首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have performed an 4-ns MD simulation of calmodulin complexed with a target peptide in explicit water, under realistic conditions of constant temperature and pressure, in the presence of a physiological concentration of counterions and using Ewald summation to avoid truncation of long-range electrostatic forces. During the simulation the system tended to perform small fluctuations around a structure similar to, but somewhat looser than the starting crystal structure. The calmodulin-peptide complex was quite rigid and did not exhibit any large amplitude domain motions such as previously seen in apo- and calcium-bound calmodulin. We analyzed the calmodulin-peptide interactions by calculating buried surface areas, CHARMM interaction energies and continuum model interaction free energies. In the trajectory, the protein surface area buried by contact with the peptide is 1373 A(2) approximately evenly divided between the calmodulin N-terminal, C-terminal and central linker regions. A majority of this buried surface, 803 A(2), comes from nonpolar residues, in contrast to the protein as a whole, for which the surface is made up of mostly polar and charged groups. Our continuum calculations indicate that the largest favorable contribution to peptide binding comes from burial of molecular surface upon complex formation. Electrostatic contributions are favorable but smaller in the trajectory structures, and actually unfavorable for binding in the crystal structure. Since nonpolar groups make up most of buried surface of the protein, our calculations suggest that the hydrophobic effect is the main driving force for binding the helical peptide to calmodulin, consistent with thermodynamic analysis of experimental data. Besides the burial of nonpolar surface area, secondary contributions to peptide binding come from burial of polar surface and electrostatic interactions. In the nonpolar interactions a crucial role is played by the nine methionines of calmodulin. In the electrostatic interactions the negatively charged protein residues and positively charged peptide residues play a dominant role.  相似文献   

2.
Abstract

We have performed an 4-ns MD simulation of calmodulin complexed with a target peptide in explicit water, under realistic conditions of constant temperature and pressure, in the presence of a physiological concentration of counterions and using Ewald summation to avoid truncation of long-range electrostatic forces. During the simulation the system tended to perform small fluctuations around a structure similar to, but somewhat looser than the starting crystal structure. The calmodulin-peptide complex was quite rigid and did not exhibit any large amplitude domain motions such as previously seen in apo- and calcium-bound calmodulin. We analyzed the calmodulin-peptide interactions by calculating buried surface areas, CHARMM interaction energies and continuum model interaction free energies. In the trajectory, the protein surface area buried by contact with the peptide is 1373 Å2, approximately evenly divided between the calmodulin N-terminal, C-terminal and central linker regions. A majority of this buried surface, 803 ·A2, comes from nonpolar residues, in contrast to the protein as a whole, for which the surface is made up of mostly polar and charged groups. Our continuum calculations indicate that the largest favorable contribution to pep- tide binding comes from burial of molecular surface upon complex formation. Electrostatic contributions are favorable but smaller in the trajectory structures, and actually unfavorable for binding in the crystal structure. Since nonpolar groups make up most of buried surface of the protein, our calculations suggest that the hydrophobic effect is the main driving force for binding the helical peptide to calmodulin, consistent with thermodynamic analysis of experimental data. Besides the burial of nonpolar surface area, secondary contributions to peptide binding come from burial of polar surface and electrostatic interactions. In the nonpolar interactions a crucial role is played by the nine methionines of calmodulin. In the electrostatic interactions the negatively charged protein residues and positively charged peptide residues play a dominant role.  相似文献   

3.
A three-dimensional model of an electron-transfer complex between the tetrahemic cytochrome c3 and the ferredoxin I from the sulfate-reducing bacterium Desulfovibrio desulfuricans (Norway strain) has been generated through computer graphics methods. The model is based on the known X-ray structure of the cytochrome and on a model of the ferredoxin that has been derived through computer graphics modeling and energy minimization methods, from the X-ray structure of the homologous ferredoxin from Peptococcus aerogenes. Four possible models of interaction between the two molecules were examined by bringing in close proximity each of the four hemes and the redox center (4Fe-4S) of the ferredoxin and by optimizing the ion pairs interactions. One of these models shows by far the "best" structure in terms of charges, interactions, and complementarity of the topology of the contact surfaces. In this complex, the distance between the iron atoms of the ferredoxin redox center and the hemic iron atom is 11.8 A, which compares well with those found between redox centers in other complexes. The contact surface area between the two molecules is 170 A2.  相似文献   

