首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lipoprotein particles are commonly known as micellar aggregates with hydrophobic lipids located within the core and amphipathic molecules in the surface. Using a new structural model for optimizing the distribution of hydrophobic lipids, namely triglyceride (TG) and cholesterol ester (CE) molecules, we reveal that particle size-dependent proportion of these 'core lipids' may locate in the surface of lipoprotein particles. The composition of the particles also strongly influences the actual molecular content of the surface. For example, in high-density lipoprotein (HDL) particles the percentage of CEs of all surface lipids is between 13% and 27% due to the high tendency of CEs to locate in the surface and the high concentration of CEs in the particles. Conversely, although the percentage of TG molecules in the surface of HDL particles is also high, approximately 60% as for CE, the percentage of TGs of all surface lipids is low, only up to 5%, because HDL particles have a low-TG concentration. These structural models provide an intuitive and coherent structural rationale for various metabolic cascades in lipoprotein metabolism with the catalytic enzyme action and molecular binding for transport proteins taking place at the surface of the particles.  相似文献   

2.
Survivors of childhood acute lymphoblastic leukemia (ALL) have an increased risk of cardiovascular disease. Small density lipoproteins are atherogenic but have not been studied in this population. We conducted a cross-sectional analysis of 110 ALL survivors (mean age, 24.3 years) to determine prevalence of small dense LDL (pattern B) phenotype in ALL survivors and identify associated factors. Lipid subfractions were measured using Vertical Auto Profile-II. Participants with greater than 50% of LDL-cholesterol (LDL-c) in small dense LDL fractions (LDL3+4) were classified as LDL pattern B. Visceral and subcutaneous adipose tissue (VAT, SAT) volumes were also measured by computed tomography. While the mean LDL-c level of ALL survivors was 108.7 ± 26.8 mg/dl, 36% (40/110) of survivors had atherogenic LDL pattern B. This pattern was more common in males (26/47; 55%) than in females (14/63; 22%, P = 0.001) and more common in survivors treated with cranial radiotherapy (15/33; 45%) than in those who were treated with chemotherapy alone (25/77; 33%; P = 0.04, adjusted for age, gender, history of hypertension, and smoking history). VAT was associated with atherogenic lipids: LDL pattern B and LDL3+4 levels. This association was independent of other measures of body fat. We conclude that a substantial proportion of ALL survivors had an atherogenic LDL phenotype despite normal mean LDL-c levels. An atherogenic LDL phenotype may contribute to the increase in cardiovascular mortality and morbidity in this population.  相似文献   

3.
The systems-level analysis of microbes with myriad of heterologous data generated by omics technologies has been applied to improve our understanding of cellular function and physiology and consequently to enhance production of various bioproducts. At the heart of this revolution residesin silico genome-scale metabolic model. In order to fully exploit the power of genome-scale model, a systematic approach employing user-friendly software is required. Metabolic flux analysis of genome-scale metabolic network is becoming widely employed to quantify the flux distribution and validate model-driven hypotheses. Here we describe the development of an upgraded MetaFluxNet which allows (1) construction of metabolic models connected to metabolic databases, (2) calculation of fluxes by metabolic flux analysis, (3) comparative flux analysis with flux-profile visualization, (4) the use of metabolic flux analysis markup language to enable models to be exchanged efficiently, and (5) the exporting of data from constraints-based flux analysis into various formats. MetaFluxNet also allows cellular physiology to be predicted and strategies for strain improvement to be developed from genome-based information on flux distributions. This integrated software environment promises to enhance our understanding on metabolic network at a whole organism level and to establish novel strategies for improving the properties of organisms for various biotechnological applications.  相似文献   

4.
To understand the complex relationships that exist between ant assemblages and their habitats, we performed a self-organizing map (SOM) analysis to clarify the interactions among ant diversity, spatial distribution, and land use types in Fukuoka City, Japan. A total of 52 species from 12 study sites with nine land use types were collected from 1998 to 2012. A SOM was used to classify the collected data into three clusters based on the similarities between the ant communities. Consequently, each cluster reflected both the species composition and habitat characteristics in the study area. A detrended correspondence analysis (DCA) corroborated these findings, but removal of unique and duplicate species from the dataset in order to avoid sampling errors had a marked effect on the results; specifically, the clusters produced by DCA before and after the exclusion of specific data points were very different, while the clusters produced by the SOM were consistent. In addition, while the indicator value associated with SOMs clearly illustrated the importance of individual species in each cluster, the DCA scatterplot generated for species was not clear. The results suggested that SOM analysis was better suited for understanding the relationships between ant communities and species and habitat characteristics.  相似文献   

