首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Directed molecular screening for RecA ATPase inhibitors   总被引:1,自引:0,他引:1  
The roles of bacterial RecA in the evolution and transmission of antibiotic resistance genes make it an attractive target for inhibition by small molecules. We report two complementary fluorescence-based ATPase assays that were used to screen for inhibitors of RecA. We elected to employ the ADP-linked variation of the assay, with a Z' factor of 0.83 in 96-well microplates, to assess whether 18 select compounds could inhibit ATP hydrolysis by RecA. The compounds represented five sets of related inhibitor scaffolds, each of which had the potential to cross-inhibit RecA. Although nucleotide analogs, known inhibitors of GHL ATPases, and known protein kinase inhibitors were not active against RecA, we found that three suramin-like agents substantially inhibited RecA's ATPase activity.  相似文献   

2.
Wigle TJ  Lee AM  Singleton SF 《Biochemistry》2006,45(14):4502-4513
The roles of the RecA protein in the survival of bacteria and the evolution of resistance to antibiotics make it an attractive target for inhibition by small molecules. The activity of RecA is dependent on the formation of a nucleoprotein filament on single-stranded DNA that hydrolyzes ATP. We probed the nucleotide binding site of the active RecA protein using modified nucleotide triphosphates to discern key structural elements of the nucleotide and of the binding site that result in the activation of RecA for NTP hydrolysis. Our results show that the RecA-catalyzed hydrolysis of a given nucleotide triphosphate or analogue thereof is exquisitely sensitive to certain structural elements of both the base and ribose moieties. Furthermore, our ligand-based approach to probing the RecA ATP binding site indicated that the binding of nucleotides by RecA was found to be conformationally selective. Using a binding screen that can be readily adapted to high-throughput techniques, we were able to segregate nucleotides that interact with RecA into two classes: (1) NTPs that preferentially bind the active nucleoprotein filament conformation and either serve as substrates for or competitively inhibit hydrolysis and (2) nonsubstrate NTPs that preferentially bind the inactive RecA conformation and facilitate dissociation of the RecA-DNA species. These results are discussed in the context of a recent structural model for the active RecA nucleoprotein filament and provide us with important information for the design of potent, conformationally selective modulators of RecA activities.  相似文献   

3.
The RecA protein requires ATP or dATP for its coprotease and strand exchange activities. Other natural nucleotides, such as ADP, CTP, GTP, UTP and TTP, have little or no activation effect on RecA for these activities. We have investigated the activation mechanism, and the selectivity for ATP, by studying the effect of various nucleotides on the DNA binding and the helical structure of the RecA filament. The interaction with DNA was investigated via fluorescence measurements with a fluorescent DNA analog and fluorescein-labeled oligonucleotides, assisted by linear dichroism. Filament structure was investigated via small-angle neutron scattering. There is no simple correlation between filament elongation, DNA binding affinity of RecA, and DNA structure in the RecA complex. There may be multiple conformations of RecA. Both coprotease and strand exchange activities require formation of a rigid and well organized complex. The triphosphate nucleotides which do not activate RecA, destabilize the RecA-DNA complex, indicating that the chemical nature of the nucleotide nucleobase is very important for the stability of RecA-DNA complex. Higher stability of the RecA-DNA complex in the presence of adenosine 5'-O-3-thiotriphosphate or guanosine 5'-O-3-thiotriphosphate than ATP or GTP indicates that contact between the protein and the chemical group at the gamma position of the nucleotide also affects the stability of the RecA-DNA complex. This contact appears also important for the rigid organization of DNA because ADP strongly decreases the rigidity of the complex.  相似文献   