4.
A multiple-start Monte Carlo docking method.   总被引:1,自引:0,他引:1  
T N Hart  R J Read 《Proteins》1992,13(3):206-222
We present a method to search for possible binding modes of molecular fragments at a specific site of a potential drug target of known structure. Our method is based on a Monte Carlo (MC) algorithm applied to the translational and rotational degrees of freedom of the probe fragment. Starting from a randomly generated initial configuration, favorable binding modes are generated using a two-step process. An MC run is first performed in which the energy in the Metropolis algorithm is substituted by a score function that measures the average distance of the probe to the target surface. This has the effect of making buried probes move toward the target surface and also allows enhanced sampling of deep pockets. In a second MC run, a pairwise atom potential function is used, and the temperature parameter is slowly lowered during the run (Simulated Annealing). We repeat this procedure starting from a large number of different randomly generated initial configurations in order to find all energetically favorable docking modes in a specified region around the target. We test this method using two inhibitor-receptor systems: Streptomyces griseus proteinase B in complex with the third domain of the ovomucoid inhibitor from turkey, and dihydrofolate reductase from E. coli in complex with methotrexate. The method could consistently reproduce the complex found in the crystal structure searching from random initial positions in cubes ranging from 25 A to 50 A about the binding site. In the case of SGPB, we were also successful in docking to the native structure. In addition, we were successful in docking small probes in a search that included the entire protein surface.  相似文献   

5.
ABSTRACT: BACKGROUND: Protein-protein interactions form the core of several biological processes. With protein-protein interfaces being considered as drug targets, studies on their interactions and molecular mechanisms are gaining ground. As the number of protein complexes in databases is scarce as compared to a spectrum of independent protein molecules, computational approaches are being considered for speedier model derivation and assessment of a plausible complex. In this study, a good approach towards in silico generation of protein-protein heterocomplex and identification of the most probable complex among thousands of complexes thus generated is documented. This approach becomes even more useful in the event of little or no binding site information between the interacting protein molecules. FINDINGS: A plausible protein-protein hetero-complex was fished out from 10 docked complexes which are a representative set of complexes obtained after clustering of 2000 generated complexes using protein-protein docking softwares. The interfacial area for this complex was predicted by two "hotspot" prediction programs employing different algorithms. Further, this complex had the lowest energy and most buried surface area of all the complexes with the same interfacial residues. CONCLUSIONS: For the generation of a plausible protein heterocomplex, various software tools were employed. Prominent are the protein-protein docking methods, prediction of 'hotspots' which are the amino acid residues likely to be in an interface and measurement of buried surface area of the complexes. Consensus generated in their predictions lends credence to the use of the various softwares used.  相似文献   

6.
Gao YD  Huang JF 《动物学研究》2011,32(3):262-266
非键相互作用对于生物体系中的分子识别和结合过程起着关键作用。然而,传统的方法并不能在残基水平自动批量计算非键相互作用。近年来,已经发展了一些方法和工具进行非键相互作用的计算分析。该文研究发展了一种可以自动计算残基间非键相互作用的方法,即用Perl脚本调用Discovery Studio 2.0(DS 2.0,Accelrys Inc.)底层模块中的非键相互作用协议,实现了直接利用命令行批量计算非键相互作用能量,而无需通过DS2.0的图形界面。该方法扩展了DS2.0的计算模块,并于近期运用到了复合结构的研究分析中。  相似文献   

