首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The investigation aimed at determining the effect of nitric oxide on antioxidant defense system of spring maize (Zea mays L.) genotypes namely, LM 11 (stress susceptible) and CML 32 (stress tolerant), that showed differential tolerance towards heat stress. Seed priming with a NO donor, sodium nitroprusside (SNP) improved seedling growth and induced varied defense mechanisms, under stress conditions. 75 μM SNP improved seedling lengths and their biomasses. It specifically enhanced catalase (CAT) activity in the roots of stressed seedlings of the two genotypes. However, it could induce CAT activity only in LM 11 shoots, under heat stress. It also enhanced peroxidase (POX) activity in CML 32 roots. However, such induction of POX activity with SNP treatment was not observed in LM 11 roots. This showed that NO increased the H2O2 scavenging efficiency of CML 32 genotype by enhancing the cumulative activation of CAT and POX in its roots. However, it did not induce activation of any of the H2O2 detoxifying enzymes in CML 32 shoots which showed that ascorbate–glutathione cycle remained non-operational in shoots of SNP-treated seedlings of the tolerant genotype, under high temperature stress. With seed priming, superoxide dismutase (SOD) activity increased in both the tissues of LM 11 seedlings. The shoots of SNP primed CML 32 seedlings, however, did not show any effect on SOD activity which illustrated that nitric oxide might act as a direct scavenger of superoxide radicals in CML 32 seedlings. SNP decreased the contents of H2O2 and MDA and increased proline content in seedlings of both the genotypes indicating reduced oxidative damage. The results thus showed that nitric oxide might induce different mechanisms of stress tolerance in these maize genotypes.  相似文献   

2.
Abstract

The effects of exogenous silicon (Si) on leaf relative water content (RWC), and the growth, Si concentrations, lipid peroxidation (MDA), lipoxygenase (LOX) activity, proline and H2O2 accumulation, non-enzymatic antioxidant activity (AA) and the activity of some antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX) in shoots of ten chickpea cultivars grown under drought were investigated. Drought stress decreased the growth of all the cultivars while applied Si improved the growth at least five of the 10 chickpea cultivars. Silicon applied to the soil at 100 mg kg?1 significantly increased Si concentrations of the cultivars and counteracted the deleterious effects of drought in 5 of the ten chickpea cultivars by increasing their RWC. In most cultivars tested H2O2, proline and MDA content and LOX activity were increased by drought whereas application of Si decreased their levels. APX activity was increased by drought but it was depressed by Si. In general, SOD and CAT activities of the cultivars were decreased by drought. Depending on cultivars, the CAT activity was decreased, and increased or unchanged in response to applied Si, while the SOD activity of the cultivars increased or unchanged by Si. The non-enzymatic antioxidant activity of the cultivars was also increased by Si. These observations implied an essential role for Si in minimizing drought stress-induced limitation of the growth and oxidative membrane damage in chickpea plants.  相似文献   

3.
Abiotic stresses, such as high temperature and drought, are major limiting factors of crop production and growth. Coronatine (COR), a structural and functional analog of jasmonates, is suggested to have a role in abiotic stress tolerance. The aim of our study was to examine whether pretreatment with COR enhances the tolerance of chickpea (Cicer arietinum L. cv ICC 4958) roots to PEG-induced osmotic stress, heat stress, and their combination. Therefore, seedlings raised hydroponically in a growth chamber for 15 days were pretreated with or without COR at 0.01 μM for 24 h and then exposed to 6 % PEG 6000-induced osmotic stress or heat (starting at 35 °C and then gradually increased 1 °C every 15 min and kept at 44 °C for 1 h) stress for 3 days. After different treatment periods, the changes in relative growth rate (RGR); malondialdehyde (MDA), proline (Pro), and hydrogen peroxide (H2O2) contents; and the activities of antioxidant enzymes/isoenzymes in roots of chickpea seedlings with or without 0.01 μM COR application were studied. RGR in roots was increased by COR application. Under all stress conditions, H2O2, MDA, and Pro levels increased sharply, but pretreatment with COR significantly reduced them. Moreover, COR increased the activities of H2O2 scavenger enzymes such as catalase (CAT) under heat stress, ascorbate peroxidase (POX) under PEG stress, and CAT and POX under combined stresses. Therefore, COR might alleviate adverse effects of PEG stress and heat stress and combined stresses on roots of chickpea by reduction of H2O2 production, enhancing or keeping the existent activity of antioxidant enzymes, thereby preventing membrane peroxidation.  相似文献   