4.
We have developed two experimental methods for observing Escherichia coli RecA-DNA filament under a fluorescence microscope. First, RecA-DNA filaments were visualized by immunofluorescence staining with anti-RecA monoclonal antibody. Although the detailed filament structures below submicron scale were unable to be measured accurately due to optical resolution limit, this method has an advantage to analyse a large number of RecA-DNA filaments in a single experiment. Thus, it provides a reliable statistical distribution of the filament morphology. Moreover, not only RecA filament, but also naked DNA region was visualized separately in combination with immunofluorescence staining using anti-DNA monoclonal antibody. Second, by using cysteine derivative RecA protein, RecA-DNA filament was directly labelled by fluorescent reagent, and was able to observe directly under a fluorescence microscope with its enzymatic activity maintained. We showed that the RecA-DNA filament disassembled in the direction from 5' to 3' of ssDNA as dATP hydrolysis proceeded.  相似文献   

5.
Translesion replication is carried out in Escherichia coli by the SOS-inducible DNA polymerase V (UmuC), an error-prone polymerase, which is specialized for replicating through lesions in DNA, leading to the formation of mutations. Lesion bypass by pol V requires the SOS-regulated proteins UmuD' and RecA and the single-strand DNA-binding protein (SSB). Using an in vitro assay system for translesion replication based on a gapped plasmid carrying a site-specific synthetic abasic site, we show that the assembly of a RecA nucleoprotein filament is required for lesion bypass by pol V. This is based on the reaction requirements for stoichiometric amounts of RecA and for single-stranded gaps longer than 100 nucleotides and on direct visualization of RecA-DNA filaments by electron microscopy. SSB is likely to facilitate the assembly of the RecA nucleoprotein filament; however, it has at least one additional role in lesion bypass. ATPgammaS, which is known to strongly increase binding of RecA to DNA, caused a drastic inhibition of pol V activity. Lesion bypass does not require stoichiometric binding of UmuD' along RecA filaments. In summary, the RecA nucleoprotein filament, previously known to be required for SOS induction and homologous recombination, is also a critical intermediate in translesion replication.  相似文献   

6.
7.
RecA that catalyses efficient homology search and exchange of DNA bases has to effect major transitions in the structure as well as the dynamics of bases within RecA-DNA filament. RecA induces slippage of paired strands in poly(dA)-poly(dT) duplex using the energy of ATP hydrolysis. Here, we have adopted the targeted ligation assay and quantified the strand slippage within a short central cassette of (dA)(4)-(dT)(4) duplex. The design offers a stringent test case for scoring a cross-talk between A residues with those of T that are diagonally placed on the opposite strand at either -3, -2, -1, +1, +2, or +3 pairing frames. As expected, the cross-talk levels in RecA mediated as well as thermally annealed duplexes were maximal in non-diagonal pairing frame (i.e., 0-frame), the levels of which fell off gradually as the frames became more diagonal, i.e., -3<-2<-1 or +3<+2<+1. Interestingly, the level of cross-talk in naked duplexes was intrinsically less efficient in minus frames than their plus frame counterparts. The asymmetry created in naked duplexes by such a disparity between minus versus plus frames was partially obviated by RecA. Moreover, RecA promoted a significantly higher level of cross-talk selectively in -2 and -1 frames, as compared to that in naked DNA, which suggests a model that the elevated cross-talk in RecA filament may be limited to base pairs housed within the same rather than adjacent RecA monomers.  相似文献   

8.
The UvsX protein from bacteriophage T4 is a member of the RecA/Rad51/RadA family of recombinases active in homologous genetic recombination. Like RecA, Rad51 and RadA, UvsX forms helical filaments on DNA. We have used electron microscopy and a novel method for image analysis of helical filaments to show that UvsX-DNA filaments exist in two different conformations: an ADP state and an ATP state. As with RecA protein, these two states have a large difference in pitch. Remarkably, even though UvsX is only weakly homologous to RecA, both UvsX filament states are more similar to the RecA crystal structure than are RecA-DNA filaments. We use this similarity to fit the RecA crystal structure into the UvsX filament, and show that two of the three previously described blocks of similarity between UvsX and RecA are involved in the subunit-subunit interface in both the UvsX filament and the RecA crystal filament. Conversely, we show that human Rad51-DNA filaments have a different subunit-subunit interface than is present in the RecA crystal, and this interface involves two blocks of sequence similarity between Rad51 and RecA that do not overlap with those found between UvsX and RecA. This suggests that helical filaments in the RecA/Rad51/RadA family may have arisen from convergent evolution, with a conserved core structure that has assembled into multimeric filaments in a number of different ways.  相似文献   