7.
The solution structure of the final phosphoryl transfer complex in the glucose-specific arm of the Escherichia coli phosphotransferase system, between enzyme IIAGlucose (IIAGlc) and the cytoplasmic B domain (IIBGlc) of the glucose transporter IICBGlc, has been solved by NMR. The interface (approximately 1200-A2 buried surface) is formed by the interaction of a concave depression on IIAGlc with a convex protrusion on IIBGlc. The phosphoryl donor and acceptor residues, His-90 of IIAGlc and Cys-35 of IIBGlc (residues of IIBGlc are denoted in italics) are in close proximity and buried at the center of the interface. Cys-35 is primed for nucleophilic attack on the phosphorus atom by stabilization of the thiolate anion (pKa approximately 6.5) through intramolecular hydrogen bonding interactions with several adjacent backbone amide groups. Hydrophobic intermolecular contacts are supplemented by peripheral electrostatic interactions involving an alternating distribution of positively and negatively charged residues on the interaction surfaces of both proteins. Salt bridges between the Asp-38/Asp-94 pair of IIAGlc and the Arg-38/Arg-40 pair of IIBGlc neutralize the accumulation of negative charge in the vicinity of both the Sgamma atom of Cys-35 and the phosphoryl group in the complex. A pentacoordinate phosphoryl transition state is readily accommodated without any change in backbone conformation, and the structure of the complex accounts for the preferred directionality of phosphoryl transfer between IIAGlc and IIBGlc. The structures of IIAGlc.IIBGlc and the two upstream complexes of the glucose phosphotransferase system (EI.HPr and IIAGlc.HPr) reveal a cascade in which highly overlapping binding sites on HPr and IIAGlc recognize structurally diverse proteins.  相似文献   

8.
Human thiopurine S-methyltransferase (TPMT) is an essential protein in 6-mercaptopurine (6MP) drug metabolism. To understand the pharmacogenetics of TPMT and 6MP, X-ray co-crystal structures of TPMT complexes with S-adenosyl-L-methionine (AdoMet) and 6MP are required. However, the co-crystal structure of this complex has not been reported because 6MP is poorly water soluble. We used molecular dynamics (MD) simulation to predict the structure of the complex of human TPMT-AdoHcy(CH2)6MP, where the sulfur atoms of AdoHcy and 6MP were linked by a CH2 group. After 1300 picoseconds of MD simulation, the trajectory showed that 6MP was stabilized in the TPMT active site by formation of non-bonded interactions between 6MP and Phe40, Pro196 and Arg226 side chains of TPMT. The intersulfur distance between AdoHcy and 6MP as well as the binding modes and the interactions of our TPMT-AdoHcy model are consistent with those observed in the X-ray crystal structure of murine TPMT-AdoHcy-6MP complex. The predicted binding modes of AdoHcy and 6MP in our model are consistent with those observed in murine TPMT X-ray crystal structures, which provides structural insights into the interactions of TPMT, AdoHcy, and 6MP at the atomic level and may be used as a starting point for further study of thiopurine drug pharmacogenetics.  相似文献   

9.
Recombination is important for the repair of DNA damage and for chromosome segregation during meiosis; it has also been shown to participate in the regulation of cell proliferation. In the yeast Saccharomyces cerevisiae, recombination requires products of the RAD52 epistasis group. The Rad51 protein associates with the Rad51, Rad52, Rad54, and Rad55 proteins to form a dynamic complex. We describe a new strategy to screen for mutations which cause specific disruption of the interaction between certain proteins in the complex, leaving other interactions intact. This approach defines distinct protein interaction domains and protein relationships within the Rad51 complex. Alignment of the mutations onto the constructed three-dimensional model of the Rad51 protein reveal possible partially overlapping interfaces for the Rad51-Rad52 and the Rad51-Rad54 interactions. Rad51-Rad55 and Rad51-Rad51 interactions are affected by the same spectrum of mutations, indicating similarity between the two modes of binding. Finally, the detection of a subset of mutations within Rad51 which disrupt the interaction with mutant Rad52 protein but activate the interaction with Rad54 suggests that dynamic changes within the Rad51 protein may contribute to an ordered reaction process.  相似文献   

