首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 1983, cereal plants showing symptoms of barley yellow dwarf virus (BYDV), collected from 15 localities in Sweden, were tested for BYDV using enzyme-linked immunosorbent assay (ELISA). Antisera against two Swedish isolates of BYDV were used, a mild isolate (27/77) transmitted specifically by Sitobion avenae and a severe one (39/78) transmitted mainly by Rhopalosiphum padi. No virus was detected in 57 of 607 plants of oats and barley tested. Of the 550 plants in which virus was detected, 366 were infected with viruses similar to isolate 27/77, 116 with viruses similar to 39/78 and the remaining 68 reacted strongly with both antisera. When tested, the latter isolates were shown to be mixtures. Thirty-nine selected samples were also tested with antisera against the USA isolates RPV, RMV, MAV and PAV, and for transmission by S. avenae and R. padi. Twenty-six of these samples were transmitted specifically by S. avenae, one was transmitted only by R. padi and the remaining 12 samples were shown to be infected with a mixture of an S. avenae-specific isolate and one transmitted mainly by R. padi. Antisera against PAV and MAV each detected all isolates tested and the results were very similar to those with the antisera to the 39/78 and 27/77 isolates, respectively. None of the field isolates reacted with antisera against RMV or RPV. It was concluded that 1983 was an epidemic year for BYDV in Sweden and that isolates specifically transmitted by S. avenae predominated. Symptoms of infection by these isolates on oat plants ranged from mild to severe.  相似文献   

2.
Data from bioassays of field collected aphids, barley indicator plants exposed to natural conditions, and various types of aphid traps were used to describe the spread of barley yellow dwarf virus (BYDV) in wheat and barley near Prosser, Washington. Bioassays were also used to assess the relative importance of local vector species. Of alate aphids collected from grain in the 1982 and 1983 fall migration seasons, 3.4–14–5% transmitted BYDV. Data from concurrent and post-migration assays of resident aphids (apterae and nymphs) reflected an increase in the proportion of infected plants in the field. Maximum increase in the percentage of viruliferous aphids occurred in late November and December of 1982 and November of 1983. The 1982 increase occurred after aphid flights had ceased for the year, suggesting active secondary spread. Collections in pitfall traps and infected trap plants from November to February confirmed aphid activity and virus spread. Rhopalosiphum padi was the most important vector in central Washington in 1982 and 1983 because of its abundance and relative BYDV transmission efficiency. Metopolophium dirhodum was more winter-hardy than R. padi and equal to R. padi in its efficiency as a vector; however, it was not as abundant as R. padi except during the mild winter of 1982–83, when it was a major contributor to secondary spread. Sitobion avenae may be important in years when it is abundant, but it was only a quarter as efficient as R. padi. Rhopalosiphum maidis was a much less efficient vector than R. padi and it only reached high populations in late autumn barley.  相似文献   

3.
Plants with symptoms of barley yellow dwarf virus (BYDV) obtained in infection feeding assays of aphids collected in the field in Idaho between 1986 and 1988 were tested for virus transmissibility by possible aphid vectors. Isolates obtained during 1987–1988 were also tested with a range of polyclonal antisera which distinguished PAV, MAV, SGV, RPV and RMV serotypes. In 1989 some Idaho (ID) BYDV isolates, maintained as standards for comparison, were serotyped and tested for aphid transmissibility, using 11 species of aphids. There was not always the expected correspondence between serotype and vector specificity for ID isolates. For isolates obtained from field-collected Rhopalosiphum padi, vector transmissibility and serotype corresponded with previous reports; however, 44% of isolates which were serotyped as RMV were also transmissible by species other than Rhopalosiphum maidis. Similarly, the transmissibility of the ID laboratory standards did not always conform to the reported vector specificity of serotypes. The laboratory ID-MAV culture was transmitted by Metopolophium dirhodum and Myzus persicae as well as by Sitobion avenae. The laboratory ID-SGV culture was transmitted by R. padi and 5. avenae as well as by Schizaphis graminum. The ID-RPV culture was transmitted by S. graminum and Rhopalosiphum insertum as well as R. padi. Both of two laboratory ID-RMV cultures were transmissible by R. insertum and R. padi transmitted one of them. The results indicate that, for isolates collected in Idaho, vector specificity cannot be assumed from their serotypes.  相似文献   

