首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kin recognition in an annual plant   总被引:5,自引:0,他引:5  
Kin recognition is important in animal social systems. However, though plants often compete with kin, there has been as yet no direct evidence that plants recognize kin in competitive interactions. Here we show in the annual plant Cakile edentula, allocation to roots increased when groups of strangers shared a common pot, but not when groups of siblings shared a pot. Our results demonstrate that plants can discriminate kin in competitive interactions and indicate that the root interactions may provide the cue for kin recognition. Because greater root allocation is argued to increase below-ground competitive ability, the results are consistent with kin selection.  相似文献   

2.
陈青青  李德志 《植物生态学报》2015,39(12):1188-1197
在根系隔离情况下, 通过研究邻株身份(亲缘株、非亲缘株、陌生株)及其与种植密度(高、低)和土壤养分水平(高、低)交互作用对谷子(Setaria italica)形态学特征和生物量分配的影响, 探索谷子地上部分是否能够识别亲缘邻株, 以及谷子的这种亲缘识别能力对环境因子如何响应。结果显示: 1)亲缘组谷子叶生物量分配显著降低, 茎秆显著增粗, 暗示着亲缘组谷子植株间减少竞争, 并增强对当地多风气候的适应。而非亲缘组谷子叶生物量分配显著增加, 表明非亲缘组谷子植株间竞争较强。2)与非亲缘组相比, 陌生组谷子种子生物量分配显著增加, 株高显著减少, 表明陌生组谷子植株通过不对称竞争(与邻株糜(Panicum miliaceum)植株相比, 株高显著增加), 进一步限制邻株(糜)生长, 从而增强竞争能力, 同时, 将更多的生物量投资于繁殖, 增加适合度。3)在高密度种植条件下, 谷子茎生物量和叶生物量分配在各邻株身份处理间无显著差异, 而在低密度种植条件下, 与非亲缘组相比, 亲缘组谷子茎生物量显著增加, 叶生物量分配显著减小; 随着种植间距的增大(种植密度减小), 亲缘组谷子叶生物量分配显著减少, 而非亲缘组和陌生组叶生物量分配在高、低种植密度条件下无显著差异。4)在低土壤养分条件下, 亲缘组和非亲缘组谷子叶生物量分配无显著差异, 前者穗长显著小于后者, 而在高土壤养分条件下, 亲缘组谷子叶生物量分配显著小于非亲缘组, 前者穗长显著大于后者。结果表明, 在根系隔离的情况下,谷子能够识别亲缘邻株, 且谷子地上部分竞争信号在亲缘识别过程中扮演重要角色。较低种植密度和较高土壤养分水平有利于谷子亲缘识别能力的表达。  相似文献   

3.
《植物生态学报》2015,39(12):1188
Aims Kin recognition may play an important part in the performance and productivity of crop plants. However, so far, little is known about whether crop plants can recognize their kin neighbors. The aim of this study was to explore kin recognition in Setaria italica, and its responses to changes in environmental and biological conditions.Methods A field experiment was conducted in the suburb of Shanghai. Setaria italica grew with different neighbors (kin, non-kin and strangers), under the condition of root segregation and different plant densities (high and low) and soil nutrient levels (high and low), respectively. We investigated how neighbor identity and its interactions with plant density and soil nutrient level affected the morphology and biomass allocation of S. italica.Important findings Under the condition of root segregation, 1) Leaf biomass allocation and stem diameter of plants in the kin groups significantly decreased and increased, respectively, suggesting that plants of S. italica in the kin groups reduced inter-individual competition, and adapted to the local windy climate. 2) Compared with the non-kin groups, plants in the stranger groups significantly increased the biomass allocation to seeds, while plant height decreased significantly, suggesting that the plants of S. italica in the stranger groups may reduce the growth of their neighbors due to asymmetric competition (S. italica significantly increased height compared with the neighboring plants, Panicum miliaceum). Therefore, the S. italic plants in the stranger groups allocated more biomass to reproduction and increased fitness than those in non-kin groups. 3) Under the condition of high plant density, no significant differences were found in stem biomass and leaf biomass allocation of plants among different neighbor identity treatments. While under the condition of low plant density, compared with the non-kin groups, biomass allocation to stem and leaf in the kin groups significantly increased and decreased, respectively. As the plant density decreased, plants in the kin groups decreased leaf biomass allocation significantly, while plants in the non-kin and stranger groups did not show such a response. 4) Under the condition of low soil nutrient level, no significant difference was found in leaf biomass allocation between the kin and non-kin groups, while the ear length of plants in the kin groups decreased significantly. Under the condition of high soil nutrient level, the biomass allocated to leaves in the kin groups decreased significantly, while ear length increased significantly compared with the non-kin groups. Therefore, under the condition of root segregation, plants of S. italica showed the ability to recognize their kin neighbors, and the aboveground competitive cues may play important roles in the course of kin recognition in S. italica. Lower plant density and higher soil nutrient level may facilitate the ability of kin recognition in S. italica.  相似文献   

