首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Clostridium butyricum is to our knowledge the best natural 1,3-propanediol producer from glycerol and the only microorganism identified so far to use a coenzyme B12-independent glycerol dehydratase. However, to develop an economical process of 1,3-propanediol production, it would be necessary to improve the strain by a metabolic engineering approach. Unfortunately, no genetic tools are currently available for C. butyricum and all our efforts to develop them have been so far unsuccessful. To obtain a better "vitamin B12-free" biological process, we developed a metabolic engineering strategy with Clostridium acetobutylicum. The 1,3-propanediol pathway from C. butyricum was introduced on a plasmid in several mutants of C. acetobutylicum altered in product formation. The DG1(pSPD5) recombinant strain was the most efficient strain and was further characterized from a physiological and biotechnological point of view. Chemostat cultures of this strain grown on glucose alone produced only acids (acetate, butyrate and lactate) and a high level of hydrogen. In contrast, when glycerol was metabolized in chemostat culture, 1,3-propanediol became the major product, the specific rate of acid formation decreased and a very low level of hydrogen was observed. In a fed-batch culture, the DG1(pSPD5) strain was able to produce 1,3-propanediol at a higher concentration (1104 mM) and productivity than the natural producer C. butyricum VPI 3266. Furthermore, this strain was also successfully used for very long term continuous production of 1,3-propanediol at high volumetric productivity (3 g L-1 h-1) and titer (788 mM).  相似文献   

2.
Clostridium butyricum mutants were isolated from the parent strain DSM 5431 after mutagenesis with N-methyl-N(prm1)-nitro-N-nitrosoguanidine and two selection procedures: osmotic pressure and the proton suicide method. Isolated mutants were more resistant to glycerol and to 1,3-propanediol (1,3-PD) than was the wild type, and they produced more biomass. In batch culture on 62 g of glycerol per liter, the wild type produced more acetic acid than butyrate, with an acetate/butyrate ratio of 5.0, whereas the mutants produced almost the same quantities of both acids or more butyrate than acetate with acetate/butyrate ratios from 0.6 to 1.1. The total acid formation was higher in the wild-type strain. Results of analysis of key metabolic enzymatic activities were in accordance with the pattern of fermentation product formation: either the butyrate kinase activity increased or the acetate kinase activity decreased in cell extracts of the mutants. A decreased level of the hydrogenase and NADH-ferredoxin activities concomitant with an increase in ferredoxin-NAD(sup+) reductase activities supports the conclusion that the maximum percentage of NADH available and used for the formation of 1,3-PD was higher for the mutants (97 to 100%) than for the wild type (70%). In fed-batch culture, at the end of the fermentation (72 h for the wild-type strain and 80 to 85 h for the mutants), 44% more glycerol was consumed and 50% more 1,3-PD was produced by the mutants than by the wild-type strain.  相似文献   

3.
Glycerol fermentation and product formation of two product-tolerant mutants of Clostridium butyricum DSM 5431 were investigated in continuous culture at increasing glycerol feed concentrations. Under conditions of glycerol excess (above 55 g l−1 at D = 0·15 h−1), the mutants maintained a constant level of glycerol consumption and product formation, whereas the parent strain exhibited a substantial decrease in substrate conversion, 1,3-propanediol and butyrate formation, and an increase in acetate formation. The activities of the glycerol dehydrogenase, the glycerol dehydratase and the 1,3-propanediol dehydrogenase showed only slight changes with glycerol concentrations in the mutants, but dropped markedly at high concentrations in the wild type. Intracellular concentrations of NADH, NAD + and acetyl-CoA remained at a relatively constant level in the mutants, but increased sharply with the wild type strain. The NADH content was always higher than the NAD + content in the mutants as well as in the wild type.  相似文献   

4.
Effect of glucose on glycerol metabolism by Clostridium butyricum DSM 5431   总被引:3,自引:0,他引:3  
The levels of 1,3-propanediol dehydrogenase and of the glycerol dehydrogenase in Clostridium butyricum grown on glucose–glycerol mixtures were similar to those found in extracts of cells grown on glycerol alone, which can explain the simultaneous glucose–glycerol consumption. On glycerol, 43% of glycerol was oxidized to organic acids to obtain energy for growth and 57% to produce 1,3-propanediol. With glucose–glycerol mixtures, glucose catabolism was used by the cells to produce energy through the acetate–butyrate production and NADH, whereas glycerol was used chiefly in the utilization of the reducing power since 92–93% of the glycerol flow was converted through the 1,3-propanediol pathway. The apparent K ms for the glycerol dehydrogenase was 16-fold higher for the glycerol than that for the glyceraldehyde in the case of the glyceraldehyde-3-phosphate dehydrogenase and fourfold higher for the NAD+, providing an explanation for the shift of the glycerol flow toward 1,3-propanediol when cells were grown on glucose–glycerol mixtures.  相似文献   

