首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A stable social group of 7 semifree-ranging black-and-white ruffed lemurs (Varecia variegata variegata) was studied for 4 months to catalog the behavioral repertoire of this species. Observations focussed on particular aspects of behavior were conducted before and after this 4-month period to supplement information gathered. Behavior in 11 major categories is detailed: postures, terrestrial locomotion, arboreal locomotion, feeding behavior, vocalizations, scent-marking, affinitive social behavior, agonistic social behavior, play behavior, sexual behavior, and parental behavior. Ruffed lemurs frequently used body positions and locomotor patterns unusual among lemurids, including bipedal hanging and long-descent leaps. These behaviors reinforce dental evidence that Varecia are among the most frugivorous of the Malagasy lemurs. Low intragroup cohesion, infrequent social interaction, and antiphonal use of several long-distance vocalizations suggest that ruffed lemurs naturally exhibit fission-fusion sociality. Social structure based on interindividual familiarity probably extends across foraging parties for several of the diurnally active lemurs; however, thus far only Varecia seems likely to exhibit fission-fusion sociality analogous to that seen in spider monkeys and chimpanzees.  相似文献   

2.
Over the last 90 years, Eocene and Oligocene aged sediments in the Fayum Depression of Egypt have yielded at least 17 genera of fossil primates. However, of this diverse sample the diets of only four early Oligocene anthropoid genera have been previously studied using quantitative methods. Here we present dietary assessments for 11 additional Fayum primate genera based on the analysis of body mass and molar shearing crest development. These studies reveal that all late Eocene Fayum anthropoids were probably frugivorous despite marked subfamilial differences in dental morphology. By contrast, late Eocene Fayum prosimians demonstrated remarkable dietary diversity, including specialized insectivory (Anchomomys), generalized frugivory (Plesiopithecus), frugivory+insectivory (Wadilemur), and strict folivory (Aframonius). This evidence that sympatric prosimians and early anthropoids jointly occupied frugivorous niches during the late Eocene reinforces the hypothesis that changes in diet did not form the primary ecological impetus for the origin of the Anthropoidea. Early Oligocene Fayum localities differ from late Eocene Fayum localities in lacking large-bodied frugivorous and folivorous prosimians, and may document the first appearance of primate communities with trophic structures like those of extant primate communities in continental Africa. A similar change in primate community structure during the Eocene-Oligocene transition is not evident in the Asian fossil record. Putative large anthropoids from the Eocene of Asia, such as Amphipithecus mogaungensis, Pondaungia cotteri, and Siamopithecus eocaenus, share with early Oligocene Fayum anthropoids derived features of molar anatomy related to an emphasis on crushing and grinding during mastication. However, these dental specializations are not seen in late Eocene Fayum anthropoids that are broadly ancestral to the later-occurring anthropoids of the Fayum's upper sequence. This lack of resemblance to undisputed Eocene African anthropoids suggests that the "progressive" anthropoid-like dental features of some large-bodied Eocene Asian primates may be the result of dietary convergence rather than close phyletic affinity with the Anthropoidea.  相似文献   

3.
We collected data during a 10-month study carried out on the mongoose lemur, Eulemur mongoz, at Anjamena in northwestern Madagascar, which provide baseline information on seasonal variation in the ecology, home range use and some aspects of the behavior of two neighboring groups. We monitored group size of nine groups in the study area and assessed them for seasonal variation. We present additional information collected during short-term surveys in other areas before and during the study for comparison. The study groups were small family units, and changes in group size were limited to births and emigrations of sexually mature progeny. In spite of clear seasonal changes in climate and vegetation, there is no variation in grouping patterns, so it is not possible to correlate variation in group size with seasonal variation of ecological variables. Comparison with ecological data from other field studies on lemurids reveals differences in food resource distribution in western forests versus other types of Malagasy forest. This distribution of food resources may predict home range size in mixed frugivorous–folivorous lemurs. Small home ranges, mainly in the West, could be correlated with a uniform distribution of food resources. Finally, we suggest that the dry season in the West may not present frugivorous–folivorous lemurs with major problems in finding an adequate food supply. This is supported by the lack of seasonal differences in ranging behavior of mongoose lemurs.  相似文献   