4.
Kin selection is often used to explain the evolution altruism towards relatives through favouring the evolution of kin recognition. However, it remains unclear whether kin recognition is affected by plant pair density and different degrees of relatedness. A two-factor experimental design of kinship (three kinship degrees including siblings, closely related strangers and distantly related strangers) and pair density (including relative small, medium and large pair densities) was conducted in this study. Plant competitive traits including rosette size, specific leaf area (SLA), stem elongation, root and leaf allocation, seed biomass and vegetative biomass were measured to reflect interactions among plants living with different relatives of Arabidopsis thaliana accessions [Columbia (Col-0), Landsberg erecta (Ler) and Wassileskijia (Ws)] in three different pair densities. The SLA only showed kinship effect, and siblings showed higher SLA than non-siblings in each pair density. The plant total biomass was only affected by pair density, which increased with decreases of pair density. The rosette size, stem elongation, root allocation and leaf allocation showed interactive effects of kinship and pair density. In the large pair density, the rosette size of siblings was lower than distantly related strangers, compared to closely related strangers; the stem elongation and root allocation were lower, while the seed biomass of siblings was higher than the closely or distantly related strangers. In the medium pair density, plants living with siblings or with closely related neighbours showed higher root allocation than with distantly related neighbours. In the small pair density, the plant rosette acted similarly to of which in the large pair density, and siblings showed higher root allocation than the two strangers. The other traits in each pair density showed no significant differences among kinship treatments. A relatively large pair density achieves kin recognition by deducing root competition ability and mutual shading, with increased efficient light capture and fitness. Similar such root and efficient light capture strategies were selected in medium pair density. Except the efficient light capture strategies, small pair density also displays allocation trade-offs between roots (decreased) and leaves (increased) for siblings. Moreover, kin responses on those attributes are also adjusted by kinship degree. Thus, kinships and pair density are important variables to mediate kin interactions.  相似文献   

5.
植物的亲缘识别(kin recognition)指植物通过识别周边个体与自己的亲缘关系, 调整自身的生长生态策略、促进亲缘个体的生存与繁衍。研究表明, 植物主要通过特定的叶片挥发物、根系分泌物、感光载体等途径, 识别周边个体与自己的亲缘关系, 改变自身形态学策略(如根系大小、根冠比、种子数量等)或者生理代谢策略(次生代谢物质、防御蛋白等), 调整与周边个体的竞争强度, 缓和与近亲缘个体之间的竞争, 加强与远亲缘或非亲缘个体的竞争。同时亲缘识别的强度也受环境因子(养分等)的影响。结合目前的研究进展, 该文分析了导致亲缘识别的研究结果存在差异或争议的主要原因, 认为主要与实验材料的选择、亲缘关系的界定标准、环境条件及测定的指标不统一有关。将来的研究应重点从生理生化、分子、代谢水平上深入研究植物亲缘识别的机理。  相似文献   

6.
《植物生态学报》2015,39(11):1110
Plants have the ability to discriminate kin members from strangers in competitive interactions and show altruistic behavior towards related individuals. Studies have showed that plants recognize their neighbors and adjust their ecological strategy mainly through leaf volatiles, root secretions and photographic carrier. The target plants can modify their morphological traits (root size, root:shoot ratio, seed numbers etc.) or metabolism characteristics (secondary metabolites, defense-related proteins etc.) when groups of plants shared common resources, so as to minimize competition with close relatives. The density of kin recognition is influenced by environmental conditions. The main reasons for controversial experimental results of kin recognition are associated with plant materials, standard of kin selection, ecological factors and measured indices. Further studies are required to understand the mechanisms of kin interactions in plants from physiological, biochemical, molecular and metabolic levels.  相似文献   

