
pH and Na+ homeostasis in all cells requires Na+/H+ antiporters. The crystal structure, obtained at pH 4, of NhaA, the main antiporter of Escherichia coli, has provided general insights into an antiporter mechanism and its unique pH regulation. Here, we describe a general method to select various NhaA mutants from a library of randomly mutagenized NhaA. The selected mutants, A167P and F267C are described in detail. Both mutants are expressed in Escherichia coli EP432 cells at 70–95% of the wild type but grow on selective medium only at neutral pH, A167P on Li+ (0.1 M) and F267C on Na+ (0.6 M). Surprising for an electrogenic secondary transporter, and opposed to wild type NhaA, the rates of A167P and F267C are almost indifferent to membrane potential. Detailed kinetic analysis reveals that in both mutants the rate limiting step of the cation exchange cycle is changed from an electrogenic to an electroneutral reaction.  相似文献   

7.
Na+/H+ antiporters show a marked pH dependence, which is important for their physiological function in eukaryotic and prokaryotic cells. In NhaA, the Escherichia coli Na+/H+ antiporter, specific single site mutations modulating the pH profile of the transporter have been described in the past. To clarify the mechanism by which these mutations influence the pH dependence of NhaA, the substrate dependence of the kinetics of selected NhaA variants was electrophysiologically investigated and analyzed with a kinetic model. It is shown that the mutations affect NhaA activity in quite different ways by changing the properties of the binding site or the dynamics of the transporter. In the first case, pK and/or KDNa are altered, and in the second case, the rate constants of the conformational transition between the inside and the outside open conformation are modified. It is shown that residues as far apart as 15–20 Å from the binding site can have a significant impact on the dynamics of the conformational transitions or on the binding properties of NhaA. The implications of these results for the pH regulation mechanism of NhaA are discussed.  相似文献   

8.
D. Zuber  M. Venturi  E. Padan  K. Fendler 《BBA》2005,1709(3):240-250
The Na+/H+ antiporter NhaA is the main Na+ extrusion system in E. coli. Using direct current measurements combined with a solid supported membrane (SSM), we obtained electrical data of the function of NhaA purified and reconstituted in liposomes. These measurements demonstrate NhaA's electrogenicity, its specificity for Li+ and Na+ and its pronounced pH dependence in the range pH 6.5-8.5. The mutant G338S, in contrast, presents a pH independent profile, as reported previously. A complete right-side-out orientation of the NhaA antiporter within the proteoliposomal membrane was determined using a NhaA-specific antibody based ELISA assay. This allowed for the first time the investigation of NhaA in the passive downhill uptake mode corresponding to the transport of Na+ from the periplasmic to the cytoplasmic side of the membrane. In this mode, the transporter has kinetic properties differing significantly from those of the previously investigated efflux mode. The apparent Km values were 11 mM for Na+ and 7.3 mM for Li+ at basic pH and 180 mM for Na+ and 50 mM for Li+ at neutral pH. The data demonstrate that in the passive downhill uptake mode pH regulation of the carrier affects both apparent Km as well as turnover (Vmax).  相似文献   

9.
Na+/H+ antiporters have a crucial role in pH and Na+ homeostasis in cells. The crystal structure of NhaA, the main antiporter of Escherichia coli, has provided general insights into antiporter mechanisms and revealed a previously unknown structural fold, which has since been identified in several secondary active transporters. This unique structural fold is very delicately electrostatically balanced. Asp133 and Lys 300 have been ascribed essential roles in this balance and, more generally, in the structure and function of the antiporter. In this work, we show the multiple roles of Asp133 in NhaA: (i) The residue's negative charge is critical for the stability of the NhaA structure. (ii) Its main chain is part of the active site. (iii) Its side chain functions as an alkaline-pH-dependent gate, changing the protein's conformation from an inward-facing conformation at acidic pH to an outward-open conformation at alkaline pH, opening the periplasm funnel. On the basis of the experimental data, we propose a tentative mechanism integrating the structural and functional roles of Asp133.  相似文献   

