首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brown midrib mutants in maize are known to be associated with reduced lignin content and increased cell wall digestibility, which leads to better forage quality and higher efficiency of cellulosic biomass conversion into ethanol. Four well known brown midrib (bm) mutants, named bm1-4, were identified several decades ago. Additional recessive brown midrib mutants have been identified by allelism tests and designated as bm5 and bm6. In this study, we determined that bm6 increases cell wall digestibility and decreases plant height. bm6 was confirmed onto the short arm of chromosome 2 by a small mapping set with 181 plants from a F(2) segregating population, derived from crossing B73 and a bm6 mutant line. Subsequently, 960 brown midrib individuals were selected from the same but larger F(2) population for genetic and physical mapping. With newly developed markers in the target region, the bm6 gene was assigned to a 180?kb interval flanked by markers SSR_308337 and SSR_488638. In this region, ten gene models are predicted in the maize B73 sequence. Analysis of these ten genes as well as genes in the syntenic rice region revealed that four of them are promising candidate genes for bm6. Our study will facilitate isolation of the underlying gene of bm6 and advance our understanding of brown midrib gene functions.  相似文献   

2.
The brown-midrib mutants of maize have a reddish-brown pigmentation of the leaf midrib and stalk pith, associated with lignified tissues. These mutants progressively became models for lignification genetics and biochemical studies in maize and grasses. Comparisons at silage maturity of bm1, bm2, bm3, bm4 plants highlighted their reduced lignin, but also illustrated the biochemical specificities of each mutant in p-coumarate, ferulate ester and etherified ferulate content, or syringyl/guaiacyl monomer ratio after thioacidolysis. Based on the current knowledge of the lignin pathway, and based on presently developed data and discussions, C3H and CCoAOMT activities are probably major hubs in controlling cell-wall lignification (and digestibility). It is also likely that ferulates arise via the CCoAOMT pathway.  相似文献   

3.
4.

Background  

Silage maize is a major forage and energy resource for cattle feeding, and several studies have shown that lignin content and structure are the determining factors in forage maize feeding value. In maize, four natural brown-midrib mutants have modified lignin content, lignin structure and cell wall digestibility. The greatest lignin reduction and the highest cell wall digestibility were observed in the brown-midrib-3 (bm3) mutant, which is disrupted in the caffeic acid O-methyltransferase (COMT) gene.  相似文献   

5.
Mutations in the brown midrib4 (bm4) gene affect the accumulation and composition of lignin in maize. Fine‐mapping analysis of bm4 narrowed the candidate region to an approximately 105 kb interval on chromosome 9 containing six genes. Only one of these six genes, GRMZM2G393334, showed decreased expression in mutants. At least four of 10 Mu‐induced bm4 mutant alleles contain a Mu insertion in the GRMZM2G393334 gene. Based on these results, we concluded that GRMZM2G393334 is the bm4 gene. GRMZM2G393334 encodes a putative folylpolyglutamate synthase (FPGS), which functions in one‐carbon (C1) metabolism to polyglutamylate substrates of folate‐dependent enzymes. Yeast complementation experiments demonstrated that expression of the maize bm4 gene in FPGS‐deficient met7 yeast is able to rescue the yeast mutant phenotype, thus demonstrating that bm4 encodes a functional FPGS. Consistent with earlier studies, bm4 mutants exhibit a modest decrease in lignin concentration and an overall increase in the S:G lignin ratio relative to wild‐type. Orthologs of bm4 include at least one paralogous gene in maize and various homologs in other grasses and dicots. Discovery of the gene underlying the bm4 maize phenotype illustrates a role for FPGS in lignin biosynthesis.  相似文献   

6.
Brown-midrib (bm) mutants of maize have modified lignin of reddish-brown colour. Although four independent bm loci are known, only one of the mutant genes has been previously identified. We report here that maize bm1, one of the less characterised mutants, shows severely reduced CAD activity in lignified tissues, resulting in the production of a modified lignin. Both the total lignin content and the structure of the polymer are altered by the mutation. We further describe the isolation and characterisation of the maize CAD cDNA and mapping of the CAD gene. CAD maps very closely to the known location of bm1 and co-segregates with the bm1 locus in two independent recombinant inbred populations. These data strongly support the premise that maize bm1 directly affects expression of the CAD gene.  相似文献   