5.
6.
This study describes a variant of familial apoA-I deficiency associated with a moderate risk for premature coronary artery disease. The proband, a 25-year-old man of Philippine origin, and his 62-year-old maternal aunt had peripheral corneal opacification, xanthelasma, and planar xanthoma; the aunt had coronary artery bypass surgery at 61 years of age. Proband's parents and three brothers were asymptomatic and apparently healthy. The characteristic apolipoprotein features of affected patients were the immunochemically and chemically undetectable apoA-I, reduced levels of apoA-II, apoC-II, apoC-III, and apoD, and normal levels of apoB and apoE; except for negligible levels of high density lipoprotein (HDL)-cholesterol (2-3 mg/dl), their plasma lipid profile was normal. The apoA-I levels in all five unaffected relatives were more than one SD below the normal mean values for their age and sex; the HDL-cholesterol levels of proband's unaffected brothers were below the 10th percentile of normal control values. Patient's very low density lipoprotein (VLDL), low density lipoprotein (LDL), and HDL contained 1.4, 80.4, and 18.1%, whereas those of control subjects contained 2.7, 28.8, and 68.1% of the total apolipoprotein mass, respectively. In unaffected relatives, the levels of LP-A-I, but not LP-A-I:A-II, were significantly lower than in controls. Neither of the two patients had detectable concentrations of LP-A-I or LP-A-I:A-II. Their HDL only consisted of LP-A-II particles, the levels of which (7-13 mg/dl) were similar to those of unaffected relatives or controls. There was no difference in the lipid composition of LP-A-II between patients and their relatives. However, LP-A-II from patients contained substantial amounts of apoC-peptides and apoE (0.40-0.98 mg/mg apoA-II), whereas those from unaffected relatives were free of these minor apolipoproteins. In patients, among all four major apoB-containing lipoproteins, only the levels of LP-B and LP-B:C were slightly higher than those in controls. Results of this study suggest a genetic cause for this variant of apoA-I deficiency characterized most probably by autosomal recessive inheritance. It appears that patients are likely to be homozygous for a gene present in single dose in the parents and brothers of the affected proband.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Our aim was to characterize HDL subspecies and fat-soluble vitamin levels in a kindred with familial apolipoprotein A-I (apoA-I) deficiency. Sequencing of the APOA1 gene revealed a nonsense mutation at codon -2, Q[-2]X, with two documented homozygotes, eight heterozygotes, and two normal subjects in the kindred. Homozygotes presented markedly decreased HDL cholesterol levels, undetectable plasma apoA-1, tuboeruptive and planar xanthomas, mild corneal arcus and opacification, and severe premature coronary artery disease. In both homozygotes, analysis of HDL particles by two-dimensional gel electrophoresis revealed undetectable apoA-I, decreased amounts of small alpha-3 migrating apoA-II particles, and only modestly decreased normal amounts of slow alpha migrating apoA-IV- and apoE-containing HDL, while in the eight heterozygotes, there was loss of large alpha-1 HDL particles. There were no significant decreases in plasma fat-soluble vitamin levels noted in either homozygotes or heterozygotes compared with normal control subjects. Our data indicate that isolated apoA-I deficiency results in marked HDL deficiency with very low apoA-II alpha-3 HDL particles, modest reductions in the separate and distinct plasma apoA-IV and apoE HDL particles, tuboeruptive xanthomas, premature coronary atherosclerosis, and no evidence of fat malabsorption.  相似文献   