10.
Computational methods are used to determine the three-dimensional structure of the Agitoxin (AgTx2)-Shaker complex. In a first stage, a large number of models of the complex are generated using high temperature molecular dynamics, accounting for side chain flexibility with distance restraints deduced from thermodynamic analysis of double mutant cycles. Four plausible binding mode candidates are found using this procedure. In a second stage, the quality and validity of the resulting complexes is assessed by examining the stability of the binding modes during molecular dynamics simulations with explicit water molecules and by calculating the binding free energies of mutant proteins using a continuum solvent representation and comparing with experimental data. The docking protocol and the continuum solvent model are validated using the Barstar-Barnase and the lysozyme-antibody D1.2 complexes, for which there are high-resolution structures as well as double mutant data. This combination of computational methods permits the identification of two possible structural models of AgTx2 in complex with the Shaker K+ channel, additional structural analysis providing further evidence in favor of a single model. In this final complex, the toxin is bound to the extracellular entrance of the channel along the pore axis via a combination of hydrophobic, hydrogen bonding, and electrostatic interactions. The magnitude of the buried solvent accessible area corresponding to the protein-protein contact is on the order of 1000 A with roughly similar contributions from each of the four subunits. Some side chains of the toxin adopt different conformation than in the experimental solution structure, indicating the importance of an induced-fit upon the formation of the complex. In particular, the side chain of Lys-27, a residue highly conserved among scorpion toxins, points deep into the pore with its positively charge amino group positioned at the outer binding site for K+. Specific site-directed mutagenesis experiments are suggested to verify and confirm the structure of the toxin-channel complex.  相似文献   

11.
We review here signalling complexes that we have defined using X-ray analysis in our laboratory. They include growth factors and their receptors: nerve growth factor (NGF) and its hetero-hexameric 7S NGF storage complex, hepatocyte growth factor/scatter factor (HGF/SF) NK1 dimers and fibroblast growth factor (FGF1) in complex with its receptor (FGFR2) ectodomain and heparin. We also review our recent structural studies on intracellular signalling complexes, focusing on phosducin transducin GPry, CK2 protein kinase and its complexes, and the cyclin D-dependent kinase, Cdk6, bound to the cell cycle inhibitor p19INK4d. Comparing the structures of these complexes with others we show that the surface area buried in signalling interactions does not always give a good indication of the strength of the interactions. We show that conformational changes are often important in complexes with intermediate buried surface areas of 1500 to 2000 A2, such as Cdk6INK4 interactions. Some interactions involve recognition of continuous epitopes, where there is no necessity for a tertiary structure and very often the binding conformation is induced during the process of interaction, for example phosducin binding to the betagamma subunits (Gtbetagamma) of the heterotrimeric G protein transducin.  相似文献   

12.
Label-free technologies, such as surface plasmon resonance, are typically used for characterization of protein interactions and in screening for selection of antibodies or small molecules with preferred binding properties. In characterization, complete binding curves are normally fitted to defined interaction models to provide affinity and rate constants, whereas report points indicative of binding and stability of binding are often used for analysis of screening data. As an alternative to these procedures, here we describe how the analysis, in certain cases, can be simplified by comparison with upper and lower limit binding curves that represent expected or wanted binding profiles. The use of such profiles is applied to the analysis of kinetically complex IgG–Fc receptor interactions and for selection of antibody candidates. The comparison procedure described may be particularly useful in batch-to-batch comparisons and in comparability and biosimilar studies of biotherapeutic medicines. In screening, more informed selections may become possible as entire binding profiles and not a few report points are used in the analysis and as each new sample is directly compared with a predefined outcome.  相似文献   

13.
Phosphofructokinase from Escherichia coli (EcPFK) is a homotetramer with four active sites and four allosteric sites. Understanding the allosteric activation of EcPFK by MgADP has been complicated by the complex web of possible interactions, including active site homotropic interactions, allosteric site homotropic interactions, and heterotropic interactions between active and allosteric sites. The current work has simplified this web of possible interactions to a series of single heterotropic interactions by forming and isolating hybrid tetramers. Each of the four unique heterotropic interactions have independently been isolated and compared to a control that has all four of the unique heterotropic interactions. If the interactions are labeled with the distances between interacting ligands, the 45-A interaction contributes 20% +/- 1%, the 33-A interaction contributes 34% +/- 1%, the 30-A interaction contributes 21% +/- 1%, and the 23-A interaction contributes 25% +/- 1% with respect to the total free energy of MgADP/fructose 6-phosphate (Fru-6-P) activation in the control. The free energies of the isolated interactions sum to 100% +/- 2% of the total. Therefore, the four unique interactions are all contributors to activation, are nonequivalent, and are additive.  相似文献   