4.
Suction traps at Leeds University Farm, N. Yorkshire, monitored aerial populations of cereal aphids over three autumns. Different migration patterns were observed between the four main species, Sitobion avenae, Metopolophium dirhodum, Rhopalosiphum padi and R. insertum. The relevance of these patterns to the epidemiology of barley yellow dwarf virus (BYDV) is discussed. Transmission tests revealed S. avenae to be the major vector of BYDV, rather than R. padi, which is responsible for disease outbreaks in the south and west of Britain. An Infectivity Index (II) of 50 has been advocated for R. padi-transmitted BYDV, above which economic damage is likely to occur. This value is shown not to be applicable to the Vale of York, and methods of adapting the data are proposed. Such adjusted II values depend on the behaviour and reproduction of the aphids during the transmission tests, and produce II values that correlate well with levels of field infection in the area.  相似文献   

5.
Populations of cereal aphids were sampled from 1985–1988 and assayed for transmission of barley yellow dwarf virus (BYDV), Rhopalosiphum padi, Rho-palosiphum maidis, Sitobion avenae, Metopolophium dirhodum, Schizaphis graminum and Macrosiphum euphorbiae collected from host plants transmitted BYDV in bioassays. Of the 1028 Diuraphis noxia collected from plants, one may have transmitted BYDV. The isolate involved resembled SGV in serological and biological characteristics, but since it was not recoverable by any of more than 800 D. noxia subsequently tested, we suspect it may have been a contaminant. Among those aphids collected during the autumn from a suction trap adapted for live collection, R. padi transmitted BYDV most frequently. Other trapped species which transmitted BYDV included: R. maidis, Rhopalosiphum insertum, Macrosiphum euphorbiae, Metopolophium dirhodum and Ceruraphis eriophori. An adapted Infectivity Index indicated that R. padi is by far the most important vector of BYDV during the autumn sowing season in southwestern Idaho. Male R. padi consistently transmitted BYDV more frequently than did females collected during the same period.  相似文献   

6.
Suction traps operating at low level (1 5 m) were used to catch live alate Rhopalosiphum padi, Macrosiphum (Sitobion) avenae and Metopolophium dirhodum which were tested for transmission of barley yellow dwarf virus (BYDV). The first species caught and infective was R. padi, followed by M. (S.) avenae infective some 2–3 wk later and M. dirhodum 3–4 wk later still. Never more than 11-5% of the annual catch of any species transmitted BYDV and the proportion fluctuated from week to week and between seasons in different years. The relative abundance of infective vectors of ths three species varied; annual numbers of infective M. (S.) avenae and M. dirhodum varied inversely with infective R. padi, the latter also usually transmitted severer virus. The results of the infectivity tests have been compared with the catches of these aphids by the Rothamsted Insect Survey and show that numbers of alate aphids do not necessarily indicate the likely incidence of BYDV.  相似文献   

7.
Bionomics of aphids reared on cereals and some Gramineae   总被引:1,自引:0,他引:1  
In controlled temperature, light and relative humidity, Metopolophium dirhodum and Sitobion avenae multiplied more on young Proctor barley than on Blenda oats, and less on Cappelle wheat. Rhopalosiphum padi increased in number fastest on barley and slowest on oats. More survived, and generation lengths seemed shorter, on barley for M. dirhodum and S. avenae and on wheat for R. padi. Tests with young cereals outdoors generally agreed with those in controlled conditions. On mature plants, there were more M. dirhodum on barley, more R. padi on wheat and more S. avenae on oats than on the other cereals. Given a free choice in large cages outdoors, most aphids were found on barley. When allowed to choose between grasses, more M. dirhodum were on Dactylis glomerata, Poa pratensis and Festuca pratensis, more R. padi on Lolium perenne and F. pratensis, and more S. avenae on D. glomerata and L. perenne. Most aphids of all species combined were on F. pratensis, Lolium and Phleum, and fewest on Festuca rubra and Holcus mollis.  相似文献   

8.
Barley yellow dwarf virus (BYDV) was detected in forage cereals and small grain cereals by indirect enzyme-linked immunosorbent assay. Samples of forage cereals collected in the winters of 1987/1988, 1988/1989 and 1989/1990 showed that this crop is a reservoir of BYDV during the end of summer and autumn. PAV-like and MAV-like isolates, in single or mixed infection, were the most common. The proportion of isolates in the infected samples was relatively stable, Samples of winter cereals collected in the springs of 1988, 1989 and 1990 showed that PAV- and MAV-like isolates were widespread. The proportion of samples infected with PAV-like isolates was much more variable than that of MAV-like isolates. The incidence of PAV-like isolates in winter cereals is more dependent on the population of Rhopalosiphum padi during the winter and early spring, than is the incidence of MAV-like isolates on Sitobion avenae density. In northeast Spain (Lleida basin) forage cereals are a constant source of PAV- and MAV- like isolates from which BYDV inoculum is introduced into winter cereals.  相似文献   