5.
S. ABBAD-ANDALOUSSI, E. GUEDON, E. SPIESSER AND H. PETITDEMANGE. 1996. Glycerol catabolism by Clostridium butyricum DSM 5431 into acetate, butyrate and 1,3-propanediol (1,3-PD) was studied in chemostat culture. The fact that the intracellular concentrations of NADH (18–22 μUmol g-1dry cell mass) were extremely high suggested that the dehydratase activity was the rate limiting step in 1,3-PD formation. This limitation was proved by the addition of propionaldehyde, another substrate of propanediol dehydrogenase, into the culture medium. This resulted in an increase in (i) glycerol utilization, (ii) biomass formation and (iii) product biosynthesis.  相似文献   

6.
Clostridium acetobutylicum is not able to grow on glycerol as the sole carbon source since it cannot reoxidize the excess of NADH generated by glycerol catabolism. Nevertheless, when the pSPD5 plasmid, carrying the NADH-consuming 1,3-propanediol pathway from C. butyricum VPI 3266, was introduced into C. acetobutylicum DG1, growth on glycerol was achieved, and 1,3-propanediol was produced. In order to compare the physiological behavior of the recombinant C. acetobutylicum DG1(pSPD5) strain with that of the natural 1,3-propanediol producer C. butyricum VPI 3266, both strains were grown in chemostat cultures with glycerol as the sole carbon source. The same "global behavior" was observed for both strains: 1,3-propanediol was the main fermentation product, and the qH2 flux was very low. However, when looking at key intracellular enzyme levels, significant differences were observed. Firstly, the pathway for glycerol oxidation was different: C. butyricum uses a glycerol dehydrogenase and a dihydroxyacetone kinase, while C. acetobutylicum uses a glycerol kinase and a glycerol-3-phosphate dehydrogenase. Secondly, the electron flow is differentially regulated: (i) in C. butyricum VPI 3266, the in vitro hydrogenase activity is 10-fold lower than that in C. acetobutylicum DG1(pSPD5), and (ii) while the ferredoxin-NAD+ reductase activity is high and the NADH-ferredoxin reductase activity is low in C. acetobutylicum DG1(pSPD5), the reverse is observed for C. butyricum VPI 3266. Thirdly, lactate dehydrogenase activity is only detected in the C. acetobutylicum DG1(pSPD5) culture, explaining why this microorganism produces lactate.  相似文献   

7.
Batch and continuous cultures of a newly isolated Clostridium butyricum strain were carried out on industrial glycerol, the major by-product of the bio-diesel production process. For both types of cultures, the conversion yield obtained was around 0.55 g of 1,3-propanediol formed per 1 g of glycerol consumed whereas the highest 1,3-propanediol concentration, achieved during the single-stage continuous cultures was 35-48 g l-1. Moreover, the strain presented a strong tolerance at the inhibitory effect of the 1,3-propanediol, even at high concentrations of this substance at the chemostat (e.g. 80 g l-1). 1,3-Propanediol was associated with cell growth whereas acetate and butyrate seemed non growth-associated products. At low and medium dilution rates (until 0.1 h-1), butyrate production was favoured, whereas at higher rates acetate production increased. The maximum 1,3-propanediol volumetric productivity obtained was 5.5 g l-1 h-1. A two-stage continuous fermentation was also carried out. The first stage presented high 1,3-propanediol volumetric productivity, whereas the second stage (with a lower dilution rate) served to further increase the final product concentration. High 1,3-propanediol concentrations were achieved (41-46 g l-1), with a maximum volumetric productivity of 3.4 g l-1 h-1. A cell concentration decrease was reported between the second and the first fermentor.  相似文献   

