首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Temperate phage P2 has the capacity to function as a helper for the defective, unrelated, satellite phage P4. In the absence of a helper, P4 can either lysogenize its host or establish itself as a plasmid. For lytic growth, P4 requires the structural genes, packaging and lysis functions of the helper. P4 can get access to the late genes of prophage P2 by derepression, which is mediated by the P4 E protein. E has been hypothesized to function as an anti-repressor. To locate possible epitopes interacting with E, an epitope display library was screened against E, and the most frequent sequence found had some identities to a region within P2 C. Using the yeast two-hybrid system, a clear activation of a reporter gene was found, strongly supporting an interaction between E and C. The P2 C repressor is believed to act as a dimer, which is confirmed in this work using in vivo dimerization studies. The E protein was also found to form dimers in vivo . The E protein only affects dimerization of C marginally, but the presence of E enhances multimeric forms of C. Furthermore, binding of the C protein to its operator is inhibited by E in vitro , indicating that the anti-repressor function of E is mediated by the formation of multimeric complexes of E and C that interfere with the binding of C to its operator.  相似文献   

4.
P4 is a satellite phage which relies on a helper such as P2 to supply the gene products necessary for particle construction and cell lysis (Six, 1975). P4 can activate the expression of late genes from a P2 helper phage, using a mechanism different from that employed by the helper. In the presence of P4, replication of P2 DNA is not required for late gene expression (Six & Lindqvist, 1971), and the polar effects of P2 amber mutations are suppressed.Despite its small size P4 codes for two late proteins as well as two early proteins. One of the P4 early proteins is that the product of gene α. The expression of P4 late genes is stimulated by the helper phage. Thus the P2 and P4 chromosomes exhibit reciprocal transactivation.The presence of the P4 genome causes the P2 head proteins to form a head smaller than that found after infection by P2 (Gibbs et al., 1973). P4 late proteins associate with head-like structures and may determine the small size of P4 heads.  相似文献   

5.
6.
7.
8.
Two temperature-sensitive mutants of satellite phage P4 which do not synthesize P4 DNA at the nonpermissive temperature have been isolated. One of these phage is mutated in the P4 alpha gene. It complements a P4 delta mutant, but not a P4 alpha amber mutant; both mutants are phenotypically identical to alpha amber mutants in all properties studied. They synthesize P4 early proteins 1 and 2 as well as two additional P4-induced early proteins, 5 and 6, which are described here. P4 late proteins are not synthesized by these mutants and cannot be transactivated by helper phage P2. The mutants are unable to transactivate P2 late proteins from a P2 AB mutant. The P4 RNA polymerase activity which has been suggested to be involved in P4 DNA synthesis is not detected at the nonpermissive temperature. The P4 polymerase activity in partially purified extracts prepared from cells infected with the mutant at the permissive temperature is temperature sensitive. Reduced activity is found in vitro when these extracts are preincubated at 41 degrees C or assayed at temperatures higher than 37 degrees C. Thus, the P4 RNA polymerase is the product of the alpha gene. Temperature shift experiments show that the alpha gene product is required until late in the P4 cycle.  相似文献   

9.
10.
11.
12.
13.
Alternative promoters in the development of bacteriophage plasmid P4.   总被引:16,自引:1,他引:15       下载免费PDF全文
  相似文献   

14.
Cucumber mosaic virus (CMV) is a tripartite RNA virus that can support the replication of satellite RNAs, small molecular parasites of the virus. Satellite RNAs can have a dramatic effect on the helper virus and the host plant in a manner specific to the helper, satellite, and host. Previously, we showed that the Sny-CMV strain is not able to support the replication of the WL1 satellite RNA in zucchini squash and that this phenotype maps to RNA 1. In the present study, we use recombinant cDNA clones of Fny- and Sny-CMV RNA 1 and a site-directed mutant of Fny-CMV RNA 1 to demonstrate that the inability to support WL1 satellite RNA maps to a single amino acid at residue 978 in the 1a protein, proximal to the helicase domain VI. Support of satellite RNA in whole plants and in protoplasts of zucchini squash is analyzed.  相似文献   

15.
ADENO-ASSOCIATED satellite viruses (ASV) are extremely defective in that they need a helper adenovirus to complete their replication cycle in susceptible cells1–3. Although the helper virus is usually not defective there have been reports of systems which are at least conditionally defective. Smith and Gehle4 found that a canine adenovirus, ICH, which did not seem to replicate in human amnion cells (essentially a non-permissive system) could be used to pass the satellite serially in these cells if the passage was reinfected each time with helper virus. Ito et al.5 reported that a temperature-sensitive mutant of human adenovirus type 31, ts 13, defective in viral DNA synthesis, could complement a cycle of satellite virus replication at the non-permissive temperature.  相似文献   