14.
Reduction of the bis-pilocarpate-haemin complex at pH greater than or equal to 10 involves the simultaneous uptake of an electron by the Fe(III) ion and a proton by the pendant alkoxide group of an axial ligand. This provides a protein-free model for reactions such as the proton-coupled reduction of cytochromes which involve cooperative Coulombic interaction between two non-bonded sites.  相似文献   

15.
The crystal structure of the complex between neuraminidase from influenza virus (subtype N9 and isolated from an avian source) and the antigen-binding fragment (Fab) of monoclonal antibody NC41 has been refined by both least-squares and simulated annealing methods to an R-factor of 0.191 using 31,846 diffraction data in the resolution range 8.0 to 2.5 A. The resulting model has a root-mean-square deviation from ideal bond-length of 0.016 A. One fourth of the tetrameric complex comprises the crystallographic model, which has 6577 non-hydrogen atoms and consists of 389 protein residues and eight carbohydrate residues in the neuraminidase, 214 residues in the Fab light chain, and 221 residues in the heavy chain. One putative Ca ion buried in the neuraminidase, and 73 water molecules, are also included. A remarkable shape complementarity exists between the interacting surfaces of the antigen and the antibody, although the packing density of atoms at the interface is somewhat looser than in the interior of a protein. Similarly, there is a high degree of chemical complementarity between the antigen and antibody, mediated by one buried salt-link, two solvated salt-links and 12 hydrogen bonds. The antibody-binding site on neuraminidase is discontinuous and comprises five chain segments and 19 residues in contact, whilst 33 neuraminidase residues in eight segments have 899 A2 of surface area buried by the interaction (to a 1.7 A probe), including two hexose units. Seventeen residues in NC41 Fab lying in five of the six complementarity determining regions (CDRs) make contact with the neuraminidase and 36 antibody residues in seven segments have 916 A2 of buried surface area. The interface is more extensive than those of the three lysozyme-Fab complexes whose crystal structures have been determined, as judged by buried surface area and numbers of contact residues. There are only small differences (less than 1.5 A) between the complexed and uncomplexed neuraminidase structures and, at this resolution and accuracy, those differences are not unequivocal. The main-chain conformations of five of the CDRs follow the predicted canonical structures. The interface between the variable domains of the light and heavy chains is not as extensive as in other Fabs, due to less CDR-CDR interaction in NC41. The first CDR on the NC41 Fab light chain is positioned so that it could sterically hinder the approach of small as well as large substrates to the neuraminidase active-site pocket, suggesting a possible mechanism for the observed inhibition of enzyme activity by the antibody.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Cytochromes c are very widespread proteins that play key roles in the electron transfer events associated to a wide variety of physiological redox processes. The function of cytochromes c is, at the broad level, to interact with different partners in order to allow electrons to flow from one protein to another. Here, we focused our attention on the protein-protein interactions that involve mono-heme cytochrome c domains in order to identify possible general vs. specific patterns of intermolecular interactions at the structural level. We observed that a number of physico-chemical properties are statistically different in transient vs. permanent and fused complexes. These include the extent of the protein interface area, the amino acid composition and the packing density at the interface. The understanding of the features of transient redox complexes is of particular importance because of the difficulty of obtaining co-crystals that preserve the physiologically relevant configuration. In addition, we identified three different structural modes of interaction that cover all the structurally characterized cytochrome c interactions except one. The mode of interaction does not correlate with the nature of the complex (transient, permanent, fused). Regardless of the mode of interaction, the distance between the heme iron and the partner metal center or organic cofactor center of mass is typically around 19-20 ? for complexes permitting direct electron transfer between the two sites.  相似文献   

17.
The availability of the structures of the cytochrome b6f complex (cyt b6f), plastocyanin (PC), and cytochrome c6 (cyt c6) from Chlamydomonas reinhardtii allowed us, for the first time, to model electron transfer interactions between the luminal domains of this complex (including cyt f and the Rieske FeS protein) and its redox partners in the same species. We also generated a model structure in which the FeS center of the Rieske protein was positioned closer to the heme of cyt f than observed in the crystal structure and studied its interactions with both PC and cyt c6. Our data showed that the Rieske protein in both the original crystal structure and in our modeled structure of the cyt b6f complex did not physically interfere with binding position or orientation of PC or cyt c6 on cyt f. PC docked on cyt f with the same orientation in the presence or the absence of the Rieske protein, which matched well with the previously reported NMR structures of complexes between cyt f and PC. When the FeS center of the Rieske protein was moved close to the heme of cyt f, it even enhanced the interaction rates. Studies using a cyt f modified in the 184-191 loop showed that the cyt f structure is a more important factor in determining the rate of complex formations than is the presence or the absence of the Rieske protein or its position with respect to cyt f.  相似文献   