8.
The effects of acetate and butyrate during glycerol fermentation to 1,3-propanediol at pH 7.0 by Clostridium butyricum CNCM 1211 were studied. At pH 7.0, the calculated quantities of undissociated acetic and butyric acids were insufficient to inhibit bacterial growth. The initial addition of acetate or butyrate at concentrations of 2.5 to 15 gL−1 had distinct effects on the metabolism and growth of Clostridium butyricum. Acetate increased the biomass and butyrate production, reducing the lag time and 1,3-propanediol production. In contrast, the addition of butyrate induced an increase in 1,3-propanediol production (yield: 0.75 mol/mol glycerol, versus 0.68 mol/mol in the butyrate-free culture), and reduced the biomass and butyrate production. It was calculated that reduction of butyrate production could provide sufficient NADH to increase 1,3-propanediol production. The effects of acetate and butyrate highlight the metabolic flexibility of Cl. butyricum CNCM 1211 during glycerol fermentation. Received: 2 January 2001 / Accepted: 6 February 2001  相似文献   

9.
Parameters Affecting Solvent Production by Clostridium pasteurianum   总被引:4,自引:1,他引:3       下载免费PDF全文
The effect of pH, growth rate, phosphate and iron limitation, carbon monoxide, and carbon source on product formation by Clostridium pasteurianum was determined. Under phosphate limitation, glucose was fermented almost exclusively to acetate and butyrate independently of the pH and growth rate. Iron limitation caused lactate production (38 mol/100 mol) from glucose in batch and continuous culture. At 15% (vol/vol) carbon monoxide in the atmosphere, glucose was fermented to ethanol (24 mol/100 mol), lactate (32 mol/100 mol), and butanol (36 mol/100 mol) in addition to the usual products, acetate (38 mol/100 mol) and butyrate (17 mol/100 mol). During glycerol fermentation, a completely different product pattern was found. In continuous culture under phosphate limitation, acetate and butyrate were produced only in trace amounts, whereas ethanol (30 mol/100 mol), butanol (18 mol/100 mol), and 1,3-propanediol (18 mol/100 mol) were the major products. Under iron limitation, the ratio of these products could be changed in favor of 1,3-propanediol (34 mol/100 mol). In addition, lactate was produced in significant amounts (25 mol/100 mol). The tolerance of C. pasteurianum to glycerol was remarkably high; growth was not inhibited by glycerol concentrations up to 17% (wt/vol). Increasing glycerol concentrations favored the production of 1,3-propanediol.  相似文献   

10.
Mutants of Clostridium butyricum E5 exhibiting resistance to allyl alcohol which produced the same quantities of 1,3-propanediol as the wild-type strain but more acetate than butyrate were isolated. The acetate-butyrate formation plays a major function in the regulation of the internal redox balance. Allyl alcohol resistance can be attributed not to the loss of 1,3-propanediol dehydrogenase but to a shift in the reductive properties of the enzyme. The data support the view that cellular regulation is modified to avoid intracellular accumulation of 3-hydroxypropionaldehyde.  相似文献   

11.
Summary The metabolism of C. butyricum was manipulated, at neutral pH and in carbon limited chemostat cultures by changing the overall degree of reduction of the substrate, using mixtures of glucose and glycerol. Cultures grown on glucose alone produced only acids (acetate, butyrate and lactate). When the glycerol (in C moles)/glucose+glycerol (in C moles) ratio was progressively changed from 0 to 1 a corresponding increase of 1,3-propanediol production occured and an immediate and drastic decrease of the specific rate of acetate production was observed while the specific rate of butyrate production only decreased slightly. For glycerol (in C moles)/glucose+glycerol (in C moles) ratios higher than 0.5, the qNAD(P)H from Fd and the CO2/H2 molar ratio increased sharply, the first becoming positive and the second higher than 1. This indicates a complete reversion of the electron flow: part of reduced ferredoxin produced by the phosphoroclastic cleavage of pyruvate to acetyl-CoA was diverted from H2 formation toward NAD(P) reduction by the ferredoxin-NAD(P) reductase(s) in order to produce NAD(P)H. This change in the electron flow was associated to an increase in the specific rate and the yield of 1,3-propanediol production related to glycerol.  相似文献   

12.
 The effect of methyl viologen addition, and iron and phosphate limitation on product distribution during glycerol fermentation of Clostridium butyricum DSM 5431 was investigated in continuous culture. Special attention was paid to the gaseous products H2 and CO2, which were measured on-line. In all three cases, an increased yield of 1,3-propanediol linked to a decreased hydrogen release was observed, indicating that a higher proportion of electrons was channelled from reduced ferredoxin towards NADH2 production. The specific substrate consumption rates and the specific production rates revealed that this increase in propanediol yield was not obtained at the expense of glycolysis products but by an increased substrate conversion (overflow metabolism). The acetate/ butyrate ratio during glycerol fermentation was essentially influenced by the availability of iron. It was substantially increased when the culture turned from iron excess to iron-limited conditions. Therefore iron limitation proved to be a suitable means to achieve high 1,3-propanediol yields and to reduce butyrate formation. Received: 29 August 1995 / Accepted: 20 September 1995  相似文献   