9.
During the mid-1980s, Sitobion avenae became recognised as an important vector of barley yellow dwarf virus (BYDV) in the Vale of York. A field trial at the University of Leeds Farm, North Yorkshire, was carried out during the autumn/winter of 1984-85 to evaluate different control procedures against S. avenae-transmitted BYDV and to investigate its epidemiology. Winter barley was sown on three dates in September, and plots were sprayed with either deltamethrin, demeton-S-methyl or pirimicarb on one of three dates between mid-October and mid-November, making a factorial design. Rhopalosiphum padi, the main vector of BYDV in southern England, were rarely found during the experiment, but the numbers of S. avenae were much higher, reaching a peak of 21% of plants infested in the unsprayed plots of the first sowing date. Single applications of each insecticide reduced populations of S. avenae to zero. Some treatments, particularly in the early sown plots and those treated with pirimicarb, however, did allow some recolonisation, and thus led to increased virus incidence and decreased yields. Sprays applied before the end of the migration of S. avenae were more efficient at controlling BYDV if the insecticide was persistent, otherwise a spray after this period, in November, was more effective. Virus incidence, although reduced by sprays, was generally low in plots sown on 18 and 27 September. In contrast, about 11% of plants were infected in unsprayed plots sown on 6 September and a small yield benefit was obtained with insecticidal treatments. Enzyme-linked immunosorbent assay (ELISA) of plants taken from the plots indicated that MAV- and PAV-like strains were present, and were most likely to have been transmitted by S. avenae.  相似文献   

10.
The great variability of the aphid life cycle and their tendency for host alternation gives rise to aphid clones and morphs. Inter‐ and intraclonal variability may be observed in the responses of aphids to various environmental factors. In this study we aimed to evaluate the influence of intrinsic factors (clone and morph type) on the intrinsic rate of increase (rm) of the English grain aphid, Sitobion avenae (Fabricius), and the bird cherry‐oat aphid, Rhopalosiphum padi (Linnaeus). For each species four apterous clones were collected from established laboratory colonies and compared to assess their relative fitness on high‐ and low‐nitrogen wheat plants under laboratory conditions. The clones had significantly different intrinsic rates of increase on high‐ and low‐nitrogen plants. All R. padi clones had a higher intrinsic rate of increase and mean relative growth rate than S. avenae. Experiments were also conducted to compare the mean fecundity of apterous and alate morphs of S. avenae and R. padi clones on high‐ and low‐nitrogen wheat plants. On high‐nitrogen plants the apterous morphs of S. avenae clones had significantly higher mean fecundity than alate morphs. There were no significant differences between the mean fecundity of alate morphs of the same species on high‐ and low‐nitrogen plants. The results support the idea of better fitness of specific clones/morphs on certain host plants due to higher and lower intrinsic rates of increase.  相似文献   

11.
Suction trapping data indicate three periods of migration of Rhopalosiphum padi in spring, summer and autumn. Four alate morphs are present at different times during the year. A comparison of data from suction traps operating at 12·2 and 1·5 m suggests a different behaviour of females in autumn with more being recorded at 12·2 than 1·5 m. Males, which are only present in autumn, were also more numerous at 12·2 m. During tests to measure barley yellow dwarf virus (BYDV) infectivity, only 9% of female R. padi reproduced on oat seedlings in autumn compared with 74% in summer. Tests on alate female R. padi trapped alive showed that in summer all were exules, but during the first half of September these were largely replaced by gynoparae so that in autumn only 5% of all R. padi trapped at 12·2 m were alate exules. The aerial densities of gynoparae and males were 10 times greater at 12·2 than 1·5 m while densities of alate exules were similar at both heights. It is suggested that gynoparae and males fly higher to increase the chance of finding a taller dispersed host plant. The implications for BYDV epidemiology of the behaviour and presence of the various R. padi alate morphs indicate that autumn-sown cereals emerging before mid-September are particularly at risk from colonisation by alate exules before the transition to a mainly sexual migrant population is complete. Alate exules introduce BYDV from comparatively local sources. The ratio of total R. padi to Sitobion avenae in suction trap samples in autumn usually exceeds 100: 1, but on crops it was only 10: 1. The ratio of alate exule R. padi to S. avenae in suction traps in autumn was only 12: 1, similar to that observed on crops.  相似文献   