4.
Primate responses to habitat alteration vary depending on the species’ dietary guild and forest type. Leaves from secondary vegetation can provide nutritious resources to folivorous primates, whereas frugivores, burdened with a scattered spatial and temporal distribution of fruiting resources, require larger home ranges, potentially limiting their ability to cope with altered landscapes. Within coastal southeastern Madagascar, we sought to determine whether two lemur species occupying contrasting ecological niches respond differently to the changing features of their degraded and fragmented habitat. We conducted behavioral observations between 2011 and 2013 on frugivorous collared brown lemurs (Eulemur collaris) and folivorous southern bamboo lemurs (Hapalemur meridionalis). To estimate the ability of lemurs to use pioneer species, we categorized all plants used for feeding and resting as fast growing, mid-growing, or slow growing. We fitted general linear mixed-effects models, one for each plant growth category with monthly proportional use rates as the dependent variable, and included species (E. collaris and H. meridionalis), activity (feeding and resting), and season (dry and wet) as fixed effects. Our results show that E. collaris used both slow- and mid-growing plant species most often, while H. meridionalis were more likely to use fast-growing plants, which indicated an ability to use secondary/disturbed vegetation. Frugivorous E. collaris appear more limited by climax plants, while folivorous H. meridionalis appear to be slightly more adaptable, a finding that is consistent with that for other primate folivores.  相似文献   

5.
Body weight dimorphism in anthropoid primates has been thought to be a consequence of sexual selection resulting from male-male competition for access to mates. However, while monogamous anthropoids show low degrees of weight dimorphism, as predicted by the sexual selection hypothesis, polygynous anthropoids show high variation in weight dimorphism that is not associated with measures of mating system or sex ratio. This observation has led many to debate the role of other factors such as dietary constraints, predation pressure, substrate constraints, allometric effects, and phylogeny in the evolution of anthropoid weight dimorphism. Here, we re-evaluate variation in adult body weight dimorphism in anthropoids, testing the sexual selection hypothesis using categorical estimates of the degree of male-male intrasexual competition (“competition levels”). We also test the hypotheses that interspecific variation in body weight dimorphism is associated with female body weight and categorical estimates of diet, substrate use, and phylogeny. Weight dimorphism is strongly associated with competition levels, corroborating the sexual selection hypothesis. Weight dimorphism is positively correlated with increasing female body weight, but evidence suggests that the correlation reflects an interaction between overall size and behavior. Arboreal species are, on average, less dimorphic than terrestrial species, while more frugivorous species tend to be more dimorphic than folivorous or insectivorous species. Several alternative hypotheses can explain these latter results. Weight dimorphism is correlated with taxonomy, but so too are competition levels. We suggest that most taxonomic correlations of weight dimorphism represent “phylogenetic niche conservatism”; however, colobines show consistently low degrees of weight dimorphism for reasons that are not clear. Am J Phys Anthropol 103:37–68, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
7.
Recent research has identified polymorphic trichromacy in three diurnal strepsirrhines: Coquerel's sifaka (Propithecus coquereli), black and white ruffed lemurs (Varecia variegata), and red ruffed lemurs (V. rubra). Current hypotheses suggest that the transitions to diurnality experienced by Propithecus and Varecia were necessary precursors to their independent acquisitions of trichromacy. Accordingly, cathemeral lemurs are thought to lack the M/L opsin gene polymorphism necessary for trichromacy. In this study, the M/L opsin gene was sequenced in ten cathemeral blue-eyed black lemurs (Eulemur macaco flavifrons). This analysis identified a polymorphism identical to that of other trichromatic strepsirrhines at the critical amino acid position 285 in exon 5 of the M/L opsin gene. Thus, polymorphic trichromacy is likely present in at least one cathemeral Eulemur species, suggesting that strict diurnality is not necessary for trichromacy. The presence of trichromacy in E. m. flavifrons suggests that a re-evaluation of current hypotheses regarding the evolution of strepsirrhine trichromacy may be necessary. Although the M/L opsin polymorphism may have been independently acquired three times in the lemurid-indriid clade, the distribution of opsin alleles in lemurids and indriids may also be consistent with a common origin of trichromacy in the last common ancestor of either the lemurids or the lemurid-indriid clade.  相似文献   

