首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
p66shc is increased in response to cell stress, and these increases regulate growth factor actions. These studies were conducted to determine how p66shc alters IGF-I-stimulated Src activation, leading to decreased IGF-I actions. Our results show that p66shc binds to Src through a polyproline sequence motif contained in the CH2 domain, a unique domain in p66shc, and IGF-I stimulates this interaction. Disruption of this interaction using a synthetic peptide containing the p66shc polyproline domain or expression of a p66shc mutant containing substitutions for the proline residues (P47A/P48A/P50A) resulted in enhanced Src kinase activity, p52shc phosphorylation, MAPK activation, and cell proliferation in response to IGF-I. To determine the mechanism of inhibition, the full-length CH2 domain and intact p66shc were tested for their ability to directly inhibit Src kinase activation in vitro. The CH2 domain peptide was clearly inhibitory, but full-length p66shc had a greater effect. Deletion of the C-terminal Src homology 2 domain in p66shc reduced its ability to inhibit Src kinase activation. These findings demonstrate that p66shc utilizes a novel mechanism for modulating Src kinase activation and that this interaction is mediated through both its collagen homologous region 2 and Src homology 2 domains.  相似文献   

2.
The phagocyte NADPH oxidase Nox2, heterodimerized with p22phox in the membrane, is dormant in resting cells but becomes activated upon cell stimulation to produce superoxide, a precursor of microbicidal oxidants. Nox2 activation requires two switches to be turned on simultaneously: a conformational change of the cytosolic protein p47phox and GDP/GTP exchange on the small GTPase Rac. These proteins, in an active form, bind to their respective targets, p22phox and p67phox, leading to productive oxidase assembly at the membrane. Although arachidonic acid (AA) efficiently activates Nox2 both in vivo and in vitro, the mechanism has not been fully understood, except that AA induces p47phox conformational change. Here we show that AA elicits GDP-to-GTP exchange on Rac at the cellular level, consistent with its role as a potent Nox2 activator. However, even when constitutively active forms of p47phox and Rac1 are both expressed in HeLa cells, superoxide production by Nox2 is scarcely induced in the absence of AA. These active proteins also fail to effectively activate Nox2 in a cell-free reconstituted system without AA. Without affecting Rac-GTP binding to p67phox, AA induces the direct interaction of Rac-GTP-bound p67phox with the C-terminal cytosolic region of Nox2. p67phox-Rac-Nox2 assembly and superoxide production are both abrogated by alanine substitution for Tyr-198, Leu-199, and Val-204 in the p67phox activation domain that localizes the C-terminal to the Rac-binding domain. Thus the “third” switch (AA-inducible interaction of p67phox·Rac-GTP with Nox2) is required to be turned on at the same time for Nox2 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号