8.
The objective of the present study was to compare energy substrate fluxes through metabolic pathways leading to mitochondrial citrate synthesis and release in normal and diseased rat hearts using 13C-substrates and mass isotopomer analysis by gas chromatography-mass spectrometry (GCMS). This study was prompted by our previous finding of a modulated citrate release by perfused rat hearts and by the possibility that a dysregulated myocardial citrate release represents a specific chronic alteration of energy metabolism in cardiac patients. The 15-week-old spontaneously hypertensive rat (SHR) was chosen as our animal model of disease and the Wistar-Kyoto (WKY) rat as its matched control. Ex vivo work-performing hearts were perfused with a semi-recirculating buffer containing physiological concentrations of unlabeled (glucose) and 13C-labeled ([U-13C3](lactate + pyruvate) and/or [1-13C]oleate) substrates. In parallel to the continuous monitoring of indices of the heart's functional and physiological status, the following metabolic parameters were documented: (i) citrate release rates and citric acid cycle intermediate tissue levels, (ii) the contribution of fatty acids as well as pyruvate decarboxylation and carboxylation to citrate synthesis, and (iii) lactate and pyruvate uptake and efflux rates. Working hearts from both rat species showed a similar percent contribution of carbohydrates for citrate synthesis through decarboxylation (70%) and carboxylation (10%). SHR hearts showed the following metabolic alterations: a higher citrate release rate, which was associated with a parallel increase in its tissue level, a lower contribution of oleate -oxidation to citrate synthesis, and an accelerated efflux rate of unlabeled lactate from glycolysis. These metabolic changes were not explained by differences in myocardial oxygen consumption, cardiac performance or efficiency, nor correlated with indices of tissue necrosis or ischemia. This study demonstrates how the alliance between ex vivo semi-recirculating working perfused rat hearts with 13C-substrates and mass isotopomer analysis by GCMS, can provide an unprecedented insight into the metabolic phenotype of normal and diseased rat hearts. The clinical relevance of metabolic alterations herein documented in the SHR heart is suggested by its resemblance to those reported in cardiac patients. Taken altogether, our results raise the possibility that the increased citrate release of diseased hearts results from an imbalance between citrate synthesis and utilization rates, which becomes more apparent under conditions of substrate abundance.  相似文献   

9.
The techniques of NMR spectroscopy and molecular genetics have provided new and powerful approaches to studying the control and organisation of cellular metabolism in vivo. We review here our recent applications of these methodologies to the study of energy metabolism in yeast and mammalian cells. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
Understanding altered metabolism is an important issue because altered metabolism is often revealed as a cause or an effect in pathogenesis. It has also been shown to be an important factor in the manipulation of an organism's metabolism in metabolic engineering. Unfortunately, it is not yet possible to measure the concentration levels of all metabolites in the genome‐wide scale of a metabolic network; consequently, a method that infers the alteration of metabolism is beneficial. The present study proposes a computational method that identifies genome‐wide altered metabolism by analyzing functional units of KEGG pathways. As control of a metabolic pathway is accomplished by altering the activity of at least one rate‐determining step enzyme, not all gene expressions of enzymes in the pathway demonstrate significant changes even if the pathway is altered. Therefore, we measure the alteration levels of a metabolic pathway by selectively observing expression levels of significantly changed genes in a pathway. The proposed method was applied to two strains of Saccharomyces cerevisiae gene expression profiles measured in very high‐gravity (VHG) fermentation. The method identified altered metabolic pathways whose properties are related to ethanol and osmotic stress responses which had been known to be observed in VHG fermentation because of the high sugar concentration in growth media and high ethanol concentration in fermentation products. With the identified altered pathways, the proposed method achieved best accuracy and sensitivity rates for the Red Star (RS) strain compared to other three related studies (gene‐set enrichment analysis (GSEA), significance analysis of microarray to gene set (SAM‐GS), reporter metabolite), and for the CEN.PK 113‐7D (CEN) strain, the proposed method and the GSEA method showed comparably similar performances. Biotechnol. Bioeng. 2009;103: 835–843. © 2009 Wiley Periodicals, Inc.  相似文献   

11.
Biochemical network reconstructions represent valuable tools for the computational metabolic modeling of organisms that present a great biotechnological interest. An in silico multi-compartmental model of the central metabolism of the plant Brassica napus (Rapeseed) was constructed, aiming to investigate the metabolic properties of the Brassicaceae family. This family comprises many plants with major importance for the energy and nutrition sector, including the model plant Arabidopsis thaliana. The model utilized as objective function to be subsequently optimized, the biomass production of rapeseed developing embryos, which are characterized by a very high, oil content, up to 60% of biomass weight. In order to study global network properties of seed metabolism, various methods were employed, like Flux Balance Analysis, Principal Component Analysis of the flux space and reaction deletion studies, which simulate the effect of gene knock-out experiments. The model successfully simulated seed growth during the stage of oil accumulation and provided insight, regarding certain aspects of network plasticity, with the emphasis given in lipid biosynthesis regulation.  相似文献   

