首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Isolation of ribosomal RNA precursors from Physarum polycephalum   总被引:2,自引:0,他引:2  
Ribosomal RNA synthesis in Physarum polycephalum was studied by labeling intact microplasmodia with [3H]uridine. Labeled, high-molecular-weight RNA species were found in a 30,000 S structure released by phenol extraction at room temperature. RNA was released from the structure by further phenol extraction at 65–70 °C. If the labeling period was 15 min or longer, the labeled RNA was seen by polyacrylamide gel electrophoresis to be of two major types, a heterodisperse collection of 45-35 S molecules and a 26 S species. If the labeling was carried out for 30 min in the presence of cycloheximide, the major labeled species had an electrophoretic mobility corresponding to 40 S. Studies of the labeling kinetics, methylation, and base composition of these RNA molecules indicate that they are precursors to ribosomal RNA. The molecular weights of the homogeneous 40 and 26 S precursors are 3.0 × 106 and 1.45 × 106 daltons, respectively, in comparison with molecular weights of 1.29 × 106 and 0.68 × 106 daltons for the completed ribosomal RNA's.  相似文献   

2.
3.
L H Chang  A G Marshall 《Biopolymers》1986,25(7):1299-1313
The unfolding of B. subtilis 5S RNA is examined by direct calorimetric measurement in the presence of various concentrations of Na+ and Mg2+. The composite differential scanning calorimetry (DSC) curve is analyzed into 3–5 individual two-state melting transitions. In the absence of added Na+ or Mg2+, the 5S RNA segments melt together at Tm = 40°C. Addition of Na+ stabilizes the molecular structure (Tm = 56°C) and widens the melting temperature range, so that up to five component transitions are observed. Addition of Mg2+ alone produces a very stable structure (Tm = 75°C) with highly cooperative melting. Finally, addition of both Na+ and Mg2+ produces the highest stability (Tm = 76°C). The results are interpreted according to hypothetical secondary and tertiary base-pairing schemes. The conformational changes demonstrated here may facilitate the movement of the protein synthesis machinery during RNA translation.  相似文献   

4.
Potassium- and proton-dependent membrane potential, conductance, and current-voltage characteristics (IV curves) have been measured on rhizoid cells of the liverwort Riccia fluitans. The potential difference (Em) measured with microelectrodes across plasmalemma and tonoplast is depolarized to the potassium-sensitive diffusion potential (ED) in the presence of 1 mM NaCN, 1 mM NaN3, or at temperatures below 6°C. Whereas the temperature change from 25°C to 5°C decreases the membrane conductance (gm) from 0.71 to 0.43 S ? m?2, 1 mM NaCN increases gm by about 25%. The membrane displays potassium-controlled rectification which gradually disappears at temperatures below 5°C. The potassium pathway can be described by an equivalent circuit of a diode and an ohmic resistor in parallel. In the potential interval of ED ± 100 mV the measured I-V curves roughly fit the theoretical curves obtained from a modified diode equation. 86Rb+(K+)-influx is voltage sensitive: In the presence of 1 mM NaCN, 86Rb+-influx follows a hyperbolic function corresponding to a low conductance at low [K+]o and high conductance at high [K+]o. On the contrary 86Rb+-influx is linear with [K+]o when pump activity is normal. It is believed that there are two K+-transport pathways in the Riccia membrane, one of which is assigned to the low conductance (0.2 S · m?2), the other to a temperature-dependent facilitated diffusion system with a higher conductance (7.7 S · m?2). The electrogenic pump essentially acts as a current source and consumes about 39% of the cellular ATP-turnover. In the presence of 30 μM CCCP the saturation current of 0.1 A · m?2 is doubled to about 0.2 A · m?2, and the electromotive force of ?360 mV switches to ?250 mV. It is suggested that this may be due to a change in stoichiometry from one to two transported charges per ATP hydrolyzed.  相似文献   