13.
Stoichiometric analysis is applied to continuous glycerol fermentation by Clostridium butyricum to calculate theoretical maximum yields and to predict preferred pathways under different conditions. The upper limits of product concentration and productivity as a function of dilution rate in continuous culture is also predicted from product inhibition kinetic. The theoretical maximum propanediol yield (0.72 mol/mol glycerol) which is calculated for a culture without hydrogen and butyric acid formation agrees well with the experimental maximum value (around 0.71 mol/mol). Comparisons of experimental results (product concentration and productivity) with theoretical calculations and those of the glycerol fermentation by Klebsiella pneumoniae reveal that the production of 1,3-propanediol by C. butyricum is far below the optimum performance available with the present strain. One of the reasons is the relatively high formation of butyric acid under the culture conditions so far applied. The distribution of reducing equivalents to propanediol and hydrogen is also suboptimal. The utilization of the reducing power from pyruvate oxidation for propanediol production is about 60–70% of the theoretical maximum under the present experimental conditions.  相似文献   

14.
Summary The fermentation of glycerol to 1,3-propanediol, acetate, and butyrate by Clostridium butyricum was studied with respect to growth inhibition by the accumulating products. The clostridia were grown in a pH-auxostat culture at low cell density and product concentration and near maximum growth rate. The products were then added individually to the medium in increasing concentrations and the resulting depression of growth rate was used as a quantitative estimate of product inhibition. Under these conditions growth was totally inhibited at concentrations of 60 g/l for 1,3-propanediol, 27 g/l for acetic acid and 19 g/l for butyric acid at pH 6.5. Appreciable inhibition by glycerol was found only above a concentration of 80 g/l. In a pH-auxostat without added products but with high cell density as well as in batch cultures the product proportions were different. The 1,3-propanediol concentration may approach the value of complete inhibition while the concentrations of acetic and butyric acids remained below these values by at least one order of magnitude. It was therefore concluded that 1,3-propanediol is the first range inhibitor in this fermentation.  相似文献   

15.
产1,3-丙二醇菌株丁酸梭菌的诱变育种   总被引:7,自引:0,他引:7  
甘油由丁酸梭菌转化成1,3-丙二醇的研究是厌氧条件下进行。为了获得1,3-丙二醇的高产突变株,以丁酸梭菌为出发菌株进行诱变处理。经过硫酸二乙酯(DES)化学诱变得到2株高产正突变株C.but2031和C.but2046,再经过紫外线和亚硝基胍(NTG)复合诱变得到突变株C.but3037。经过初筛、复筛和传代实验,表明其是稳定的突变株。C.but3037的1,3-丙二醇产量由出发菌株的2.2g/L提高到15.7g/L,提高了6.13倍,  相似文献   

16.
Fermentation of glycerol to 1,3-propanediol: use of cosubstrates   总被引:16,自引:0,他引:16  
Three fermentable substances, glucose, 1,2-ethanediol and 1,2-propanediol were checked as cosubstrates for the fermentation of glycerol by Clostridium butyricum and Citrobacter freundii with the aim of achieving a complete conversion of glycerol to 1,3-propanediol. Glucose was fermented by C. butyricum mainly to acetate, CO2 and reducing equivalents in the presence of glycerol and contributed markedly to the 1,3-propanediol yield. However, because of relatively slow growth on glucose, complete conversion was not achieved. If the two glycols were used as cosubstrates for glycerol fermentation, the 1,3-propanediol yield did not increase but dimished considerably, as they were converted to more reduced products, i.e. alcohols instead of acids. From 1,2-propanediol 2-propanol was formed in addition to 1-propanol. The ratio of the propanols was dependent on the culture conditions.  相似文献   