7.
李洁  孙庚  胡霞  张洪轩  刘琳  吴宁 《生态学报》2014,34(14):3827-3838
亲缘选择是指在一个随机交配群体中的个体基于亲缘关系而以一种非随机性的方式相互作用,其作用结果是亲缘个体得到更大的广义适合度。综述了亲缘选择和亲缘竞争两种观点以及各自的试验支持证据;分析了导致亲缘选择试验结果出现分歧的原因,认为这主要是由于对亲缘选择理解上的模糊以及试验设计的不严谨所致。植物间的亲缘选择研究不仅相对较少,对亲缘选择的机制研究更为欠缺,这就造成了目前对此问题在科学认识上出现不少盲点。综合前期研究,提出今后对亲缘选择的研究应该首先界定"亲缘"程度,同时改良试验设计方案,选择多种不同生境下的物种对亲缘选择进行深入研究,并且考虑环境因子对植物亲缘选择的影响。同时,对植物亲缘识别机制的研究应该从生理生化方面出发,通过定性定量地分析探索植物根系分泌物在植物亲缘识别中的作用和作用途径。  相似文献   

8.
Plants have evolved complex mechanisms to recognize and respond to the presence of neighboring plants, and the genetic identity of a neighbor has been shown to make a difference in this response. Studies have found that plants are able to differentiate among self- versus non-self and among sibling (kin) competitors. Here, we present data for the dioecious grass Distichlis spicata on seedling recognition of kin and sex. D. spicata exhibits extreme spatial segregation of the sexes (SSS) in the field, and previous work has shown that intra-sexual competition is less than inter-sexual competition in the field. In this experiment, we conducted experiments in the lab, exposing the seedlings to liquid media in which seedlings had been previously grown, rather than have the seedling physically contact one another. We found that inter-sexual interactions caused a decrease in the total dry weight and an increase in root/shoot ratio of the plants compared with intra-sexual interactions. These findings suggest that D. spicata plants can recognize and respond to plant sex and that inter-sexual competition contributes to SSS, even when additional interactions, such as mycorrhizal fungi are controlled, and physical interactions between plants are removed. In the kin recognition analysis, we found that plants paired with another plant from the same mother had significantly greater lateral root number and length than plants paired with non-kin, suggesting that in this highly clonal grass, kin recognition may be an important mechanism in competitive interactions.  相似文献   

9.
10.
Documenting if plants exhibit kin competition avoidance in intraspecific plant interactions is relevant both to improve crop growth, and to understand diversity and composition in natural plant communities. However, a number of confounding mechanisms complicates detecting kin competition avoidance from experiments comparing plants growing with kin and non-kin neighbors. We conducted complementary greenhouse experiments using genotypes from four populations of the annual Medicago minima, which in a previous study showed higher survival when interacting with kin relative to non-kin. We show that genotypes vary in kin competition avoidance, and in competitive ability, but find no indication of complementary resource use. Importantly, from our first experiment of root growth behavior, we know that some genotypes exhibit kin competition avoidance. Yet, the variation in competitive ability we find in our second experiment, where plants grow in mini communities together with either kin or unrelated genotypes, can alone explain the variation we observe in growth and biomass among communities. In our case, the genotypes with highest competitive ability were also those that showed kin competition avoidance. This confounding effect obscured the disentangling of mechanisms underlying difference in growth between kin and non-kin interactions. When silencing root exudates by adding activated carbon to a subset of our genotype combinations, we found increased size asymmetry of plants grown together, and mostly in kin communities. This suggests that plants recognize the identity of neighbors via root exudates, and compete less with neighbors recognized as kin. To detect kin competition avoidance we suggest designing experiments that pair unrelated genotypes with similar competitive abilities. Such design, combined with silencing root exudates would be powerful to detect whether plants show kin competition avoidance or not.  相似文献   