5.
Ribosomal RNA synthesis in mitochondria of Neurospora crassa   总被引:10,自引:0,他引:10  
Ribosomal RNA synthesis in Neurospora crassa mitochondria has been investigated by continuous labeling with [5-3H]uracil and pulse-chase experiments. A short-lived 32 S mitochondrial RNA was detected, along with two other short-lived components; one slightly larger than large subunit ribosomal RNA, and the other slightly larger than small subunit ribosomal RNA. The experiments give support to the possibility that 32 S RNA is the precursor of large and small subunit ribosomal RNA's. Both mature ribosomal RNA's compete with 32 S RNA in hybridization to mitochondrial DNA. Quantitative results from such hybridization-competition experiments along with measurements of electrophoretic mobility have been used to construct a molecular size model for synthesis of mitochondrial ribosomal RNA's. The large molecular weight precursor (32 S) of both ribosomal RNA's appears to be 2.4 × 106 daltons in size. Maturation to large subunit RNA (1.28 × 106 daltons) is assumed to involve an intermediate ~1.6 × 106 daltons in size, while cleavage to form small subunit RNA (0.72 × 106 daltons) presumably involves a 0.9 × 106 dalton intermediate. In the maturation process ~22% of the precursor molecule is lost. As is the case for ribosomal RNA's, the mitochondrial precursor RNA has a strikingly low G + C content.  相似文献   

6.
A cell extract prepared from the lig-ts7 mutant of Escherichia coli is able to carry out a complete round of DNA replication of colicin E1 plasmid at 25 °C. However, the apparent rate of elongation of the progeny strands at this temperature is much smaller than in an extract from the thermoresistant revertant cells. Chain elongation in the lig-ts extract is depressed by raising the incubation temperature from 25 °C to 32 °C, whereas that in the lig+ revertant extract is not. The rate of closure of the progeny strands of newly formed open circular molecules is also reduced in the lig-ts extract, even at 25 °C.The DNA pulse-labelled with the lig-ts extract for 30 seconds at 32 °C contains a large amount of short DNA fragments of approximately 7 S, in addition to DNA chains of various sizes between 7 S and 17 S (unit length). Most of these replicating molecules are converted to completely replicated closed circular molecules upon chasing with a lig+ extract. DNA-DNA hybridization experiments show that molecules replicated to various extents contain 7 S DNA fragments of both strands, but more of the L-strand component, whose 5′-to-3′ direction corresponds to the overall direction of unidirectional replication. The longer DNA chains are enriched in the H-strand component.The cell extracts used for the plasmid DNA replication have an activity which converts alkali-labile closed circular plasmid DNA containing apurinic sites to alkali-stable closed circular molecules. Addition of nicotinamide mononucleotide leads to conversion of the alkali-labile DNA to open circular molecules. In the replication system with the cell extract, however, the compound does not interfere with elongation of progeny strands. Chain elongation in the lig-ts extract at 25 °C is not significantly affected by nicotinamide mononucleotide. Thus, the 7 S DNA fragments formed with the lig-ts extract are unlikely to be generated as a result of incomplete repair of misincorporated nucleotides. We conclude that both strands of colicin E1 plasmid DNA replicate discontinuously.  相似文献   