12.
In this study, an in silico approach was developed to identify homologies existing between livestock microsatellite flanking sequences and GenBank nucleotide sequences. Initially, 1955 bovine, 1570 porcine and 1121 chicken microsatellites were downloaded and the flanking sequences were compared with the nr and dbEST databases of GenBank. A total of 74 bovine, 44 porcine and 37 chicken microsatellite flanking sequences passed our criteria and had at least one significant match to human genomic sequence, genes/expressed sequence tags (ESTs) or both. GenBank annotation and BLAT searches of the UCSC human genome assembly revealed that 38 bovine, 13 porcine and 17 chicken microsatellite flanking sequences were highly similar to known human genes. Map locations were available for 67 bovine, 44 porcine and 21 chicken microsatellite flanking sequences, providing useful links in the comparative maps of humans and livestock. In support of our approach, 112 alignments with both microsatellite and match mapping information were located in the expected chromosomal regions based on previously reported syntenic relationships. The development of this in silico mapping approach has significantly increased the number of genes and EST sequences anchored to the bovine, porcine and chicken genome maps and the number of links in various human-livestock comparative maps.  相似文献   

13.
Two new concepts, "Limitation Potential" and "Constraint Limitation Sensitivity" are introduced that use definitions derived from metabolic flux analysis (MFA) and metabolic network analysis (MNA). They are applied to interpret a measured flux distribution in the context of all possible flux distributions and thus combine MFA with MNA. The proposed measures are used to quantify and compare the influence of intracellular fluxes on the production yield. The methods are purely based on the stoichiometry of the network and constraints that are given from irreversible fluxes. In contrast to metabolic control analysis (MCA), within this approach no information about the kinetic mechanisms are needed. A limitation potential (LP) is defined as the reduction of the reachable (theoretical) maximum by a measured flux. Measured fluxes that strongly narrow the reachable maximum are assumed to be limiting as the network has no ability to counterbalance the restriction due to the observed flux. In a second step, the sensitivity of the reduced maximum is regarded. This measure provides information about the necessitated changes to reach higher yields. The methods are applied to interpret the capabilities of a network based on measured fluxes for a L-phenylalanine producer. The strain was examined by a series of experiments and three flux maps of the production phase are analyzed. It can be shown that the reachable yield is drastically reduced by the measured efflux into the TCA cycle, while the oxidative pentose-phosphate pathway only plays a secondary role on the reachable maximum.  相似文献   

14.
15.
Sciatic nerve from streptozotocin-induced diabetic rats has previously been shown to incorporate more 32P into phosphatidylinositol-4,5-bisphosphate (PIP2) and the principal myelin proteins than normal nerve. In the present study, labeling of ATP and PIP2 was compared. Using nerve segments, [gamma-32P]ATP specific activity reached a plateau after incubation for 4 h with [32P]orthophosphate, whereas the specific activity of [32P]PIP2 rose much more slowly and was still increasing after 8 h. The rate of disappearance of radioactivity from prelabeled ATP was biphasic, with 75% being lost within 30 min and the remainder declining much more slowly for several hours thereafter. In contrast, no decrease in prelabeled PIP2 radioactivity could be detected for up to 4 h. The kinetics of ATP metabolism were not appreciably different for normal and diabetic nerve. However, after incubation with [32P]orthophosphate for 2 h, the specific activity of PIP2 was 50-120% higher in diabetic nerve. This phenomenon, therefore, cannot be ascribed to altered specific activity of the ATP precursor pool. Greater labeling of PIP2 in 32P-labeled diabetic nerve was present in purified myelin isolated using a simple discontinuous sucrose density gradient, but not in a "nonmyelin" fraction. When nerve homogenate was fractionated on a more complex gradient, three myelin-enriched subfractions were obtained which were heterogeneous as judged by morphological appearance, protein profile, and lipid metabolic activity. The proportion of total lipid radioactivity accounted for by PIP2 was elevated in all the subfractions relative to the homogenate. As compared to myelin subfractions from normal nerve, an increased percentage of 32P in PIP2 was obtained only in the major myelin subfraction from diabetic nerve. The phosphorylation of P0 relative to the other myelin proteins was also enhanced in this subfraction in nerve from diabetic animals.  相似文献   

16.
Today the importance of in silico experiment grows bigger than before by the advance of computing power. More detailed mathematical modeling handled by simulation can produce more reasonable and meaningful results. In this research, we suggest the metabolic network of Lactococcus lactis for aerobic condition. Using a mathematical model, we observed the effect of enzymes on lactate production using flux distribution analysis, metabolic control analysis, and in silico experiment by biochemical simulation software. Each analysis showed some different results because of their characteristics but some key enzymes for lactate production were found from them.  相似文献   