4.
Glycinebetaine is one of the most competitive compounds which play an important role in salt stress in plants. In this study, the enhanced salt tolerance in soybean (Glycine max L.) by exogenous application of glycinebetaine was evaluated. To improve salt tolerance at the seedling stage, GB was applied in four different concentrations (0, 5, 25 and 50 mM) as a pre-sowing seed treatment. Salinity stress in the form of a final concentration of 150 mM sodium chloride (NaCl) over a 15 day period drastically affected the plants as indicated by increased proline, MDA and Na+ content of soybean plants. In contrast, supplementation with 50 mM GB improved growth of soybean plants under NaCl as evidenced by a decrease in proline, MDA and Na+ content of soybean plants. Further analysis showed that treatments with GB, resulted in increasing of CAT and SOD activity of soybean seedlings in salt stress. We propose that the role of GB in increasing tolerance to salinity stress in soybean may result from either its antioxidant capacity by direct scavenging of H2O2 or its role in activating CAT activity which is mandatory in scavenging H2O2.  相似文献   

5.
任艳芳  何俊瑜  杨军  韦愿娟 《生态学报》2019,39(20):7745-7756
以小白菜"甜脆青"为试材,研究不同浓度(5、10、25、50和100 mmol/L)过氧化氢(H2O2)浸种处理对100 mmol/L NaCl胁迫下小白菜(Brassica chinensis L.)种子萌发、幼苗生长及生理特性的影响。结果表明:100 mmol/L NaCl胁迫明显抑制小白菜种子的萌发状况和幼苗生长,发芽势、发芽指数、活力指数及幼苗根和芽长度和鲜重均明显降低,根和芽中CAT的活性及K+含量明显受到抑制,渗透调节物质、活性氧和MDA含量显著增加。不同浓度H2O2浸种处理提高了NaCl胁迫下小白菜种子发芽势、发芽指数和活力指数,促进小白菜根和芽的生长,增强了NaCl胁迫下根和芽中SOD、CAT和APX的活性及K+含量,降低O2产生速率及H2O2和MDA含量,进一步促进脯氨酸和可溶性糖含量的增加,降低体内Na+含量。其中以10 mmol/L H2O2处理缓解盐胁迫效果最好,明显缓解NaCl胁迫对小白菜种子萌发和幼苗生长的抑制。  相似文献   

6.
Cyclitols were prepared from corresponding allylic hydroperoxides, synthesized by photooxygenation of the appropriate cyclic alkenes. These hydroperoxides were then separately treated with a catalytic amount of OsO4. Synthesized dl-cyclopentane-1,2,3-triol 9 (A), dl-cyclohexane-1,2,3-triol 12 (B), and dl-cycloheptane-1,2,3-triol 15 (C) were used in the investigation of plant stress. Antioxidants, lipid peroxidation, and water status of chickpea species exposed to synthetic cyclitols under water deficit were examined. Cyclitol derivatives significantly decreased leaf water potential, lipid peroxidation and H2O2 levels of wild and cultivated species under water deficit. Cyclitol treatments affected antioxidant enzyme activities differently in both species under water deficit. The highest SOD activity was found in A10-treated Cicer arietinum (cultivar) and C10-treated Cicer reticulatum (wild type) under water deficit. CAT activity increased in C. arietinum exposed to A cyclitols, while it increased slightly and then decreased in cyclitol-treated C. reticulatum under stress conditions. AP and GR activities were significantly increased in C. arietinum under water deficit. AP activity increased in C derivatives-treated C. arietinum, while it remained unchanged in C. reticulatum on day 1 of water deficit. GR activity was increased in A derivaties-treated C. arietinum and C derivatives-treated C. reticulatum on day 1 of water deficit and decreased with severity of stress (except for B10-treated C. arietinum). The level of AsA in C treatments and GSH in A treatments increased in C. arietinum on day 1 of water deficit, while in C. reticulatum, AsA and GSH levels decreased under stress conditions. We conclude that exogenous synthetic cyclitol derivatives are biologically active and noncytotoxic, resulting in higher antioxidant activities and lower water potential, thus increasing the water deficit tolerance of chickpea under water deficit, especially of cultivated chickpea. We also propose that synthetic cyclitol derivatives can reduce reactive oxygen species and membrane damage and are beneficial for stress adaptation.  相似文献   