7.
We investigated the nature of the defect in the temperature-sensitive mutant of Moloney murine sarcoma virus (Mo-MuSV), termed ts110. This mutant has a temperature-sensitive defect in a function required for maintenance of the transformed state. A nonproducer cell clone, 6m2, infected with ts110 expresses P85 and P58 at 33°C, the transformed temperature, but only P58 is detected at the restrictive temperature of 39°C. Shift-up (33°C → 39°C) and in vitro experiments have established that P85 is not thermolabile for immunoprecipitation. Previous temperature-shift experiments (39°C → 33°C) have shown that P85 synthesis resumes after a 2–3 hr lag period. Temperature shifts (39°C → 33°C) performed in the presence of actinomycin D prevented the synthesis of P85, whereas P58 synthesis did not decline for 5 hr, suggesting that P58 and P85 are translated from different mRNAs. The shift-up experiments also indicated that, once made, the RNA coding for P85 can function at the restrictive temperature for several hours. MuSV-ts110-infected cells superinfected with Mo-MuLV produced a ts110 MuSV-MuLV mixture. Sucrose gradient analysis of virus subunit RNAs revealed a ~28S and a ~35S peak. Electrophoresis of the ~28S poly(A)-containing RNA from ts110 virus in methyl mercuric hydroxide gels resolved two RNAs with estimated sizes of 1.9 × 106 and 1.6 × 106 daltons, both smaller than the wild type MuSV-349 genomic RNA (2.2 × 106 daltons). RNA in the ~28S size class from virus preparations harvested at 33°C was found to translate from P85 and P58, whereas, the ~35S RNA yielded helper virus Pr63gag. In contrast, virus harvested at 39°C was deficient in P85 coding RNA only. Peptide mapping experiments indicate that P85 contains P23 sequences, a candidate Moloney mouse sarcoma virus src gene product. Taken together, these results suggest that two virus-specific RNAs are present in ts 110-infected 6m2 cells and rescued ts110 pseudotype virions at 33°C, one coding for P85, whose expression can be interfered with by shifting the culture to 39°C; the other coding for P58, whose expression is unaffected by temperature shifts. P85 is a candidate gag-src fusion protein, while P58 contains gag sequences only.  相似文献   

8.
9.
Abstract Effects of temperature on the ionic relations and energy metabolism of Chara corallina were investigated. Measurements were made of the ionic content, tracer ion fluxes, and photosynthetic and dark CO2 fixation in isolated cells, and of O2 exchange in photosynthesis and respiration in isolated shoot apices. The total intracellular concentration of K+, Na+ and Cl? was the same in cells held for 5 days in non-growing medium at 15°C (the growth temperature) as in those held at 25°C or 5°C. The tracer influx in the light of all ions tested (Rb+, Na+, CH3NH3+, Cl? and H2PO4?) was lower at 5°C than at 15°C in experiments in which cells were subjected to 5°C for less than 24 h in toto. The influx at 25°C was greater than that at 15°C for H2PO?4, there was no difference between the two temperatures for Na+, while the influx at 25°C was less than that at 15°C for Cl?, Rb+ and CH3NH3+ For Cl? and H2PO?4 similar results were found in later experiments with cells grown at 20—23°C. Photosynthetic CO2 fixation and O2 evolution, and respiratory O2 uptake, are greater at 25°C, and lower at 5°C, than they are at the growth temperature of 15°C. In longer-term pretreatments at the different temperatures, tracer Cl? influx at 15°C and particularly at 25°C were lower than in short-term experiments, while the influx at 5°C was higher. It was concluded from these experiments, and from previous data on H+ free energy differences across the plasmalemma, that (1) the maintenance of internal ion concentrations involves a close balancing of influx and efflux of K+, Na+ and Cl? at all experimental temperatures; (2) the regulation of the tracer fluxes of the ions is kinetic rather than thermodynamic and (3) that the tracer fluxes at low temperatures are not restricted by the rate at which respiration or photosynthesis can supply energy to them.  相似文献   

10.
Structure and processing of precursor 5 S RNA in Drosophila melanogaster.   总被引:4,自引:0,他引:4  
The 135-nucleotide-long “5 + S” RNA molecule found in Drosophila tissue culture cells after labelling at 37 °C has been identified as a precursor to 5 S RNA by pulse-chase experiments. The structure of the 15-nucleotide-long 3′-terminal sequence which differentiates this molecule from mature 5 S RNA has been determined. This ends in a stretch of U residues, suggestive of a polymerase termination signal.  相似文献   