8.
Field studies of feeding in the lemur subspecies Lemur fulvus rufus and L. f. mayottensis have revealed that feeding patterns within a single species can be markedly different, both regionally and seasonally. Thus L. f. rufus is a dietary specialist (3 plant species accounting for 80-90% of feeding time), and is highly folivorous, especially during the dry season (90% of feeding time spent eating leaves during the dry season, and 53% during the wet season). On the other hand, L. f. mayottensis is more generalized dietarily (the parts of 12 plant species accounting for 90% of feeding time), and is primarily frugivorous (64% of feeding time spent eating fruit, with a monthly maximum during the wet season of 79%. In both these respects, L. f. mayottensis resembles L. catta are more closely thant it does L. f. rufus. When size differences are corrected for, Lemur fulvus rufus has significantly longer second lower molar shearing crests than does L. f. mayottensis. Other folivorous Malagasy strepsirhines also tend to have long shearing crests than frugivorous forms. Some data on cheirogaleines also suggest that the more insectivorous species have better developed molar crests than frugivorous species. Some apparent exceptions to this pattern are noted, especially for Lemur catta, which in certain functional respects dentally more closely resembles L. f. rufus than L. f. mayottensis. The problems of dietary classifications are discussed.  相似文献   

9.
The size of the infraorbital foramen (IOF) has been used in drawing both phylogenetic and ecological inferences regarding fossil taxa. Within the order Primates, frugivores have relatively larger IOFs than folivores or insectivores. This study uses relative IOF size in lemurs to test prior trophic inferences for subfossil lemurs and to explore the pattern of variation within and across lemur families. The IOFs of individuals belonging to 12 extinct lemur species were measured and compared to those of extant Malagasy strepsirhines. Observations matched expectations drawn from more traditional approaches (e.g. dental morphology and microwear, stable isotope analysis) remarkably well. We confirm that extinct lemurs belonging to the families Megaladapidae and Palaeopropithecidae were predominantly folivorous and that species belonging to the genus Pachylemur (Lemuridae) were frugivores. Very high values for relative IOF area in Archaeolemur support frugivory but are also consistent with omnivory, as certain omnivores use facial touch cues while feeding. These results provide additional evidence that the IOF can be used as an informative osteological feature in both phylogenetic and paleoecological interpretations of the fossil record.  相似文献   

10.
In an attempt to reveal factors associated with neocortical development in monkeys and apes (anthropoids), relationships between the relative size of the neocortex and differences in ecology and social structure were examined for 24 genera of 11 subfamilies. Relative sizes of the neocortex (RSNs) in a given group were assessed as the difference between actual neocortical volume and the volume expected from an allometric relationship between neocortical volume and the volume of the rest of the brain. We found that RSNs are related to diet and social structure: frugivorous anthropoids had higher values of RSNs than folivorous anthropoids, and polygynous anthropoids had significantly higher values of RSNs than monogynous anthropoids. Furthermore, RSNs were positively correlated with the size of the troop. These results suggest that development of the neocortex is associated with both diet and social structure in anthropoids.  相似文献   

11.
This paper explores the correlates of variation in dental development across the order Primates. We are particularly interested in how 1) dental precocity (percentage of total postcanine primary and secondary teeth that have erupted at selected absolute ages and life cycle stages) and 2) dental endowment at weaning (percentage of adult postcanine occlusal area that is present at weaning) are related to variation in body or brain size and diet in primates. We ask whether folivores have more accelerated dental schedules than do like-sized frugivores, and if so, to what extent this is part and parcel of a general pattern of acceleration of life histories in more folivorous taxa. What is the adaptive significance of variation in dental eruption schedules across the order Primates? We show that folivorous primate species tend to exhibit more rapid dental development (on an absolute scale) than comparably sized frugivores, and their dental development tends to be more advanced at weaning. Our data affirm an important role for brain (rather than body) size as a predictor of both absolute and relative dental development. Tests of alternative dietary hypotheses offer the strongest support for the foraging independence and food processing hypotheses.  相似文献   