7.
Amelioration of chilling stress by triadimefon in cucumber seedlings   总被引:11,自引:0,他引:11  
Cucumber (Cucumis satvus L.) seeds were imbibed in distilled water (control) and 10 mg l–1 triadimefon (TDM) for 10 h and then grown in a plant growth chamber with a light/dark temperature of 28/20 °C and a photoperiod of 14 h with a light intensity of 60 µmol m–2 s–1. 14-day-old seedlings were exposed to chilling stress with a light/dark temperature of 6/3 °C for 4 d. TDM improved the growth rate of cucumber seedling subjected to chilling stress and increased photosynthetic pigments contents and relative water content compared with the control at the end of chilling stress. Chilling stress decreased protein content and the activities of SOD, CAT and POD, but it increased proline, H2O2 and MDA accumulation, and relative electrical conductivity. TDM ameliorated the injury caused by chilling stress by preventing decreases in protein content and the activities of SOD, CAT and POD and by inhibiting increases in proline, H2O2 and MDA contents, and relative electrical conductivity, which suggested that TDM ameliorated the negative effect of chilling stress.  相似文献   

8.
The effects of single or combined stress of aluminum (Al) and chromium (Cr) on plant growth, root dehydrogenase, oxidative stress and antioxidative enzymes were studied using two barley genotypes differing in Al tolerance in a hydroponic experiment. Al or Cr stress decreased plant growth, lowered root dehydrogenase activity and caused oxidative damage, as characterized by increased MDA and H2O2 contents. Under Al or Cr stress, the activities of antioxidative enzymes, including superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR) and catalase (CAT), were dramatically increased in plant tissues. Gebeina, an Al-tolerant genotype, had less oxidative damage than Shang 70-119, an Al-sensitive genotype. The extent of oxidative damage induced by Cr varied with the pH of the culture solution, with lower pH values (4.0) being more severe than higher pH values (6.5). The combination of Cr and Al caused a further decrease in plant growth, a decrease in root dehydrogenase activity and an increase in MDA and H2O2 contents as well as the activities of antioxidative enzymes. There was also a marked difference between the two barley genotypes in the extent of increased antioxidative enzyme activity under the Cr and Al stresses.  相似文献   

9.
Six wheat genotypes were evaluated for heat tolerance in terms of seedling growth, antioxidant response and cell death. Based on the heat susceptibility index (HSI), response of the genotypes varied from heat tolerant (Inqilab-91) to heat sensitive (Sitta) along with moderately tolerant (Nesser and Sarsabz) and sensitive (Fareed and FD-83). Heat stress-induced programmed cell death (probably necrosis) in wheat leaves was evident by DNA smear. MDA content increased above twofold in most of genotypes under heat stress, with the lowest increase in the heat-tolerant genotype Nesser. Catalase activity diminished under heat stress in all genotypes. Peroxidase, superoxide dismutase (SOD), protease, and ascorbate peroxidase (APX) activities increased under heat stress. Apparently, heat stress-induced reduction in catalase activity was compensated by a parallel increase in peroxidases to quench H2O2. Heat stress-induced decrease (%) in catalase and increase in protease activities showed significant positive correlations, whereas increase (%) in APX activity showed a significant negative correlation with HSI or relative heat tolerance of genotypes. All these correlations signify that catalase, protease and ascorbate peroxidase can be used efficiently as biochemical markers to assess the relative heat stress tolerance of wheat genotypes at the seedling stage. In conclusion, using a multiparametric approach involving morphophysiological and biochemical assays, the sensitivity of wheat genotypes to heat stress could be evaluated to a sufficient level of certainty at the seedling stage.  相似文献   