11.
The degree of relatedness between individuals can influence subsequent social behaviour. Peromyscus leucopus populations may consist, in part, of related individuals. Kin recognition could benefit individuals in establishing sub-populations and inbreeding avoidance. White-footed deermice were tested in pairs according to one of the following categories: littermate sibling, cagemate (1s-c), littermate sibling, non-cagemate (1s-nc), non-littermate sibling, non-cagemate (nls-nc), non-sibling, cagemate (ns-c), and non-sibling, non-cagemate (ns-nc). Differences between n1s-nc and ns-nc encounters indicate kin recognition that cannot be due to prior contact. Both sexes Investigated related strangers (nls-nc) of the opposite sex more than unrelated strangers (ns-nc). Males Avoided related stranger males and Chased unrelated stranger males. Females Warded unrelated strangers longest. This is the first study to demonstrate kin recognition that is not based on prior contact in a small rodent.  相似文献   

12.
Inter- and intraspecific competitive abilities are significant determinants of invasive success and the ecological impact of non-native plants. We tested two major hypotheses on the competitive ability of invasive species using invasive (Taraxacum officinale) and native (T. platycarpum) dandelions: differential interspecific competitive ability between invasive and native species and the kin recognition of invasive species. We collected seeds from two field sites where the two dandelion species occurred nearby. Plants were grown alone, with kin (plants from the same maternal genotype) or strangers (plants from different populations) of the same species, or with different species in a growth chamber, and the performance at the early developmental stage between species and treatments was compared. The invasive dandelions outcompeted the native dandelions when competing against each other, although no difference between species was detected without competition or with intraspecific competition. Populations of native species responded to interspecific competition differently. The effect of kinship on plant performance differed between the tested populations in both species. A population produced more biomass than the other populations when grown with a stranger, and this trend was manifested more in native species. Our results support the hypothesis that invasive plants have better competitive ability than native plants, which potentially contributes to the establishment and the range expansion of T. officinale in the introduced range. Although kin recognition is expected to evolve in invasive species, the competitive ability of populations rather than kinship seems to affect plant growth of invasive T. officinale under intraspecific competition.  相似文献   

13.
Inbreeding may influence the intensity of sibling competition by altering the number of offspring produced or by changing plant morphology in ways that influence seed dispersion patterns. To test this possibility, effects of inbreeding on seed production and on traits that influence progeny density were measured using experimental pollinations of flowers of Cakile edentula var. lacustris. Different flowers on a plant were either hand pollinated with self pollen (with and without emasculation) or foreign pollen, or they were allowed to be pollinated naturally. Selfed flowers matured significantly fewer viable seeds than outcrossed flowers (10.3% less seed maturation with inbreeding depression of 19.2%), due in large part to a greater percentage of proximal seed abortions and lower germination success. Plants grown from selfed seeds tended to have lower seed production (37 fewer seeds on average, with inbreeding depression of 16.2%), caused in part by an increase in the percentage of fruits with proximal seed abortions, although this effect was not significant. Inbreeding depression in total fitness was 29.0%, which corresponds to a difference of 46 seeds per pollinated ovule. Selfing rate estimates were usually intermediate to high, indicating that inbreeding effects observed in this study would be present in naturally pollinated progeny. Although the influence of inbreeding directly on dispersal was negligible, the predicted reduction in sibling competition caused by reduced seed production resulted in an estimate of inbreeding depression of 17.5%, which is 11.5% lower than that measured under uniform conditions. Consequently, inbreeding depression estimated under natural dispersion patterns may be lower than that estimated under uniform conditions since seeds from self- and cross-pollination may not experience the same competitive environment in the field. Inbreeding in the maternal generation, therefore, could influence progeny fitness not only by determining the genetic composition of progeny, but also by influencing the competitive environment in which progeny grow.  相似文献   

14.
Studies were conducted to examine the effects of sand burial on the growth and reproduction of Cakile edentula under controlled greenhouse conditions Sand burial enhanced both the vegetative growth and reproduction of plants Within one week after burial, plants showed a significant increase in the length of the internode just below the current sand surface This response was not mediated by the dark conditions imposed by sand burial About two weeks after burial, adventitious roots grew upwards into the deposited sand Plants buried in washed sand did not differ in their dry weight whereas those buried in unwashed sand were significantly taller, produced greater biomass and larger number of seeds per plant than control However, the mean mass per fruit and per seed were not altered The frequency distribution of fruit and seed was only slightly modified by the burial treatments  相似文献   