17.
Industrial glycerol obtained through the transesterification process using rapeseed oil did not support growth of several strains ofClostridium butyricum obtained from bacterial culture collections. Ten new strains ofC. butyricum were obtained from mud samples from a river, a stagnant pond, and a dry canal. These new isolates fermented the commercial glycerol and produced 1,3-propanediol as a major fermentation product with concomitant production of acetic and butyric acids. Four of the ten isolates were able to grow on industrial glycerol obtained from rapeseed oil. One strain,C. butyricum E5, was very resistant to high levels of glycerol and 1,3-propanediol. Using fed-batch fermentation, 109 g L–1 of industrial glycerol were converted into 58 g of 1,3-propanediol, 2.2 g of acetate and 6.1 g of butyrate per liter.  相似文献   

18.
In order to improve the yield of 1,3-propanediol (1,3-PPD) in Clostridium butyricum E5, we carried out cofermentation experiments on glucose/glycerol mixtures in chemostat culture. The results showed the influence of the ratio of the two carbon substrates on the production of the required diol. The progressive increase of glucose in culture medium containing a given concentration of glycerol made it possible to highlight the deviation of carbon flow from the oxidative towards the reducing pathway, in order to maintain the oxidation/reduction balance in the cell. The conversion of glycerol into 1,3-PPD thus increased from 0.63 mol mol(-1), without the addition of glucose, to a maximum of 0.89 mol mol(-1) for a molar glucose/glycerol ratio of 0.2 for the wild-type strain. The same experiments carried out with the mutant MD strain, which is resistant to allyl alcohol, led to similar results but with a maximum of 0.84 mol mol(-1) for a glucose/glycerol molar ratio of 0.1. Beyond a molar ratio of 0.2, the biosynthesis of enzymes for the glycerol metabolism was less subject to catabolic repression by glucose in the mutant MD strain than in the wild-type strain.  相似文献   

19.
Glycerol conversion to 1,3-propanediol by newly isolated clostridia   总被引:16,自引:0,他引:16  
Summary From pasteurized mud and soil samples glycerol-fermenting clostridia that produced 1,3-propanediol, butyrate and acetate were obtained. The isolates were taxonomically characterized and identified as Clostridium butyricum. The most active strain, SH1 = DSM 5431, was able to convert up to 110 g/l of glycerol to 56 g/l of 1,3-propanediol in 29 h. A few Clostridium strains from culture-collections (3 out of 16 of the C. butyricum group) and some isolates of Kutzner from cheese samples were also able to ferment glycerol, but the final concentration and the productivity of 1,3-propanediol was lower than in strain SH1. Strain SH1 grew well in a pH range between 6.0 and 7.5, with a weak optimum at 6.5, and was stimulated by sparging with N2. Best overall productivity was obtained in fed-batch culture with a starting concentration of 5% glycerol. In all fermentations the yield of 1,3-propanediol in relation to glycerol was higher than expected from NADH production by acid formation. On the other hand the H2 production was lower than expected, if per mole of acetyl coenzyme A one mole of H2 is released. The observations point to a substantial transfer of reducing potential from ferredoxin to NAD, which finally results in increased 1,3-propanediol production.  相似文献   

20.
 According to their ability to synthesize 1,3-propanediol from glycerol, two species were isolated from the anoxic mud of a distillery waste-water digestor: Clostridium butyricum and Enterobacter agglomerans. The latter, a facultatively anaerobic gram-negative bacterium, is described for the first time as a microorganism producing 1,3-propanediol from glycerol. The products of glycerol conversion by E. agglomerans were identified using nuclear magnetic resonance. A 20-g/l glycerol solution was fermented mainly to 1,3-propanediol (0.51 mol/mol) and acetate (0.18 mol/mol). Ethanol, formate, lactate and succinate were formed as by-products. Gas production was very low; 1,3-propanediol production perfectly balanced the oxido-reduction state of the microorganism. Acetate was the predominant metabolite generating energy for growth. High-glycerol-concentration fermentations (71 g/l and 100 g/l) resulted in an increase of the 1,3-propanediol yield (0.61 mol/mol) at the expense of lactate and ethanol production. Specific rates of glycerol consumption and 1, 3-propanediol and acetate production increased whereas the growth rate decreased. The decrease in ATP yield was linearly correlated with the specific rate of 1,3-propanediol production. Incomplete glycerol consumption (about 40 g/l) was systematically observed when high glycerol concentrations were used. The unbalanced oxido-reduction state, the low carbon recovery and the detection of an unknown compound by HPLC observed in these cases indicate the formation of another metabolite, which is possibly an inhibitory factor. Received: 17 November 1994 / Accepted: 15 December 1994  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号