17.
Cancer metabolism has emerged as an indispensable part of contemporary cancer research. During the past 10 years, the use of stable isotopic tracers and network analysis have unveiled a number of metabolic pathways activated in cancer cells. Here, we review such pathways along with the particular tracers and labeling observations that led to the discovery of their rewiring in cancer cells. The list of such pathways comprises the reductive metabolism of glutamine, altered glycolysis, serine and glycine metabolism, mutant isocitrate dehydrogenase (IDH) induced reprogramming and the onset of acetate metabolism. Additionally, we demonstrate the critical role of isotopic labeling and network analysis in identifying these pathways. The alterations described in this review do not constitute a complete list, and future research using these powerful tools is likely to discover other cancer-related pathways and new metabolic targets for cancer therapy.  相似文献   

18.
In the field of functional genomics increasing effort is being undertaken to analyze the function of orphan genes using metabolome data. Improved analytical equipment allows screening simultaneously for a high number of metabolites. Such metabolite profiles are analyzed using multivariate data analysis techniques and changes in the genotype will in many cases lead to different metabolite profiles. Here, a theoretical framework that may be applied to identify the function of orphan genes is presented. The approach is based on a combination of metabolome analysis combined with in silico pathway analysis. Pathway analysis may be carried out using convex analysis and a change in the active pathway structure of deletion mutants expressed in a different metabolite profile may disclose the function or the functional class of an orphan gene. The concept is illustrated using a simplified model for growth of Saccharomyces cerevisiae.  相似文献   

19.
High plasma apolipoprotein B (apoB) and LDL cholesterol levels increase cardiovascular disease risk. These highly correlated measures may be partially controlled by common genetic polymorphisms. To identify chromosomal regions that contain genes causing low plasma levels of one or both parameters in Caucasian families ascertained for familial hypobetalipoproteinemia (FHBL), we conducted a whole-genome scan using 443 microsatellite markers typed in nine multigenerational families with at least two members with FHBL. Both variance components and regression-based linkage methods were used to identify regions of interest. Common linkage regions were identified for both measures on chromosomes 10q25.1-10q26.11 [maximum log of the odds (LOD) = 4.2 for LDL and 3.5 for apoB] and 6q24.3 (maximum LOD = 1.46 for LDL and 1.84 for apoB). There was also evidence for linkage to apoB on chromosome 13q13.2 (LOD = 1.97) and to LDL on chromosome 3p14.1 at 94 centimorgan (LOD = 1.52). Bivariate linkage analysis provided further evidence for loci contributing to both traits (6q24.3, LOD = 1.43; 10q25.1, LOD = 1.74). We evaluated single nucleotide polymorphisms (SNPs) in genes within our linkage regions to identify variants associated with apoB or LDL levels. The most significant finding was for rs2277205 in the 5' untranslated region of acyl-coenzyme A dehydrogenase short/branched chain and LDL (P = 10(-7)). Three additional SNPs were associated with apoB and/or LDL (P < 0.01). Although only the linkage signal on chromosome 10 reached genome-wide statistical significance, there are likely multiple chromosomal regions with variants that contribute to low levels of apoB and LDL and that may protect against coronary heart disease.  相似文献   

20.
Next-generation sequencing (NGS) technologies have enabled the application of broad-scale sequencing in microbial biodiversity and metagenome studies. Biodiversity is usually targeted by classifying 16S ribosomal RNA genes, while metagenomic approaches target metabolic genes. However, both approaches remain isolated, as long as the taxonomic and functional information cannot be interrelated. Techniques like self-organizing maps (SOMs) have been applied to cluster metagenomes into taxon-specific bins in order to link biodiversity with functions, but have not been applied to broad-scale NGS-based metagenomics yet. Here, we provide a novel implementation, demonstrate its potential and practicability, and provide a web-based service for public usage. Evaluation with published data sets mimicking varyingly complex habitats resulted into classification specificities and sensitivities of close to 100% to above 90% from phylum to genus level for assemblies exceeding 8 kb for low and medium complexity data. When applied to five real-world metagenomes of medium complexity from direct pyrosequencing of marine subsurface waters, classifications of assemblies above 2.5 kb were in good agreement with fluorescence in situ hybridizations, indicating that biodiversity was mostly retained within the metagenomes, and confirming high classification specificities. This was validated by two protein-based classifications (PBCs) methods. SOMs were able to retrieve the relevant taxa down to the genus level, while surpassing PBCs in resolution. In order to make the approach accessible to a broad audience, we implemented a feature-rich web-based SOM application named TaxSOM, which is freely available at http://www.megx.net/toolbox/taxsom. TaxSOM can classify reads or assemblies exceeding 2.5 kb with high accuracy and thus assists in linking biodiversity and functions in metagenome studies, which is a precondition to study microbial ecology in a holistic fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号