15.
The ability to recognize kin is an important element in social behavior and can lead to the evolution of altruism. Recently, it has been shown that plants are capable of kin recognition through root interactions. Here we tested for kin recognition in a North American species of Impatiens that has a high opportunity of growing with kin and responds strongly to aboveground competition. We measured how the plants responded to the aboveground light quality cues of competition and to the presence of root neighbors and determined whether the responses depended on whether the neighbors were siblings or strangers. The study families were identified by DNA sequencing as members of the same species, provisionally identified as Impatiens pallida (hereafter I. cf. pallida). We found that I. cf. pallida plants were capable of kin recognition, but only in the presence of another plant's roots. Several traits responded to relatedness in shared pots, including increased leaf to root allocation with strangers and increased stem elongation and branchiness in response to kin, potentially indicating both increased competition toward strangers and reduced interference (cooperation) toward kin. Impatiens cf. pallida responded to both competition cues simultaneously, with the responses to the aboveground competition cue dependent on the presence of the belowground competition cue.  相似文献   

16.
In hermaphroditic plants, the effect of a social environment on sex allocation has not been studied to our knowledge, while in hermaphroditic animals such effects are known to be common. In recent years, studies on root competition beyond the effects of nutrients have shown that plants can respond to their conspecific root competitors (social environment), making it interesting to ask if these effects could also influence sex allocation in addition to more commonly studied factors, such as plant size or resources. In this study on hermaphroditic Viola tricolor, we investigated how plant size, soil nutrients and presence of a root competitor influenced allocation to pollen competitive ability versus seed production, i.e. male and female reproductive functions. We allowed plants to grow in pairs with partly intermingled or separate roots in the same amount of soil. In additional treatments with intermingled roots (as part of the same experiment) one of the two competitors was given combinations of nitrogen (N), phosphorous (P) and micro nutrients. We found that pollen performance but not seed production increased when plants were in contact in the soil. Additionally, pollen performance was negatively correlated to plant size across fertilisation treatments. For seed production, the opposite relation to plant size was seen, indicating that large, fertilized plants invest relatively more in the female function. In conclusion, in violets, sex allocation appears to be size‐dependent and influenced by both the presence of a root competitor and by nutrients. These results suggest that social environment can influence sex allocation in plants as well as in animals, indicating that such effects are important to consider in sex allocation studies across taxa.  相似文献   

17.
Many woody plant species in fire disturbed communities survive disturbance events by resprouting. The resprouting life history is predicted to be costly to plants as resources are diverted into storage for post-fire regrowth rather than allocated to current growth, and resprouting species typically grow more slowly than seeder species (species that do not resprout after disturbance events). Differences in allocation to current growth are also predicted to make resprouter species poorer competitors compared to seeder species. We tested the predictions that the evolution of a resprouter life history is associated with slow growth, increased allocation to storage, and low competitive ability in woody plant seedlings. We grew eight phylogenetically independent pairs of seeder and resprouter species in competition and no competition treatments in a field experiment near Sydney, Australia. The presence of competitors reduced plant growth rates across taxa and fire response life histories. However, relative to seeder species, resprouter species were not slower growing, they did not allocate more resources to storage, and they did not have lower competitive abilities. We propose that differences in resource allocation to storage are not responsible for differences in growth rate and competitive ability. Rather, growth rate and competitive ability in seedlings are associated with key aspects of plant life history such as life-span and body size at maturity. These traits that are sometimes, but not always, related to fire response life histories.  相似文献   