16.
Satellite bacteriophage P4 requires the products of the late genes of a helper phage such as P2 for lytic growth. Expression of the P2 late genes is positively regulated by the P2 ogr gene in a process requiring P2 DNA replication. Transactivation of P2 late gene expression by P4 requires the P4 delta gene product and works even in the absence of P2 DNA replication. We have made null mutants of the P2 ogr and P4 delta genes. In the absence of the P4 delta gene product, P4 multiplication required both the P2 ogr protein and P2 DNA replication. In the absence of the P2 ogr gene product, P4 multiplication required the P4 delta protein. In complementation experiments, we found that the P2 ogr protein was made in the absence of P2 DNA replication but could not function unless P2 DNA replicated. We produced P4 delta protein from a plasmid and found that it complemented the null P4 delta and P2 ogr mutants.  相似文献   

17.
Desai PJ 《Journal of virology》2000,74(24):11608-11618
The UL36 open reading frame (ORF) encodes the largest herpes simplex virus type 1 (HSV-1) protein, a 270-kDa polypeptide designated VP1/2, which is also a component of the virion tegument. A null mutation was generated in the UL36 gene to elucidate its role in the virus life cycle. Since the UL36 gene specifies an essential function, complementing cell lines transformed for sequences encoding the UL36 ORF were made. A mutant virus, designated KDeltaUL36, that encodes a null mutation in the UL36 gene was isolated and propagated in these cell lines. When noncomplementing cells infected with KDeltaUL36 were analyzed, both terminal genomic DNA fragments and DNA-containing capsids (C capsids) were detected; therefore, UL36 is not required for cleavage or packaging of DNA. Sedimentation analysis of lysates from mutant-infected cells revealed the presence of particles that have the physical characteristics of C capsids. In agreement with this, polypeptide profiles of the mutant particles revealed an absence of the major envelope and tegument components. Ultrastructural analysis revealed the presence of numerous unenveloped DNA containing capsids in the cytoplasm of KDeltaUL36-infected cells. The UL36 mutant particles were tagged with the VP26-green fluorescent protein marker, and their movement was monitored in living cells. In KDeltaUL36-infected cells, extensive particulate fluorescence corresponding to the capsid particles was observed throughout the cytosol. Accumulation of fluorescence at the plasma membrane which indicated maturation and egress of virions was observed in wild-type-infected cells but was absent in KDeltaUL36-infected cells. In the absence of UL36 function, DNA-filled capsids are produced; these capsids enter the cytosol after traversing the nuclear envelope and do not mature into enveloped virus. The maturation and egress of the UL36 mutant particles are abrogated, possibly due to a late function of this complex polypeptide, i.e., to target capsids to the correct maturation pathway.  相似文献   

18.
19.
PKA/PrKX activity is a modulator of AAV/adenovirus interaction   总被引:7,自引:0,他引:7  
Interference between viruses occurs when infection by one virus results in the inhibition of replication of another virus. Adeno-associated virus (AAV2) is a human parvovirus with the unique characteristics of a dependence upon a helper virus for a productive infection and the ability to interfere with the replication of the helper virus. Previously, we demonstrated that AAV2 Rep78 and Rep52 interact and inhibit cAMP-dependent protein kinase A (PKA) and its novel homolog PrKX. We hypothesized that modulation of PKA activity by AAV2 may be responsible for inhibition of helper virus replication. In this study we demonstrate that adenovirus replication is sensitive to PKA activity and that AAV2 Rep78/Rep52 proteins contain an inhibitory domain similar to that of the heat-stable PKA inhibitor. This domain, while not directly necessary for AAV2 replication and packaging, is necessary to preserve AAV2 replication fitness during an Ad co-infection. Furthermore, a mutant AAV2 virus lacking this region fails to inhibit adenovirus replication. Thus, inhibition of PKA activity by AAV2 constitutes a novel form of viral interference.  相似文献   

20.
Simon AE  Howell SH 《The EMBO journal》1986,5(13):3423-3428
RNA C (355 bases), RNA D (194 bases) and RNA F (230 bases) are small, linear satellite RNAs of turnip crinkle virus (TCV) which have been cloned as cDNAs and sequenced in this study. These RNAs produce dramatically different disease symptoms in infected plants. RNA C is a virulent satellite that intensifies virus symptoms when co-inoculated with its helper virus in turnip plants, while RNA D and RNA F are avirulent. RNA D and RNA F, the avirulent satellites, are closely related to each other except that RNA F has a 36-base insert near its 3' end, not found in RNA D. The 189 bases at the 5' end of RNA C, the virulent satellite, are homologous to the entire sequence of RNA D. However, the 3' half of RNA C, is composed of 166 bases which are nearly identical to two regions at the 3' end of the TCV helper virus genome. Hence, the virulent satellite is a composite molecule with one domain at its 5' end homologous to the other avirulent satellites and another domain at its 3' end homologous to the helper virus genome. All four TCV RNAs, RNAs C, D and F and the helper virus genome have identical 7 bases at their 3' ends. The secondary structure of RNA C deduced from the sequence can be folded into two separate domains — the domain of helper virus genome homology and the domain homologous to other TCV satellite RNAs. Comparative sequences of several different RNA C clones reveal that this satellite is a population of molecules with sequence and length heterogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号