9.
ATP-mediated conformational changes in the RecA filament   总被引:9,自引:0,他引:9  
The crystal structure of the E. coli RecA protein was solved more than 10 years ago, but it has provided limited insight into the mechanism of homologous genetic recombination. Using electron microscopy, we have reconstructed five different states of RecA-DNA filaments. The C-terminal lobe of the RecA protein is modulated by the state of the distantly bound nucleotide, and this allosteric coupling can explain how mutations and truncations of this C-terminal lobe enhance RecA's activity. A model generated from these reconstructions shows that the nucleotide binding core is substantially rotated from its position in the RecA crystal filament, resulting in ATP binding between subunits. This simple rotation can explain the large cooperativity in ATP hydrolysis observed for RecA-DNA filaments.  相似文献   

10.
The Escherichia coli RecA protein catalyzes homologous recombination of DNA molecules, and the active form of the protein is a helical polymer that it forms around DNA. Previous image analysis of electron micrographs has revealed the RecA protein to be organized into two domains or lobes within the RecA-DNA filament. We have now been able to show that a small modification of the RecA protein by proteolysis results in a significant shift in the internal mass in the RecA filament. We have cleaved approximately 18 residues from the C-terminus of the RecA protein, producing a roughly 36K MW RecA core protein that binds DNA and polymerizes normally. A three-dimensional reconstruction of this complex has been computed, and has been compared with a previous reconstruction of the intact protein. The main difference is consistent with a 15 A outward movement of the lobe that was at an inner radius in the wild-type protein. These observations yield additional evidence about the conformational flexibility of the RecA filament, and will aid in understanding the structural mechanics and dynamics of the RecA filament.  相似文献   

11.
RecA plays a key role in homologous recombination, the induction of the DNA damage response through LexA cleavage and the activity of error-prone polymerase in Escherichia coli. RecA interacts with multiple partners to achieve this pleiotropic role, but the structural location and sequence determinants involved in these multiple interactions remain mostly unknown. Here, in a first application to prokaryotes, Evolutionary Trace (ET) analysis identifies clusters of evolutionarily important surface amino acids involved in RecA functions. Some of these clusters match the known ATP binding, DNA binding, and RecA-RecA homo-dimerization sites, but others are novel. Mutation analysis at these sites disrupted either recombination or LexA cleavage. This highlights distinct functional sites specific for recombination and DNA damage response induction. Finally, our analysis reveals a composite site for LexA binding and cleavage, which is formed only on the active RecA filament. These new sites can provide new drug targets to modulate one or more RecA functions, with the potential to address the problem of evolution of antibiotic resistance at its root.  相似文献   

12.
Ramreddy T  Sen S  Rao BJ  Krishnamoorthy G 《Biochemistry》2003,42(41):12085-12094
RecA-catalyzed DNA recombination is initiated by a mandatory, high-energy form of DNA in RecA-nucleoprotein filaments, where bases are highly unstacked and the backbone is highly unwound. Interestingly, only the energetics consequent to adenosine triphosphate (ATP) binding, rather than its hydrolysis, seems sufficient to mediate such a high-energy structural hallmark of a recombination filament. The structural consequence of ATP hydrolysis on the DNA part of the filament thus remains largely unknown. We report time-resolved fluorescence dynamics of bases in RecA-DNA complexes and demonstrate that DNA bases in the same exhibit novel, motional dynamics with a rotational correlation time of 7-10 ns, specifically in the presence of ATP hydrolysis. When the ongoing ATP hydrolysis of RecA-DNA filament is "poisoned" by a nonhydrolyzable form of ATP (ATPgammaS), the motional dynamics cease and reveal a global motion with a rotational correlation time of >20 ns. Such ATP hydrolysis-induced flexibility ensues in single-stranded as well as double-stranded bases of RecA-DNA filaments. These results suggest that the role of ATP hydrolysis is to induce a high level of backbone flexibility in RecA-DNA filament, a dynamic property that is likely to be important for efficient strand exchanges in ATP hydrolysis specific RecA reactions. It is the absence of these motions that may cause high rigidity in RecA-DNA filaments in ATPgammaS. Dynamic light scattering measurement comparisons of RecA-ss-DNA filaments formed in ATPgammaS vs that of ATP confirmed such an interpretation, where the former showed a complex of larger (30 nm) hydrodynamic radius than that of latter (12-15 nm). Taken together, these results reveal a more dynamic state of DNA in RecA-DNA filament that is hydrolyzing ATP, which encourage us to model the role of ATP hydrolysis in RecA-mediated DNA transactions.  相似文献   