10.
The three-dimensional crystal structure of Escherichia coli NhaA determined at pH 4 provided the first structural insights into the mechanism of antiport and pH regulation of a Na(+)/H(+) antiporter. However, because NhaA is activated at physiological pH (pH 6.5-8.5), many questions pertaining to the active state of NhaA have remained open including the structural and physiological roles of helix IX and its loop VIII-IX. Here we studied this NhaA segment (Glu(241)-Phe(267)) by structure-based biochemical approaches at physiological pH. Cysteine-scanning mutagenesis identified new mutations affecting the pH dependence of NhaA, suggesting their contribution to the "pH sensor." Furthermore mutation F267C reduced the H(+)/Na(+) stoichiometry of the antiporter, and F267C/F344C inactivated the antiporter activity. Tests of accessibility to [2-(trimethylammonium)ethyl]methanethiosulfonate bromide, a membrane-impermeant positively charged SH reagent with a width similar to the diameter of hydrated Na(+), suggested that at physiological pH the cytoplasmic cation funnel is more accessible than at acidic pH. Assaying intermolecular cross-linking in situ between single Cys replacement mutants uncovered the NhaA dimer interface at the cytoplasmic side of the membrane; between Leu(255) and the cytoplasm, many Cys replacements cross-link with various cross-linkers spanning different distances (10-18 A) implying a flexible interface. L255C formed intermolecular S-S bonds, cross-linked only with a 5-A cross-linker, and when chemically modified caused an alkaline shift of 1 pH unit in the pH dependence of NhaA and a 6-fold increase in the apparent K(m) for Na(+) of the exchange activity suggesting a rigid point in the dimer interface critical for NhaA activity and pH regulation.  相似文献   

11.
Na+/H+ antiporters comprise a super-family (CPA) of membrane proteins that are found in all kingdoms of life and are essential in cellular homeostasis of pH, Na+ and volume. Their activity is strictly dependent on pH, a property that underpins their role in pH homeostasis. While several human homologues have long been drug targets, NhaA of Escherichia coli has become the paradigm for this class of secondary active transporters as NhaA crystal structure provided insight into the architecture of this molecular machine. However, the mechanism of the strict pH dependence of NhaA is missing. Here, as a follow up of a recent evolutionary analysis that identified a ‘CPA motif’, we rationally designed three E. coli NhaA mutants: D133S, I134T, and the double mutant D133S-I134T. Exploring growth phenotype, transport activity and Li+-binding of the mutants, we revealed that Asp133 does not participate directly in proton binding, nor does it directly dictate the pH-dependent transport of NhaA. Strikingly, the variant I134T lost some of the pH control, and the D133S-Il134T double mutant retained Li+ binding in a pH independent fashion. Concurrent to loss of pH control, these mutants bound Li+ more strongly than the WT. Both positions are in close vicinity to the ion-binding site of the antiporter, attributing the results to electrostatic interaction between these residues and Asp164 of the ion-binding site. This is consistent with pH sensing resulting from direct coupling between cation binding and deprotonation in Asp164, which applies also to other CPA antiporters that are involved in human diseases.  相似文献   

12.
The recently determined crystal structure of NhaA, the Na +/H + antiporter of Escherichia coli, showed that the previously constructed series of NhaA-alkaline phosphatase (PhoA) fusions correctly predicted the topology of NhaA's 12 transmembrane segments (TMS), with the C- and N-termini pointing to the cytoplasm. Here, we show that these NhaA-PhoA fusions provide an excellent tool for mapping the epitopes of three NhaA-specific conformational monoclonal antibodies (mAbs), of which two drastically inhibit the antiporter. By identifying which of the NhaA fusions is bound by the respective mAb, the epitopes were localized to small stretches of NhaA. Then precise mapping was conducted by targeted Cys scanning mutagenesis combined with chemical modifications. Most interestingly, the epitopes of the inhibitory mAbs, 5H4 and 2C5, were identified in loop X-XI (cytoplasmic) and loop XI-XII (periplasmic), which are connected by TMS XI on the cytoplasmic and periplasmic sides of the membrane, respectively. The revealed location of the mAbs suggests that mAb binding distorts the unique NhaA TMS IV/XI assembly and thus inhibits the activity of NhaA. The noninhibitory mAb 6F9 binds to the functionally dispensable C-terminus of NhaA.  相似文献   