12.
During the years 1989–1992 cereal aphids were caught alive in a low level (1.5 m high) suction trap operated in Le Rheu (Brittany, France) and tested for BYDV transmission. In most cases comparisons with data collected simultaneously by a 12.2 m suction trap operating in the same site resulted in good relationships between weekly catches at both heights. Results from transmission tests showed that: (i) the two main BYDV vectors were Rhopalosiphum padi and Metopolophium dirhodum during the years of experiment; (ii) PAV and MAV were the commonest viruses and RPV was relatively scarce; (iii) during spring M. dirhodum appeared to be the most important MAV vector and nearly as good a PAV vector as R. padi; (iv) during autumn R. padi was the only vector of the three viruses with mixed transmission allowing it to transmit also MAV probably by heteroencapsidation. To give an indication of the risk of infection, infectivity indices were calculated by multiplying the numbers of aphids caught by the 12.2 m suction trap by the proportion that were infective. These infectivity indices agreed with field records of primary infections.  相似文献   

13.
The spectrum of entomophthoroid fungal species parasitising aphids on cereal crops and a study of the phenology and prevalence of these pathogens were investigated in Argentina. The studies were conducted at six different sites cultivated with crops of Triticum aestivum (wheat), Avena sativa (oats) and Sorghum bicolor (sorghum) during two consecutive years. Entomopathogenic fungi from the new phylum Entomophthoromycota were recorded from six aphid species on cereals in Argentina: Rhopalosiphum maidis, Rhopalosiphum padi, Rhopalosiphum rufiabdominalis, Schizaphis graminum, Sitobion avenae and Sipha maydis. Three species of entomophthoroid fungi were found infecting these aphid species: Pandora neoaphidis, Zoophthora radicans (Entomophthorales: Entomophthoraceae) and Neozygites fresenii (Neozygitales: Neozygitaceae). Entomophthoroid fungal infections occurred mostly in autumn–winter seasons (March–August), and coincided with periods of high relative humidity and comparatively low temperatures. This study represents the first base‐line characterisation of entomophthoroid fungi infecting aphids on cereal crops in Argentina.  相似文献   

14.
Drought stress and cereal aphid performance   总被引:1,自引:0,他引:1  
The performance of clones of Rhopalosiphum padi and Sitobion avenae from England and Spain was examined on drought-stressed tillering winter wheat in an environment chamber at 14 ± 1°C. Two different levels of drought stress and an unstressed control were established by different watering regimes which resulted in drought-stressed plants being smaller at the end of the experiment. The effect of drought stress to plants on aphid performance was not significantly different between the clones tested. Drought stress had no effect on aphid development time, nymphal mortality, the weight of teneral adults and the number of embryos in teneral adults up to the onset of reproduction in the first F1 generation. The subsequent reproductive capacity, as measured by the effective and potential fecundity, and the reproductive rate, were much reduced on drought-stressed plants. However, there was only a small decrease in the intrinsic rate of increase (rm). Overall the clone of R. padi from Spain performed better than that from England, the development and prereproductive times being shorter and the fecundity higher in the Spanish clone, giving a higher rm. There were no differences in the fecundity and the rm between the Spanish and the English clones of S. avenae. The proportion of the F2 generation that was alate differed greatly between clones, and only the English S. avenae produced significantly more alatae on drought-stressed than on unstressed plants.  相似文献   

15.
Feeding behaviour of five species of cereal aphids in wheat seedlings differing in hydroxamic acid (Hx) levels, was monitored via electrical penetration graphs (EPG). Aphid species could be grouped as sensitive to the feeding deterrent effect of Hx in the seedlings (Rhopalosiphum padi, Schizaphis graminum, Sitobion avenae, andMetopolophium dirhodum) or insensitive to them (Rhopalosiphum maidis). However, when feeding behaviour was studied in artificial diets containing Hx, all species were equally sensitive to Hx. The behavour ofR. maidis was further compared with that ofR. padi through detailed EPG analysis. It was found that the insensitivity ofR. maidis to Hx in seedlings may be due to a feeding strategy avoiding contact with the compounds by decreasing the number of cellular punctures in live tissues other than sieve elements during its way to the phloem.  相似文献   