11.
12.
In Escherichia coli cells carrying the srnB+ gene of the F plasmid, rifampin, added at 42°C, induces the extensive rapid degradation of the usually stable cellular RNA (Ohnishi, Y., (1975) Science 187, 257–258; Ohnishi, Y., Iguma, H., Ono, T., Nagaishi, H. and Clark, A.J. (1977) J. Bacteriol. 132, 784–789). We have studied further the necessity for rifampin and for high temperature in this degradation. Streptolidigin, another inhibitor of RNA polymerase, did not induce the RNA degradation. Moreover, the stable RNA of some strains in which RNA polymerase is temperature-sensitive did not degrade at the restrictive temperature in the absence of rifampin. These data suggest that rifampin has an essential role in the RNA degradation, possibly by the modification of RNA polymerase function. A protein (Mr 12 000) newly synthesized at 42°C in the presence of rifampin appeared to be the product of the srnB+ gene that promoted the RNA degradation. In a mutant deficient in RNAase I, the extent of the RNA degradation induced by rifampin was greatly reduced. RNAase activity of cell-free crude extract from the RNA-degraded cells was temperature-dependent. The RNAase was purified as RNAase I in DEAE-cellulose column chromatography and Sephadex G-100 gel filtration. Both in vivo and with purified RNAase I, a shift of the incubation mixture from 42 to 30°C, or the addition of Mg2+ ions, stopped the RNA degradation. Thus, an effect on RNA polymerase seems to initiate the expression of the srnB+ gene and the activation of RNAase I, which is then responsible for the RNA degradation of E. coli cells carrying the srnB+ gene.  相似文献   

13.
The frequency of incorporation of the cytokinin N6-[p-3H]benzyladenine into major RNA species of tobacco (Nicotiana tabacum cv W 38) cells steadily increased as a function of its concentration in the culture medium, up to a 10 micromolar cytostatic overdose. During a 55-hour incubation of cells with 0.4 micromolar benzyladenine (BA), which is the optimal concentration for cell division, the incorporation frequency increased to one BA per 1.5 to 2.0 × 104 conventional bases in total RNA. Frequencies of BA incorporation into 18S and 25S rRNA and into RNA precursors were very similar, 2- to 3-fold higher than the frequency of BA incorporation into the 4S + 5S RNA fraction. In cells incubated with 10 micromolar BA, the rate of RNA synthesis between 24 and 55 hours was lower than at optimal growth conditions; 18S and 25S rRNA synthesis was depressed more than the synthesis of 4S + 5S RNA. At 55 hours, BA was incorporated into total RNA at the steady state frequency of one per 1,300 conventional bases. All major RNA species were BA-labeled to approximately the same level, except that the labeling of the RNA precursors was 2-fold higher than the labeling of mature RNA species. These results may reflect an alteration in the processing of the RNA precursors at supra-optimal cytokinin concentration.  相似文献   

14.
15.
Ribosomal RNA and precursor ribosomal RNA from at least one representative of each vertebrate class have been analyzed by electron microscopic secondary structure mapping. Reproducible patterns of hairpin loops were found in both 28 S ribosomal and precursor ribosomal RNA, whereas almost all the 18 S ribosomal RNA molecules lack secondary structure under the spreading conditions used. The precursor ribosomal RNA of all species analyzed have a common design. The 28 S ribosomal RNA is located at or near the presumed 5′-end and is separated from the 18 S ribosomal RNA region by the internal spacer region. In addition there is an external spacer region at the 3′-end of all precursor ribosomal RNA molecules. Changes in the length of these spacer regions are mainly responsible for the increase in size of the precursor ribosomal RNA during vertebrate evolution. In cold blooded vertebrates the precursor contains two short spacer regions; in birds the precursor bears a long internal and a short external spacer region, and in mammals it has two long spacer regions. The molecular weights, as determined from the electron micrographs, are 2·6 to 2·8 × 106 for the precursor ribosomal RNA of cold blooded vertebrates, 3·7 to 3·9 × 106 for the precursor of birds, and 4·2 to 4·7 × 106 for the mammalian precursor. Ribosomal RNA and precursor ribosomal RNA of mammals have a higher proportion of secondary structure loops when compared to lower vertebrates. This observation was confirmed by digesting ribosomal RNAs and precursor ribosomal RNAs with single-strandspecific S1 nuclease in aqueous solution. Analysis of the double-stranded, S1-resistant fragments indicates that there is a direct relationship between the hairpin loops seen in the electron microscope and secondary structure in aqueous solution.  相似文献   