13.
Rimon A  Tzubery T  Galili L  Padan E 《Biochemistry》2002,41(50):14897-14905
The unique trypsin cleavable site of NhaA, the Na(+)/H(+) antiporter of Escherichia coli, was exploited to detect a change in mobility of cross-linked products of NhaA by polyacrylamide gel electrophoresis. Double-Cys replacements were introduced into loops, one on each side of the trypsin cleavage site (Lys 249). The proximity of paired Cys residues was assessed by disulfide cross-linking of the two tryptic fragments, using three homobifunctional cross-linking agents: 1,6-bis(maleimido)hexane (BMH), N,N'-o-phenylenedimaleimide (o-PDM), and N,N'-p-phenylenedimaleimide (p-PDM). The interloop cross-linking was found to be very specific, indicating that the loops are not merely random coils that interact randomly. In the periplasmic side of NhaA, two patterns of cross-linking are observed: (a) all three cross-linking reagents cross-link very efficiently between the double-Cys replacements A118C/S286C, N177C/S352C, and H225C/S352C; (b) only BMH cross-links the double-Cys replacements A118C/S352C, N177C/S286C, and H225C/S286C. In the cytoplasmic side of NhaA, three patterns of cross-linking are observed: (a) all three cross-linking reagents cross-link very efficiently the pairs of Cys replacements L4C/E252C, S146C/L316C, S146C/R383C, and E241C/E252C; (b) BMH and p-PDM cross-link efficiently the pairs of Cys replacements S87C/E252C, S87C/L316C, and S146C/E252C; (c) none of the reagents cross-links the double-Cys replacements L4C/L316C, L4C/R383C, S87C/R383C, A202C/E252C, A202C/L316C, A202C/R383C, E241C/L316C, and E241C/R383C. The data reveal that the N-terminus and loop VIII-IX that have previously been shown to change conformation with pH are in close proximity within the NhaA protein. The data also suggest close proximity between N-terminal and C-terminal helices at both the cytoplasmic and the periplasmic face of NhaA.  相似文献   

14.
A functionally important, interface domain between transmembrane segments (TMSs) IV and XI of the NhaA Na+/H+ antiporter of Escherichia coli has been unraveled. Scanning by single Cys replacements identified new mutations (F136C, G125C, and A137C) that cluster in one face of TMS IV and increase dramatically the Km of the antiporter. Whereas G125C, in addition, causes a drastic alkaline shift to the pH dependence of the antiporter, G338C alleviates the pH control of NhaA. Scanning by double Cys replacements (21 pairs of one replacement per TMS) identified genetically eight pairs of residues that showed very strong negative complementation. Cross-linking of the double mutants identified six double mutants (T132C/G338C, D133C/G338C, F136C/S342C, T132C/S342C, A137C/S342C, and A137C/G338C) of which pronounced intramolecular cross-linking defined an interface domain between the two TMSs. Remarkably, cross-linking by a short and rigid reagent (N,N'-o-phenylenedimaleimide) revived the Li+/H+ antiport activity, whereas a shorter reagent (1,2-ethanediyl bismethanethiosulfonate) revived both Na+/H+ and Li+/H+ antiporter activities and even the pH response of the dead mutant T132C/G338C. Hence, cross-linking at this position restores an active conformation of NhaA.  相似文献   

15.
Na+/H+ antiporters are integral membrane proteins that are present in almost every cell and in every kingdom of life. They are essential for the regulation of intracellular pH-value, Na+-concentration and cell volume. These secondary active transporters exchange sodium ions against protons via an alternating access mechanism, which is not understood in full detail. Na+/H+ antiporters show distinct species-specific transport characteristics and regulatory properties that correlate with respective physiological functions. Here we present the characterization of the Na+/H+ antiporter NhaA from Salmonella enterica serovar Thyphimurium LT2, the causing agent of food-born human gastroenteritis and typhoid like infections. The recombinant antiporter was functional in vivo and in vitro. Expression of its gene complemented the Na+-sensitive phenotype of an E. coli strain that lacks the main Na+/H+ antiporters. Purified to homogeneity, the antiporter was a dimer in solution as accurately determined by size-exclusion chromatography combined with multi-angle laser-light scattering and refractive index monitoring. The purified antiporter was fully capable of electrogenic Na+(Li+)/H+-antiport when reconstituted in proteoliposomes and assayed by solid-supported membrane-based electrophysiological measurements. Transport activity was inhibited by 2-aminoperimidine. The recorded negative currents were in agreement with a 1Na+(Li+)/2H+ stoichiometry. Transport activity was low at pH 7 and up-regulation above this pH value was accompanied by a nearly 10-fold decrease of Km Na (16 mM at pH 8.5) supporting a competitive substrate binding mechanism. K+ does not affect Na+ affinity or transport of substrate cations, indicating that selectivity of the antiport arises from the substrate binding step. In contrast to homologous E. coli NhaA, transport activity remains high at pH values above 8.5. The antiporter from S. Typhimurium is a promising candidate for combined structural and functional studies to contribute to the elucidation of the mechanism of pH-dependent Na+/H+ antiporters and to provide insights in the molecular basis of species-specific growth and survival strategies.  相似文献   