16.
Rhopalosiphum padi, Schizaphis graminum, and Sitobion avenae are three of the most destructive aphid species of wheat (Triticum aestivum L.). They can significantly reduce wheat yields directly by feeding and indirectly by transmitting viruses. This study aimed to search for resistance to these aphid species among lines derived from different rye (Secale cereale) origins and from Aegilops speltoides, all in the genetic background of the wheat cultivar Pavon F76. Resistance was quantified as aphid weight (R. padi, S. avenae, and S. graminum) and the number of aphids and percentage of infested leaf area exhibiting chlorosis (S. graminum). The most resistant genotypes reduced R. padi and S. avenae weight by 24.2 and 34.3 %, respectively, at the seedling stage, compared with Pavon F76 control plants. Strong S. graminum resistance was found only in A. speltoides-derived lines, the most resistant of which (7A.7S-L5) sustained just 3 % chlorosis and reduced S. graminum colony weight by 67.7 %. One line carrying the 1AL.1RSam wheat–rye translocation from Amigo wheat (originally from Insave rye) reduced S. avenae weight by 23.2 and 21.8 % in seedling and adult plants, respectively. Single genotypes carrying the complete 1R chromosome or the 1RS chromosome arm derived from E12165 wheat and Presto triticale proved to be resistant to both R. padi and S. avenae at the seedling stage. Further research should be conducted to unravel the genetic basis of resistance to these aphids in 1RS genotypes. The sources of resistance identified here may be useful for incorporating multiple aphid species resistance in wheat breeding programs, particularly for R. padi and S. avenae, to which no resistant wheats have been bred.  相似文献   

17.
The numbers of cereal aphids, especially Metopolophium dirhodum in 1979, and Sitobion avenae in 1980, were significantly increased on BYDV infected wheat and oats in 1979, and wheat, barley and oats in 1980. The differences were probably caused by attraction of alates of each species to virus infected plants which had changed colour as a result of their infection. Significantly more alates of M. dirhodum were found on virus infected oats in 1979, and of S. avenae on oats and barley in 1980, although not on wheat in either year. probably because the colour contrast in wheat was less intense than in the other crops. Flight chamber experiments with alates of both species confirmed their visual attraction to virus-infected leaves. The interaction between virus, vector and host plants is discussed with reference to the ecology of virus spread.  相似文献   

18.
Individual S. avenae and M. dirhodum excreted significantly fewer droplets of honeydew on plants infected with BYDV than on healthy plants. S. avenae excreted less honeydew on the ears than on the leaves of wheat. M. dirhodum excreted less than S. avenae on the leaves. The size of honeydew droplets increased with the age of aphids but was not affected by BYDV infection. Possible reasons for the observed effects of BYDV on honeydew excretion are discussed.  相似文献   

19.
We analysed interactions in the system of two Barley Yellow Dwarf Virus (BYDV) strains (MAV and PAV), and wheat (cv. Tinos) as host plant for the virus, and the cereal aphid Sitobion avenae (F.) as vector, in particular whether or not infection by the virus might alter host plant suitability in favour of vector development. By measuring the amino acid and sugar content in the phloem sap of infected and non‐infected wheat plants we found a significant reduction in the concentration of the total amount of amino acids on BYDV‐infected plants. Qualitative and quantitative analysis of honeydew and honeydew excretion indicated a lower efficiency of phloem sap utilisation by S. avenae on infected plants. In addition, S. avenae excreted less honeydew on infected plants. Both BYDV strains significantly affected aphid development by a reduction in the intrinsic rate of natural increase. Hence, infection by the virus reduced the host suitability in terms of aphid population growth potential on BYDV‐infected plants. However, more alate morphs developed on virus‐infected plants. These findings are discussed in relation to the population dynamics of S. avenae, and, as a consequence, the spread of BYDV.  相似文献   

20.
2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), a hydroxamic acid (Hx) occurring in wheat, was shown to deter feeding by the aphid Rhopalosiphum padi (L.), and to reduce BYDV transmission to the plant. Dual choice tests with wheat leaves showed the preferential settlement of aphids on leaves with lower levels of DIMBOA. Electric monitoring of aphid feeding behaviour showed that in seedlings with higher DIMBOA levels fewer aphids reached the phloem and they needed longer times to contact a phloem vessel than in those with lower levels. When aphids carrying BYDV were allowed to feed on wheat cultivars with different DIMBOA levels, fewer plants were infected with BYDV in the higher DIMBOA cultivars than in the lower ones. Preliminary field experiments showed a tendency for wheat cultivars with higher Hx levels to be more tolerant to infection by BYDV than lower Hx level ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号