12.
The model of primate dental homologies and development recently proposed by Schwartz ('75, '78) is re-evaluated in view of documented exceptions to his account of postcanine supernumerary teeth in both anthropoids and prosimians. Schwartz concluded that catarrhines and living indriids retain only two true molars in each dental quadrant. As many as six molars on one side of the jaw can develop in rare instances in catarrhines, and supernumerary molars are also known for a wide range of other primates, including Cebidae, Adapidae, and subfossil Indriidae. Polydontia cannot be explained exclusively by atavistic development. More convincing explanations regard supernumerary teeth as the result of excessive growth of the dental lamina or localized twinning of tooth buds during early development. Conventional dental formulae of catarrhines and indriids including three permanent molars remain the most plausible.  相似文献   

13.
Several species of Malagasy prosimians are characterized by female dominance, an unusual trait among mammals. We compare the extent to which female dominance is displayed and the mechanisms that are used to maintain dominance in the frugivorous blue‐eyed black lemurs (Eulemur macaco flavifrons) and the folivorous gray bamboo lemurs (Hapalemur griseus griseus) housed at the Duke Lemur Center. All dominant–submissive interactions were recorded during 448 hr of focal animal observations. Both species of lemurs exhibited clear patterns of female dominance. However, the two species used aggressive dominance (defined as aggression+submission) and social dominance (defined as submission in the absence of aggression) to different extents in maintaining hierarchies within each group. The adult female blue‐eyed black lemurs used aggressive dominance (e.g., chase, cuff, bite) in more of their dominance interactions (66%) than did the adult female gray bamboo lemurs (40%). In both species, rates of aggressive dominance interactions were higher during feeding versus nonfeeding periods and while in smaller outdoor runs versus larger natural habitat enclosures, but the differences were not significant. Overall blue‐eyed black lemurs exhibit a more aggressive form of female dominance compared to the gray bamboo lemur. Zoo Biol 26:345–361, 2007. © 2007 Wiley‐Liss, Inc.  相似文献   

14.
We examined how maxillary molar dimensions change with body and skull size estimates among 54 species of living and subfossil strepsirrhine primates. Strepsirrhine maxillary molar areas tend to scale with negative allometry, or possibly isometry, relative to body mass. This observation supports several previous scaling analyses showing that primate molar areas scale at or slightly below geometric similarity relative to body mass. Strepsirrhine molar areas do not change relative to body mass(0.75), as predicted by the metabolic scaling hypothesis. Relative to basicranial length, maxillary molar areas tend to scale with positive allometry. Previous claims that primate molar areas scale with positive allometry relative to body mass appear to rest on the incorrect assumption that skull dimensions scale isometrically with body mass. We identified specific factors that help us to better understand these observed scaling patterns. Lorisiform and lemuriform maxillary molar scaling patterns did not differ significantly, suggesting that the two infraorders had little independent influence on strepsirrhine scaling patterns. Contrary to many previous studies of primate dental allometry, we found little evidence for significant differences in molar area scaling patterns among frugivorous, folivorous, and insectivorous groups. We were able to distinguish folivorous species from frugivorous and insectivorous taxa by comparing M1 lengths and widths. Folivores tend to have a mesiodistally elongated M1 for a given buccolingual M1 width when compared to the other two dietary groups. It has recently been shown that brain mass has a strong influence on primate dental eruption rates. We extended this comparison to relative maxillary molar sizes, but found that brain mass appears to have little influence on the size of strepsirrhine molars. Alternatively, we observed a strong correlation between the relative size of the facial skull and relative molar areas among strepsirrhines. We hypothesize that this association may be underlain by a partial sharing of the patterning of development between molar and facial skull elements.  相似文献   