13.
We demonstrate that RecA protein can mediate annealing of complementary DNA strands in vitro by at least two different mechanisms. The first annealing mechanism predominates under conditions where RecA protein causes coaggregation of single-stranded DNA (ssDNA) molecules and where RecA-free ssDNA stretches are present on both reaction partners. Under these conditions annealing can take place between locally concentrated protein-free complementary sequences. Other DNA aggregating agents like histone H1 or ethanol stimulate annealing by the same mechanism. The second mechanism of RecA-mediated annealing of complementary DNA strands is best manifested when preformed saturated RecA-ssDNA complexes interact with protein-free ssDNA. In this case, annealing can occur between the ssDNA strand resident in the complex and the ssDNA strand that interacts with the preformed RecA-ssDNA complex. Here, the action of RecA protein reflects its specific recombination promoting mechanism. This mechanism enables DNA molecules resident in the presynaptic RecA-DNA complexes to be exposed for hydrogen bond formation with DNA molecules contacting the presynaptic RecA-DNA filament.  相似文献   

14.
RecA plays a central role in recombination, DNA repair and SOS induction through forming a RecA-DNA helical filament. Biochemical observations show that at low ratios to RecA, DinI and RecX stabilize and destabilize RecA-DNA filaments, respectively, and that the C-terminal 17 residues of RecA are important for RecX function. RecA-DNA filament formation was assayed in vivo using RecA-GFP foci formation in log-phase and UV-irradiated cells. In log-phase cells, dinI mutants have fewer foci than wild type and that recX mutants have more foci than wild type. A recADelta17::gfp mutant had more foci like a recX mutant. dinI recX double mutants have the same number of foci as dinI mutants alone, suggesting that dinI is epistatic to recX. After UV treatment, the dinI, recX and dinI recX mutants differed in their ability to form foci. All three mutants had fewer foci than wild type. The dinI mutant's foci persisted longer than wild-type foci. Roles of DinI and RecX after UV treatment differed from those during log-phase growth and may reflect the different DNA substrates, population of proteins or amounts during the SOS response. These experiments give new insight into the roles of these proteins.  相似文献   

15.
The presenilin (PS) proteins are components of the gamma-secretase activity, which is central in the pathogenesis of Alzheimer's disease. Here we present a novel cell-based reporter gene assay for the quantification of PS-controlled gamma-secretase cleavage of the Alzheimer amyloid precursor protein (APP). We show that this assay offers several advantages, including increased sensitivity and specificity, improved quantification of cleavage, and simultaneous detection of all gamma-secretase cleavages in APP. Furthermore, the APP assay can be used in parallel with a similar assay that records gamma-secretase cleavage of a Notch receptor. The use of these assays to analyze the effects of two known gamma-secretase inhibitors and postulated PS active site mutants on APP and Notch processing demonstrated that inhibitors and mutants that differently affect Notch and APP cleavage can be identified rapidly. The possibility in using these assays for high throughput screening of candidate gamma-secretase inhibitors for APP and Notch in parallel opens up new vistas to systematically search for novel inhibitors that selectively block APP cleavage while not affecting Notch signaling.  相似文献   