18.
Local hydrophobic collapse of the polypeptide chain and transient long-range interactions in unfolded states of apomyoglobin appear to occur in regions of the amino acid sequence which, upon folding, bury an above-average area of hydrophobic surface. To explore the role of these interactions in protein folding, we prepared and characterized apomyoglobins with compensating point mutations designed to change the average buried surface area in local regions of the sequence, while conserving as much as possible the constitution of the hydrophobic core. The behavior of the mutants in quench-flow experiments to determine the folding pathway was exactly as predicted by the changes in the buried surface area parameter calculated from the amino acid sequence. In addition, spin label experiments with acid-unfolded mutant apomyoglobin showed that the transient long-range contacts that occur in the wild-type protein are abolished in the mutant, while new contacts are observed between areas that now have above-average buried surface area. We conclude that specific groupings of amino acid side-chains, which can be predicted from the sequence, are responsible for early hydrophobic interactions in the first phase of folding in apomyoglobin, and that these early interactions determine the subsequent course of the folding process.  相似文献   

19.
The biocontrol by Pichia anomala strain Kh6 (Hansen) Kurtzman (Saccharomycetales: Endomycetaceae) has been extensively studied using microbial, biochemical and molecular approaches. However, due to the complexity of the interaction process, the inhibition mechanism remains uncharacterized. An objective study based on proteomic techniques could allow to increase our knowledge. Studying modes of action requires conditions as close as possible to natural infection in order to take into account interactions between organisms implicating a more complex protein extraction procedure. In the present study, we developed an in situ model allowing the interaction between apple, antagonist and pathogen and maintaining the antagonist inhibitory effect while limiting the contaminations by the apple components. Moreover, we set up an extraction protocol compatible with our in situ conditions and suitable for 2D analysis. Nine protocols, which differed in cell lysis or protein precipitation procedures, were compared on the basis of the protein yield, 1D gel quality and 2D gel quality.  相似文献   

20.
The protein-protein interaction energy of 12 nonhomologous serine protease-inhibitor and 15 antibody-antigen complexes is calculated using a molecular mechanics formalism and dissected in terms of the main-chain vs. side-chain contribution, nonrotameric side-chain contributions, and amino acid residue type involvement in the interface interaction. There are major differences in the interactions of the two types of protein-protein complex. Protease-inhibitor complexes interact predominantly through a main-chain-main-chain mechanism while antibody-antigen complexes interact predominantly through a side-chain-side-chain or a side-chain-main-chain mechanism. However, there is no simple correlation between the main-chain-main-chain interaction energy and the percentage of main-chain surface area buried on binding. The interaction energy is equally effected by the presence of nonrotameric side-chain conformations, which constitute approximately 20% of the interaction energy. The ability to reproduce the interface interaction energy of the crystal structure if original side-chain conformations are removed from the calculation is much greater in the protease-inhibitor complexes than the antibody-antigen complexes. The success of a rotameric model for protein-protein docking appears dependent on the extent of the main-chain-main-chain contribution to binding. Analysis of (1) residue type and (2) residue pair interactions at the interface show that antibody-antigen interactions are very restricted with over 70% of the antibody energy attributable to just six residue types (Tyr > Asp > Asn > Ser > Glu > Trp) in agreement with previous studies on residue propensity. However, it is found here that 50% of the antigen energy is attributable to just four residue types (Arg = Lys > Asn > Asp). On average just 12 residue pair interactions (6%) contribute over 40% of the favorable interaction energy in the antibody-antigen complexes, with charge-charge and charge/polar-tyrosine interactions being prominent. In contrast protease inhibitors use a diverse set of residue types and residue pair interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号