7.
To gain a better understanding of gene expression in bamboo (Bambusa edulis Murno), we have used a combination of suppressive subtractive hybridization (SSH), microarray hybridization analysis, sequencing, and bioinformatics to identify bamboo genes differentially expressed in a bamboo albino mutant. Ten expressed sequence tags (ESTs) were found to be differentially expressed; these were isolated and sequenced. RT-PCR analysis of these ESTs supported the results of the microarray analysis. Six ESTs that were nucleus-encoded exhibited differential expression patterns in the green wild-type bamboo relative to the albino mutant. These genes (exception being the Rubisco small subunit) were non-photosynthesis-related genes. The development of a specific SSH cDNA library in which most of the chloroplast-encoded or photosynthesis-related genes had been subtracted proved to be useful for studying the function of non-photosynthesis-related genes in the albino bamboo mutants with aberrant chloroplast genome. The combined use of this SSH library with microarray analysis will provide a powerful analytical tool for future studies of the bamboo genome.  相似文献   

8.
The baculovirus expression vector system (BEVS) is one of the powerful insect cell systems for heterologous protein expression. However, over-expression of heterologous proteins in this system sometimes results in protein misfolding and aggregation because of insufficient levels of folding catalysts. In previous study using the differential screening (DS) method, we isolated only 40 differentially expressed genes after treatment with tunicamycin, an unfolded protein response (UPR) inducer. To isolate more protein folding catalysts from insect, we performed suppressive subtractive hybridization (SSH) with untreated and tunicamycin-treated Bm5 cell lines in this study. We could isolate 366 differentially expressed clones by SSH method and produced expressed sequence tags (ESTs). ESTs included the UPR pathway-related genes involved in protein folding, including heat shock proteins, molecular chaperones, foldases, as well as glycosylation and secretory pathway related genes. Identification of the tunicamycin responsive genes using SSH provides more information about the UPR-related genes in insect cells, and will facilitate modifications of the protein folding pathway in the ER to improve heterologous protein expression.  相似文献   

9.
10.
Fusarium verticillioides produces a group of mycotoxins known as fumonisins that are associated with a variety of mycotoxicoses in humans and animals. In this study, DNA microarrays were constructed with expressed sequence tags (ESTs) from F. verticillioides. To identify genes with patterns of expression similar to the fumonisin biosynthetic (FUM) genes, the microarray was probed with labeled cDNAs originating from a wild-type strain and a fcc1 mutant grown on maize and in a defined medium adjusted to either pH 3 or pH 8. The comparative analyses revealed differential expression of genes corresponding to 116 ESTs when the fungal strains were grown on maize. Under different pH conditions, 166 ESTs were differentially expressed, and 19 ESTs were identified that displayed expression patterns similar to the FUM ESTs. These results provide candidate genes with potential roles in fumonisin biosynthesis.  相似文献   

11.
The brown midrib mutations are among the earliest described in maize. Plants containing a brown midrib mutation exhibit a reddish brown pigmentation of the leaf midrib starting when there are four to six leaves. These mutations are known to alter lignin composition and digestibility of plants and therefore constitute prime candidates in the breeding of silage maize. Here, we show that two independent brown midrib3 (bm3) mutations have resulted from structural changes in the COMT gene, which encodes the enzyme O-methyltransferase (COMT; EC 2.1.1.6), involved in lignin biosynthesis. Our results indicate that the bm3-1 allele (the reference mutant allele) has arisen from an insertional event producing a COMT mRNA altered in both size and amount. By sequencing a COMT cDNA clone obtained from bm3-1 maize, a retrotransposon with homology to the B5 element has been found to be inserted near the junction of the 3' coding region of the COMT gene intron. The second bm3 allele, bm3-2, has resulted from a deletion of part of the COMT gene. These alterations of the COMT gene were confirmed by DNA gel blot and polymerase chain reaction amplification analyses. These results clearly demonstrate that mutations at the COMT gene give a brown midrib3 phenotype. Thus, the gene genetically recognized as bm3 is the same as the one coding for COMT.  相似文献   