16.
Na+/H+ antiporters influence proton or sodium motive force across the membrane. Synechocystis sp. PCC 6803 has six genes encoding Na+/H+ antiporters, nhaS1–5 and sll0556. In this study, the function of NhaS3 was examined. NhaS3 was essential for growth of Synechocystis, and loss of nhaS3 was not complemented by expression of the Escherichia coli Na+/H+ antiporter NhaA. Membrane fractionation followed by immunoblotting as well as immunogold labeling revealed that NhaS3 was localized in the thylakoid membrane of Synechocystis. NhaS3 was shown to be functional over a pH range from pH 6.5 to 9.0 when expressed in E. coli. A reduction in the copy number of nhaS3 in the Synechocystis genome rendered the cells more sensitive to high Na+ concentrations. NhaS3 had no K+/H+ exchange activity itself but enhanced K+ uptake from the medium when expressed in an E. coli potassium uptake mutant. Expression of nhaS3 increased after shifting from low CO2 to high CO2 conditions. Expression of nhaS3 was also found to be controlled by the circadian rhythm. Gene expression peaked at the beginning of subjective night. This coincided with the time of the lowest rate of CO2 consumption caused by the ceasing of O2-evolving photosynthesis. This is the first report of a Na+/H+ antiporter localized in thylakoid membrane. Our results suggested a role of NhaS3 in the maintenance of ion homeostasis of H+, Na+, and K+ in supporting the conversion of photosynthetic products and in the supply of energy in the dark.Na+/H+ antiporters are integral membrane proteins that transport Na+ and H+ in opposite directions across the membrane and that occur in virtually all cell types. These transporters play an important role in the regulation of cytosolic pH and Na+ concentrations and influence proton or sodium motive force across the membrane (1, 2). In Escherichia coli, three Na+/H+ antiporters (NhaA, NhaB, and ChaA) have been described in detail. Of these, NhaA is the functionally best characterized transporter. The crystal structure of NhaA has been resolved (3). In addition, mutants of nhaA, nhaB, and chaA as well as the triple mutant have been generated (4). The triple mutant was shown to be hypersensitive to extracellular Na+. The genome of the cyanobacterium Synechocystis sp. PCC 6803 contains six genes encoding Na+/H+ antiporters (NhaS1–5 and sll0556). NhaS1 (slr1727) has also been designated SynNhaP (5, 6). Null mutants of nhaS1, nhaS2, nhaS4, and nhaS5 have been generated; however, a null mutant of nhaS3 could not be obtained, indicating that it is an essential gene (68). By heterologous expression in E. coli, Na+/H+ exchange activities could be shown for NhaS1–5 (5, 6). Inactivation of nhaS1 and nhaS2 results in retardation of growth of Synechocystis (5, 6). It has been reported that in these mutants the concentration of Na+ in cytosol and intrathylakoid space (lumen) increases and impairs the photosynthetic and/or respiratory activity of the cell (9, 10). Therefore the Na+ extrusion by Synechocystis Na+/H+ antiporters similar to E. coli NhaA, NhaB, and ChaA is essential for the adaptation to salinity stress.In contrast to the case in E. coli, Na+ is an essential element for the growth of some cyanobacteria (11, 12). Interestingly, the Na+/H+ antiporter homolog NhaS4 was identified as an uptake system for Na+ from the medium during a screen for mutations in Synechocystis that result in lack of growth at low Na+ concentrations (7). The requirement of a Na+ uptake antiporter for cell growth is consistent with the physiology of Synechocystis. Specifically, photoautotrophic bacteria like cyanobacteria share some components (plastoquinone, cytochrome b6f, and c6) of the thylakoid membrane for electron transport for both photophosphorylation and respiratory oxidative phosphorylation. Na+/H+ antiporters therefore may coordinate both H+ and Na+ gradients across the plasma and thylakoid membranes to adapt to daily environmental changes (11). It remains to be determined whether the six Na+/H+ antiporters are localized to the plasma membrane or to the thylakoid membrane in Synechocystis. Information on the membrane localization will also provide information on the physiological role in Synechocystis. In this study, we explored the membrane localization of NhaS3, the role of specific amino acid residues for its function, and the effect of CO2 concentration and circadian rhythms on the expression pattern of nhaS3 to gain insight into the physiological role of NhaS3 in Synechocystis.  相似文献   