15.
Host fitness is impacted by trillions of bacteria in the gastrointestinal tract that facilitate development and are inextricably tied to life history. During development, microbial colonization primes the gut metabolism and physiology, thereby setting the stage for adult nutrition and health. However, the ecological rules governing microbial succession are poorly understood. In this study, we examined the relationship between host lineage, captive diet, and life stage and gut microbiota characteristics in three primate species (infraorder, Lemuriformes). Fecal samples were collected from captive lemur mothers and their infants, from birth to weaning. Microbial DNA was extracted and the v4 region of 16S rDNA was sequenced on the Illumina platform using protocols from the Earth Microbiome Project. Here, we show that colonization proceeds along different successional trajectories in developing infants from species with differing dietary regimes and ecological profiles: frugivorous (fruit-eating) Varecia variegata, generalist Lemur catta, and folivorous (leaf-eating) Propithecus coquereli. Our analyses reveal community membership and succession patterns consistent with previous studies of human infants, suggesting that lemurs may serve as a useful model of microbial ecology in the primate gut. Each lemur species exhibits distinct species-specific bacterial diversity signatures correlating to life stages and life history traits, implying that gut microbial community assembly primes developing infants at species-specific rates for their respective adult feeding strategies.  相似文献   

16.
Summary Recent results have suggested that the biomass of folivorous arboreal primates per unit area in Africa and Asia is positively correlated with the average quality of leaves, expressed as the ratio of protein to fiber concentrations in a given forest. This hypothesis has been tested in different forests of Madagascar. Leaf selection of all folivorous femus species was studied in relation to leaf chemistry. Except for two populations ofLepilemur subspecies all other folivorous lemur species (including two other subspecies ofLepilemur) select leaves with high concentrations of easily extractable protein or low concentrations of fiber, or both. This confirms the prominent role of these two components in leaf selection by folivorous lemurs. The average quality of mature leaves in a given forest, expressed as the ratio of protein to fiber concentrations, is positively correlated with the biomass of folivorous lemurs. This confirms the hypothesis tested and suggests rather uniform selection processes for arboreal folivorous primates across the world.  相似文献   

17.
The aim of this review is to summarize newly available information on lemur social systems, to contrast it with the social organization of other primates and to relate it to existing models of primate social evolution. Because of their evolutionary history, the primates of Madagascar constitute a natural experiment in social evolution. During millions of years of isolation, they converged with other primates only in the most fundamental way in the evolution of solitary, pair-living and group-living species, but deviate in several respects within these basic categories of social organization. Solitary lemurs remain poorly studied, but their social organization appears to be broadly similar to that of other solitary primates, even though the unexpected lack of sexual dimorphism may indicate that similar types of social organization can give rise to different mating systems. The determinants of a solitary lifestyle remain elusive. Pair-living lemurs show striking convergences with other monogamous primates in several behavioural traits, but also deviate in that the majority of species are at least partly nocturnal and do not exhibit direct paternal care of dependent young. Group-living lemurs have not evolved single-male groups, male-bonded and multi-level societies, and polyandrous groups may also be lacking. Female philopatry is common, but female bonds are generally weakly developed and eviction of females from natal groups is not unusual. Group-living lemurs also differ from anthropoids in that their groups have even adult sex ratios, smaller average size and may split up on a seasonal basis. Feeding competition, predation risk and reproductive competition can not fully explain these unusual aspects of lemur social organization. It has therefore been suggested that the social consequences of the risk of infanticide and of recent changes in activity may be ultimately responsible for these idiosyncracies of group-living lemurs, an explanation largely supported by the available evidence. Thus, social factors and fundamental life-history traits, in addition to ecological factors, contribute importantly to variation in social systems among lemurs, and possibly other primates. However, neither the diversity of lemur social systems, nor the evolutionary forces and mechanisms operating in these and other primates are yet fully understood.  相似文献   