16.
We have introduced targeted mutations in two areas that make up part of the RecA subunit interface. In the RecA crystal structure, cross-subunit interactions are observed between the Lys6 and Asp139 side-chains, and between the Arg28 and Asn113 side-chains. Unexpectedly, we find that mutations at Lys6 and Arg28 impose sever defects on the oligomeric stability of free RecA protein, whereas mutations at Asn113 or Asp139 do not. However, Lys6 and Arg28 mutant proteins showed an apparent normal formation of RecA-DNA complexes. These results suggest that cross-subunit contacts in this region of the protein are different for free RecA protein filaments versus RecA-DNA nucleoprotein filaments. Mutant proteins with substitutions at either Lys6 or Arg28 show partial inhibition of DNA strand exchange activity, yet the mechanistic reasons for this inhibition appear to be distinct. Although Lys6 and Arg28 appear to be more important to the stability of free RecA protein, as opposed to the stability of the catalytically active nucleoprotein filament, our results support the idea that the cross-subunit interactions made by each residue play an important role in optimizing the catalytic organization of the active RecA oligomer.  相似文献   

17.
Lee AM  Singleton SF 《Biochemistry》2006,45(14):4514-4529
The Escherichia coli RecA protein is the prototypical member of a family of molecular motors that transduces ATP binding and hydrolysis for mechanical function. While many general mechanistic features of RecA action are known, specific structural and functional insights into the molecular basis of RecA activation remain elusive. Toward a more complete understanding of the interdependence between ATP and DNA binding by RecA, we report the characterization of a mutant RecA protein wherein the aspartate residue at position 100 within the ATP binding site is replaced by arginine. Physiologically, D100R RecA was characterized by an inducible, albeit reduced, activation of the SOS response and a diminished ability to promote cellular survival after UV irradiation. Biochemically, the D100R substitution caused a surprisingly modest perturbation of RecA-ATP interactions and an unexpected and significant decrease in the affinity of RecA for ssDNA. Moreover, in vitro assays of RecA activities requiring the coordinated processing of ATP and DNA revealed (1) a 2-5-fold decrease in steady-state turnover of ATP; (2) no formation of mixed nucleoprotein filaments when wild-type and D100R RecA compete for limiting ssDNA; and (3) no formation of strand exchange reaction products. Taken together, these results suggest that the D100R mutational effects on isolated RecA activities combine synergistically to perturb its higher-order functions. We conclude that the replacement of Asp100 resulted in a change in the electrostatic complementarity between RecA monomers during active filament assembly that prevents the protein from fully accessing the active multimeric state.  相似文献   

18.
All RecA-like recombinase enzymes catalyze DNA strand exchange as elongated filaments on DNA. Despite numerous biochemical and structural studies of RecA and the related Rad51 and RadA proteins, the unit oligomer(s) responsible for nucleoprotein filament assembly and coordinated filament activity remains undefined. We have created a RecA fused dimer protein and show that it maintains in vivo DNA repair and LexA co-protease activities, as well as in vitro ATPase and DNA strand exchange activities. Our results support the idea that dimeric RecA is an important functional unit both for assembly of nucleoprotein filaments and for their coordinated activity during the catalysis of homologous recombination.  相似文献   

19.
20.
Electron micrographs of RecA-DNA filaments, formed under several different conditions, have been analyzed and the filament images reconstructed in three dimensions. In the presence of ATP and a non-hydrolyzable ATP analog. ATP-gamma-S, the RecA protein forms with DNA a right-handed helical complex with a pitch of approximately 95 A. The most detailed view of the filament was obtained from analysis of RecA filaments on double-stranded DNA in the presence of ATP-gamma-S. There are approximately six subunits of RecA per turn of the helix, but both this number and the pitch are variable. From the examination of single filaments and filament-filament interactions, a picture of an extremely flexible protein structure emerges. The subunits of RecA protein are seen to be arranged in such a manner that the bound DNA must be partially exposed and able to come into contact with external DNA molecules. The RecA structure determined in the presence of ATP-gamma-S appears to be the same as the "pre-synaptic" state that occurs with ATP, in which there is recognition and pairing between homologous DNA molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号