18.
为探明作物是否具有识别邻株身份的能力以及这种能力是否受到环境因子的调控,通过大田试验,研究邻株身份(亲缘株、非亲缘株和陌生株)、种植密度和土壤养分水平的交互效应对谷子(Setaria italica)地上部分生物量分配的影响。结果表明,谷子与亲缘株为邻时的净繁殖生物量分配和种子生物量分配,比与非亲缘株为邻时显著提高,且营养生物量分配显著降低(P<0.05)。在高种植密度条件下,亲缘组谷子的穗长、净繁殖生物量分配和种子生物量分配显著大于非亲缘组,而营养生物量分配显著小于非亲缘组(P<0.05)。随着土壤养分水平提高,亲缘组谷子的种子生物量分配显著增加,营养生物量分配显著减少(P<0.05)。由此推断,谷子具有对亲缘邻株的识别能力,且这种能力受种植密度和土壤养分水平的调控,在高种植密度和高土壤养分水平条件下,谷子的亲缘邻株识别能力较强。  相似文献   

19.
C. Houssard  J. Escarré 《Oecologia》1991,86(2):236-242
Summary The effects of seed size on growth, biomass allocation and competitive ability of Rumex acetosella plants grown either individually or in competition were studied in two populations (6 months and 15 years old respectively) sampled from a postcultivation successional gradient. For plants grown individually there were highly significant effects of seed weight on growth after 43 days, with a higher relative growth rate (RGR) observed for plants raised from heavier seeds. However at the end of the experiment, seedlings developed from lighter seeds had a RGR 2 times greater than those from heavier seeds. Final biomass of the two types was not significantly different after 73 days of growth. When plants were grown individually, there were only slight differences between populations, but when grown in monocultures of 4 plants per pot, plants from the old population had higher root and leaf biomass per pot whereas those from the young population had a higher reproductive effort per pot. This suggests that a trade-off between allocation to sexual and vegetative reproduction occurs over successional time. In mixtures of light and heavy seeds, plants from light seeds were shorter, had fewer leaves and lower biomass than plants from heavy seeds, which were also taller and produced more dry matter than plants grown from heavy seeds in monoculture. The significant effects of seed weight and population on biomass parameters persisted unit the end of the experiment. Seedlings from heavy seeds were strong competitors: those from the young population grew better in the presence of neighbors than in monoculture and those from the late successional population suppressed the more the growth of their partners. Seedlings from light seeds were subordinate competitors. These results suggest that seedlings from seeds of different sizes benefit from contrasting ecological conditions and that selection acts on reproductive output along successional gradients.  相似文献   

20.
The factors influencing the allocation of chemical defences to plant offspring have largely been unexplored, conceptually and experimentally. Because evolutionary interactions between maternal plants and their progeny can affect resource allocation patterns among sibling offspring, we suggest that kin conflict as well as herbivore–plant interaction theories need to be considered to predict chemical defence allocation patterns. Optimal defence theory predicts that maternal plants should defend more heavily those offspring in which resources have been disproportionately invested. In contrast, kin conflict theory predicts that natural selection will favour genotypes that can compete successfully for maternal defences irrespective of their quality, even at the expense of the fitness of siblings and the maternal plant. Evidence for these defence patterns were evaluated by examining the allocation of furanocoumarins to seeds of the wild parsnip (Pastinaca sativa, Apiaceae). Furanocoumarins are toxins that are localized within the oil tubes of the maternal tissues of seeds. We evaluated the role of offspring investment (endosperm mass) and seed genotype on furanocoumarin allocation by mating an array of pollen donors with pollen recipients. Furanocoumarins were found to be positively correlated with endosperm mass on one side of the seed, a result consistent with optimal defence theory; however, on the other side of the seed, furanocoumarin content was influenced by seed genotype and was unrelated to endosperm mass. These effects varied with maternal plant. Further experiments demonstrated that nearly 80% of furanocoumarin production occurs after pollination, when fertilization products are active. Although the amount of furanocoumarin influenced by the seed genotype is small relative to the total quantity in the seed, these furanocoumarins are the first line of defence against important predators, such as the parsnip webworm, Depressaria pastinacella (Lepidoptera: Oecophoridae). We found that parsnip webworm larvae were able to discriminate among genotypes within an inflorescence. In line with previous studies, these results suggest that a genotype's ability to influence furanocoumarin defence may affect its probability of survival. We conclude that the distribution of defences among plant offspring in wild parsnip is probably influenced by competition among seed genotypes that conflicts with maternal optimal defence. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号