18.
Visual and olfactory cues provide important information to foragers, yet we know little about species differences in sensory reliance during food selection. In a series of experimental foraging studies, we examined the relative reliance on vision versus olfaction in three diurnal, primate species with diverse feeding ecologies, including folivorous Coquerel's sifakas (Propithecus coquereli), frugivorous ruffed lemurs (Varecia variegata spp), and generalist ring-tailed lemurs (Lemur catta). We used animals with known color-vision status and foods for which different maturation stages (and hence quality) produce distinct visual and olfactory cues (the latter determined chemically). We first showed that lemurs preferentially selected high-quality foods over low-quality foods when visual and olfactory cues were simultaneously available for both food types. Next, using a novel apparatus in a series of discrimination trials, we either manipulated food quality (while holding sensory cues constant) or manipulated sensory cues (while holding food quality constant). Among our study subjects that showed relatively strong preferences for high-quality foods, folivores required both sensory cues combined to reliably identify their preferred foods, whereas generalists could identify their preferred foods using either cue alone, and frugivores could identify their preferred foods using olfactory, but not visual, cues alone. Moreover, when only high-quality foods were available, folivores and generalists used visual rather than olfactory cues to select food, whereas frugivores used both cue types equally. Lastly, individuals in all three of the study species predominantly relied on sight when choosing between low-quality foods, but species differed in the strength of their sensory biases. Our results generally emphasize visual over olfactory reliance in foraging lemurs, but we suggest that the relative sensory reliance of animals may vary with their feeding ecology.  相似文献   

19.
Life history variables such as the age at first reproduction and the interval between consecutive births are measures of investment in growth and reproduction in a particular population or species. As such they allow for meaningful comparisons of the speed of growth and reproduction between species and between larger taxa. Especially in primates such life history research has far reaching implications and has led for instance to the “grandmother hypothesis”. Other links have been proposed with respect to dietary adaptations: Because protein is essential for growth and one of the primary sources of protein, leaves, occurs much less seasonally than fruits, it has been predicted that folivorous primates should grow faster compared to frugivorous ones. However, when comparing folivorous Asian colobines with frugivorous Asian macaques we recently documented a longer, instead of a shorter gestation length in folivores while age at first reproduction and interbirth interval did not differ. This supports earlier findings for Malagasy lemurs in which all life history variables tested were significantly longer in folivores compared to frugivores. Wondering why these trends were not apparent sooner, we tried to reconstruct our results for Asian primates with data from four popular life history compilations. However, this attempt failed; even the basic, allometric relationship with adult female body mass that is typical for life history variables could not be recovered. This negative result hints at severe problems with data quality. Here we show that data quality can be improved significantly by standardizing the variables and by controlling for factors such as nutritional conditions or infant mortality. Ideally, in the future, revised primate life history data should be collated in a central database accessible to everybody. In the long run such an initiative should be expanded to include all mammalian species.  相似文献   

20.
This study quantitatively examined molar microwear in nine species of extant small-bodied faunivorous primates and microchiropterans. Comparative analyses were performed within the food category faunivory, both between hard- and soft-object feeding faunivores and between primarily insectivorous and carnivorous taxa. Additionally, microwear in faunivores was compared to that reported in the literature for frugivorous and folivorous primates. The results indicated that although insectivores and carnivores could not be distinguished by microwear analyses, hard-object faunivores (i. e., those that primarily consume beetles or actively comminute bone) can be readily distinguished from soft-object faunivores (i. e., moth, caterpillar, or vertebrate flesh specialists). The hard-object faunivores consistently exhibited greater pit frequencies (in excess of 40%). Furthermore, comparisons of these microwear data on faunivorous mammals to previous work on frugivorous and folivorous primates (Teaford, 1988, pers. comm.; Teaford and Runestad, 1992, pers. comm.; Teaford and Walker: American Journal of Physical Anthropology 64:191–200, 1984) permitted three observations to be made. 1) Faunivores tend to have higher mean feature densities than either frugivores or folivores, although these differences are not consistently statistically distinct. 2) Faunifores and frugivores that feed on hard-objects have comparable mean pit frequencies. 3) Although it is impossible to distinguish faunivores and folivores on the basis of metric analysis of gross molar morphology, this distinction can be made on microwear criteria. Both hard- and soft-object faunivores exhibit much higher mean pit frequencies than primarily folivorous species. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号