16.
Ethidium bromide in a concentration of 200 μg/ml causes a full inhibition of RNA synthesis in aSaccharomyces cerevisiae ρ° strain, while protein synthesis continues at a reduced rate. Under these conditions, processing of rRNA is slowed down and part of the 37S rRNA precursor molecules are cleaved to a 32S RNA fraction (molecular weight 2.15×106). The 32S RNA accumulates in cells treated with ethidium bromide but cannot be processed to mature 25S and 18S rRNA and is degraded. The 32S RNA fraction also appears when processing of rRNA occurs in cells starved for required amino acids. The degradation of 37S precursor molecules through 32S RNA may be a regulatory mechanism of rRNA biosynthesis in yeast, which operates when excess rRNA must be wasted.  相似文献   

17.
The synthesis, transport and localization of a nuclear coded 22-kd heat-shock protein (HSP) in the chloroplast membranes was studied in pea plants and Chlamydomonas reinhardi. HSPs were detected in both systems by in vivo labeling and in vitro translation of poly(A)+RNA, using the wheat-germ and reticulocyte lysate systems. Heat-shock treatment of pea plants for 2 h at 42-45°C induces the expression of ˜10 nuclear coded proteins, among which several (18 kd, 19 kd, 22 kd) are predominant. A 22-kd protein is synthesized as a 26-kd precursor protein and is localized in a chloroplast membrane fraction in vivo. Following post-translational transport into intact chloroplasts in vitro of the 26-kd precursor, the protein is processed but the resulting 22-kd mature protein is localized in the chloroplast stroma. If, however, the in vitro transport is carried out with chloroplasts from heat-shocked plants, the 22-kd protein is preferentially transported to the chloroplast membrane fraction. In C. reinhardi the synthesis of poly(A)+RNAs coding for several HSPs is progressively and sequentially induced when raising the temperature for 1.5 h from 36°C to 42°C, while that of several preexisting RNAs is reduced. Various pre-existing poly(A)+RNAs endure in the cells at 42°C up to 5 h but are no longer translated in vivo, whereas some poly(A)RNAs persist and are translated. As in pea, a poly(A)+RNA coded 22-kd HSP is localized in the chloroplast membranes in vivo, although it is translated as a 22-kd protein in vitro. The in vitro translated protein is not transported in isolated pea chloroplast which, however, processes and transports other nuclear coded chloroplast proteins of Chlamydomonas. The poly(A)+RNA coding for the 22-kd HSP appears after 1 h at 36°C. Its synthesis increases with the temperature of incubation up to 42°C, although it decreases after ˜2 h of heat treatment and the already synthesized RNA is rapidly degraded. The degradation is faster upon return of the cells to 26°C. None of the heat-induced proteins is identical to the light-inducible proteins of the chloroplast membranes.  相似文献   

18.
The kinetics of the hydrogen-deuterium exchange reactions of double-helical poly (rI) · poly (rC), single-stranded poly(rC) and poly(rI), inosine, and cytosine- 5′-phosphoric acid have been examined, at various temperatures in the range 20 °C to 52 °C, by stopped-flow ultraviolet spectrophotometry, in the region 270 to 300 nm. For the solution of double-helical poly(rI) · poly(rC), two first-order deuteration reactions were found: a fast one and a slow one. At 25 °C and at pH 7.0, the rate constant was 12.3 s?1 for the fast reaction, and 0.13 s?1 for the slow reaction. The rate constant of the fast reaction is nearly equal to that of the single-stranded poly(rC) (12.6 s?1), and is assigned to the deuteration at the amino hydrogen (that is, free from the C · I hydrogen bond) of the cytosine residue. The slow reaction is attributable to the deuteration of the two hydrogens: the amino hydrogen of rC and imide hydrogen of rI, which are rapidly exchanging with each other within every rC · rI base-pair. From the observed temperature effect on this slow reaction rate, it has been concluded that there are two types of “opening process” that are relevant to the hydrogen exchange reaction; one of them is predominent in the range 47 °C to 52 °C and the other in the temperature region lower than 47 °C. The enthalpy (H) and entropy (S) differences of the “open” and “closed” forms in the former type process are ΔH = 167 kcal per mole and ΔS = 507 e.u., while in the latter ΔH = 8.1 kcal per mole and ΔS = 10 e.u..  相似文献   