17.
Na+/H+ antiporters are a category of ubiquitous transmembrane proteins with various important physiological roles in almost all living organisms ranging from bacteria to humans. However, the knowledge of novel Na+/H+ antiporters remains to be broadened, and the functional roles of oligomerization in these antiporters have not yet been thoroughly understood. Here, we reported functional analysis of an unknown transmembrane protein composed of 103 amino acid residues. This protein was found to function as a Na+(Li+, K+)/H+ antiporter. To the best of our knowledge, this antiporter is the minimal one of known Na+/H+ antiporters and thus designated as NhaM to represent the minimal Na+/H+ antiporter. NhaM and its homologs have not yet been classified into any protein family. Based on phylogenetic analysis and protein alignment, we propose NhaM and its homologs to constitute a novel transporter family designated as NhaM family. More importantly, we found that NhaM is assembled with parallel protomers into a homo-oligomer and oligomerization is vital for the function of this antiporter. This implies that NhaM may adopt and require an oligomer structure for its normal function to create a similar X-shaped structure to that of the NhaA fold. Taken together, current findings not only present the proposal of a novel transporter family but also positively contribute to the functional roles of oligomerization in Na+/H+ antiporters.  相似文献   

18.
Katz A  Pick U  Avron M 《Plant physiology》1992,100(3):1224-1229
The effect of different growth conditions on the activity of the Na+/H+ antiporter in Dunaliella salina has been investigated. Adaptation of D. salina cells to ammonia at alkaline pH or to high NaCl concentrations is associated with a pronounced increase in the plasma membrane Na+/H+ exchange activity. The enhanced activity is manifested both in vivo, by stimulation of Na+ influx into intact cells in response to internal acidification, and in vitro, by a larger 22Na accumulation in plasma membrane vesicles in response to an induced pH gradient. Kinetic analysis shows that the stimulation does not result from a change of the Km for Na+ but from an increase in the Vmax. In contrast, adaptation of cells to a high LiCl concentration (0.8 m) depresses the activity of the Na+/H+ antiporter. Adaptation to ammonia is also associated with a large increase of three polypeptide bands in purified plasma membrane preparations, indicating that they may compose the antiporter polypeptides. These results suggest that adaptation to ammonia or to high salinity induces overproduction of the plasma membrane Na+/H+ antiporter in Dunaliella.  相似文献   

19.
We examined the structure-function relationships of residues in the fifth transmembrane domain (TM5) of the Na+/H+ antiporter A (NhaA) from Helicobacter pylori (HP NhaA) by cysteine scanning mutagenesis. TM5 contains two aspartate residues, Asp-171 and Asp-172, which are essential for antiporter activity. Thirty-five residues spanning the putative TM5 and adjacent loop regions were replaced by cysteines. Cysteines replacing Val-162, Ile-165, and Asp-172 were labeled with NEM, suggesting that these three residues are exposed to a hydrophilic cavity within the membrane. Other residues in the putative TM domain, including Asp-171, were not labeled. Inhibition of NEM labeling by the membrane impermeable reagent AMS suggests that Val-162 and Ile-165 are exposed to a water filled channel open to the cytoplasmic space, whereas Asp-172 is exposed to the periplasmic space. D171C and D172C mutants completely lost Na+/H+ and Li+/H+ antiporter activities, whereas other Cys replacements did not result in a significant loss of these activities. These results suggest that Asp-171 and Asp-172 and the surrounding residues of TM5 provide an essential structure for H+ binding and Na+ or Li+ exchange. A168C and Y183C showed markedly decreased antiporter activities at acidic pH, whereas their activities were higher at alkaline pH, suggesting that the conformation of TM5 also plays a crucial role in the HP NhaA-specific acidic pH antiporter activity.  相似文献   

20.
Digestion with trypsin of purified His-tagged NhaA in a solution of dodecyl maltoside yields two fragments at alkaline pH but only one fragment at acidic pH. Determination of the amino acid sequence of the N terminus of the cleavage products show that the pH-sensitive cleavage site of NhaA, both in isolated everted membrane vesicles as well as in the pure protein in detergent, is Lys-249 in loop VIII-IX, which connects transmembrane segment VIII to IX. Interestingly, the two polypeptide products of the split antiporter remain complexed and co-purify on Ni(2+)-NTA column. Loop VIII-IX has also been found to play a role in the pH regulation of NhaA; three mutations introduced into the loop shift the pH profile of the Na(+)/H(+) antiporter activity as measured in everted membrane vesicles. An insertion mutation introducing Ile-Glu-Gly between residues Lys-249 and Arg-250 (K249-IEG-R250) and Cys replacement of either Val-254 (V254C) or Glu-241 (E241C) cause acidic shift of the pH profile of the antiporter by 0.5, 1, and 0.3 pH units, respectively. Interestingly, the double mutant E241C/V254C introduces a basic shift of more than 1 pH unit with respect to the single mutation V254C. Taken together these results imply the involvement of loop VIII-IX in the pH-induced conformational change, which leads to activation of NhaA at alkaline pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号