12.
13.
14.
小麦抗病基因表达谱中的文库构建与筛选方法研究   总被引:23,自引:1,他引:23  
以抗白粉病品系“百农 32 17×Mardler”BC5F4为材料 ,构建了白粉病菌诱导的普通cDNA文库和抑制消减杂交(SSH)cDNA文库。分别对两文库进行了一定规模的测序 ,获得普通cDNA文库不重复ESTs 387条和SSHcDNA文库ESTs 76 0条。将获得的ESTs与GenBank序列进行了BLASTn、BLASTx同源性分析。结果表明 :在普通文库中 ,一些参与光合作用与核糖体构成等的基因出现频率较高 ,而获得的抗病相关基因则较少。消减文库在构建方法、抗病相关基因的富集等方面具有明显的优越性 ,是目前抗病基因表达谱研究中的较好方法。利用高密度点阵膜杂交技术对两文库的筛选结果表明 ,该方法具有相对简便易操作、杂交膜可反复使用等优点 ;但也存在mRNA及同位素用量大等问题。经筛选 ,消减文库中有 5 4 1%的功能已知ESTs为抗病相关基因 ,被证明参与了小麦抗白粉病反应  相似文献   

15.
Polymorphisms within three candidate genes for lignin biosynthesis were investigated to identify alleles useful for the improvement of maize digestibility. The allelic diversity of two caffeoyl-CoA 3-O-methyltransferase genes, CCoAOMT2 and CCoAOMT1, as well as that of the aldehyde O-methyltransferase gene, AldOMT, was evaluated for 34 maize lines chosen for their varying degrees of cell wall digestibility. Frequency of nucleotide changes averaged one SNP every 35 bp. Ninety-one indels were identified in non-coding regions and only four in coding regions. Numerous distinct and highly diverse haplotypes were identified at each locus. Numerous sites were in linkage disequilibrium that declined rapidly within a few hundred bases. For F4, an early flint French line with high cell wall digestibility, the CCoAOMT2 first exon presented many non-synonymous polymorphisms. Notably we found an 18-bp indel, which resembled a microsatellite and was associated with cell wall digestibility variation. Additionally, the CCoAOMT2 gene co-localized with a QTL for cell wall digestibility and lignin content. Together, these results suggest that genetic diversity investigated on a broader genetic basis could contribute to the identification of favourable alleles to be used in the molecular breeding of elite maize germplasm.  相似文献   

16.
Sugar beet root maggot (SBRM, Tetanops myopaeformis von Röder) is a major but poorly understood insect pest of sugar beet (Beta vulgaris L.). The molecular mechanisms underlying plant defense responses are well documented, however, little information is available about complementary mechanisms for insect adaptive responses to overcome host resistance. To date, no studies have been published on SBRM gene expression profiling. Suppressive subtractive hybridization (SSH) generated more than 300 SBRM ESTs differentially expressed in the interaction of the pest with a moderately resistant (F1016) and a susceptible (F1010) sugar beet line. Blast2GO v. 3.2 search indicated that over 40% of the differentially expressed genes had known functions, primarily driven by fruit fly D. melanogaster genes. Expression patterns of 18 selected EST clones were confirmed by RT‐PCR analysis. Gene Ontology (GO) analysis predicted a dominance of metabolic and catalytic genes involved in the interaction of SBRM with its host. SBRM genes functioning during development, regulation, cellular process, signaling and under stress conditions were annotated. SBRM genes that were common or unique in response to resistant or susceptible interactions with the host were identified and their possible roles in insect responses to the host are discussed.  相似文献   

17.
18.
19.
To investigate the molecular mechanisms of Al toxicity, cross-species cDNA array approach was employed to identify expressed sequence tags (ESTs) regulated by Al stress in root tips of Al-tolerant maize (Zea mays) genotype Cat100-6 and Al-sensitive genotype S1587-17. Due to the high degree of conservation observed between sugarcane and maize, we have analyzed the expression profiling of maize genes using 2 304 sugarcane (ESTs) obtained from different libraries. We have identified 85 ESTs in Al stressed maize root tips with significantly altered expression. Among the up-regulated ESTs, we have found genes encoding previously identified proteins induced by Al stress, such as phenyl ammonia-lyase, chitinase, Bowman-Birk proteinase inhibitor, and wali7. In addition, several novel genes up-and downregulated by Al stress were identified in both genotypes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号