19.
1. Photochemical activities as a function of temperature have been compared in chloroplasts isolated from chilling-sensitive (below approximately 12 °C) and chilling-resistant plants.2. An Arrhenius plot of the photoreduction of NADP+ from water by chloroplasts isolated from tomato (Lycopersicon esculentum var. Gross Lisse), a chilling-sensitive plant, shows a change in slope at about 12 °C. Between 25 and 14 °C the activation energy for this reaction is 8.3 kcal·mole?1. Between 11 and 3 °C the activation energy increases to 22 kcal·mole?1. Photoreduction of NADP+ by chloroplasts from another chilling-sensitive plant, bean (Phaseolus vulgaris var. brown beauty), shows an increase in activation energy from 5.9 to 17.5 kcal·mole?1 below about 12 °C.3. The photoreduction of NADP+ by chloroplasts isolated from two chilling-resistant plants, lettuce (Lactuca sativa var. winter lake) and pea (Pisum sativum var. greenfeast), shows constant activation energies of 5.4 and 8.0 kcal·mole?1, respectively, over the temperature range 3–25 °C.4. The effect of temperature on photosynthetic electron transfer in the chloroplasts of chilling-sensitive plants is localized in Photosystem I region of photosynthesis. Both the photoreduction of NADP+ from reduced 2,6-dichlorophenol-indophenol and the ferredoxin-NADP+ reductase (EC 1.6.99.4) activity of choroplasts of chilling-sensitive plants show increases in activation energies at approximately 12 °C whereas Photosystem II activity of chloroplasts of chilling-sensitive plants shows a constant activation energy over the temperature range 3–25 °C. The photoreduction of Diquat (1,1′-ethylene-2,2′-dipyridylium dibromide) from water by bean chloroplasts, however, does not show a change in activation energy over the same temperature range. The activation energies of each of these reactions in chilling-resistant plants is constant between 3 and 25 °C.5. The effect of temperature on the activation energy of these reactions in chloroplasts from chilling-sensitive plants is reversible.6. In chilling-sensitive plants, the increased activation energies below approximately 12 °C, with consequent decreased rates of reaction for the photoreduction of NADP+, would result in impaired photosynthetic activity at chilling temperatures. This could explain the changes in chloroplast structure and function when chilling-sensitive plants are exposed to chilling temperatures.  相似文献   

20.
Protoplasts enzymically isolated from suspension cultures of Centaurea cyanus L. incorporate radioactive precursors into RNA with kinetics similar to that of whole cells. There are differences, however, in several other aspects of RNA metabolism. The proportion of total RNA that contains poly(A) sequences (25 to 30%) is similar in both freshly isolated protoplasts and whole cells after a 20-minute pulse with [3H]adenosine. After a 4-hour pulse, however, poly(A)-containing RNA makes up 30% of the total RNA in protoplasts whereas it drops to 8% in whole cells. There appears to be a faulty processing of ribosomal precursor into the mature ribosomal species, as the precursor seems to accumulate to higher levels relative to the mature 18S and 25S rRNAs in protoplasts as compared to whole cells. Additional differences are seen in the size distributions of poly(A)-containing RNA, although the length of the poly(A) segment is similar in both protoplasts and whole cells. Within 24 hours protoplasts appear to have resumed a pattern of RNA synthesis similar to that of whole cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号