10.
To minimize the damaging effects of stresses, plant growth regulators (PGRs) are widely used to sustain the plant life under stress-prone environments. So, a study was carried out to evaluate the response of two canola (Brassica napus L.) cultivars, Dunkeld and Cyclone, to foliar-applied two potential PGRs, nitric oxide (NO) and 5-aminolevulinic acid, under water deficit conditions. In this study, the levels of NO and ALA used were 0.02 and 0.895 mM, respectively. Plants of both canola cultivars were subjected to control (100% field capacity) and water deficit (60% field capacity). Drought stress significantly decreased growth, chlorophyll pigments, relative water contents (RWC), and soluble proteins, while it increased relative membrane permeability (RMP), proline, glycinebetaine (GB), malondialdehyde (MDA), total phenolics, and activities of catalase (CAT) and peroxidase (POD) enzymes in both cultivars. Foliar application of PGRs improved growth, chlorophyll a, GB, total phenolics, CAT activity, and total soluble proteins, while it decreased RMP, MDA, and POD activity in both canola cultivars. Other physio-biochemical attributes such as chlorophyll b, RWC, hydrogen peroxide (H2O2) and proline contents as well as superoxide dismutase (SOD) activity remained unaffected due to application of PGRs. So, the results of the present study suggest that exogenous application of NO and ALA could be useful to enhance the drought tolerance of canola plants by up-regulating the oxidative defense system, osmoprotectant accumulation, and minimizing the lipid peroxidation.  相似文献   

11.
Hydrogen peroxide (H2O2), an active oxygen species, is widely generated in many biological systems and mediates various physiological and biochemical processes in plants. In this study, we demonstrated that exogenous H2O2 was able to improve the tolerance of wheat seedlings to salt stress. Treatments with exogenous H2O2 for 2 days significantly enhanced salt stress tolerance in wheat seedlings by decreasing the concentration of malondialdehyde (MDA), the production rate of superoxide radical (O2 ), and increasing the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX), and the concentration of glutathione (GSH) and carotenoids (CAR). To further clarify the role of H2O2 in preventing salt stress damage, CAT and ascorbate (AsA), the specific H2O2 scavengers, were used. The promoting effect of exogenous H2O2 on salt stress could be reversed by the addition of CAT and AsA. It was suggested that exogenous H2O2 induced changes in MDA, O2 , antioxidant enzymes and antioxidant compounds were responsible for the increase in salt stress tolerance observed in the experiments. Therefore, H2O2 may participate in antioxidant enzymes and antioxidant compounds induced tolerance of wheat seedlings to salt stress. The results also showed that exogenous H2O2 had a positive physiological effect on the growth and development of salt-stressed seedlings.  相似文献   

12.
Crested wheatgrass (Agropyron cristatum L.) is a cool-season perennial grass, which has demonstrated its potential for use as turfgrass. However, limited information is available on its drought and salinity tolerance. The main purpose of this study was to investigate the changes in the antioxidant defence system and physiological traits of six Iranian crested wheatgrass genotypes under drought and salinity stresses. The experimental design comprised a split plot with water treatments (control well-watered, salinity stress and water stress) as main plots and genotypes as subplots. This study demonstrated the variations in drought and salinity tolerance among crested wheatgrass genotypes. ‘ACSKI’, ‘ACAMI’ and ‘ACDTI’ generally performed better than other genotypes under drought and salinity conditions, mainly by maintaining higher activities of antioxidant enzymes like superoxide dismutase, peroxidase, catalase, ascorbate peroxidase and non-enzyme antioxidants like glutathione, higher proline and total non-structural carbohydrates content. The increased, decreased, and unchanged activities of antioxidant enzymes in the crested wheatgrass genotypes indicates a different forms of metabolism of antioxidant enzymes in response to drought and salinity stress. In general, drought and salinity stress increases the malondialdehyde (MDA) content and hydrogen peroxide (H2O2) content; however, ‘ACSKI’, ‘ACAMI’ and ‘ACDTI’ genotypes could tolerate an increase in MDA content and H2O2 content; therefore, lower levels of MDA content and H2O2 content were observed. The results showed that increasing levels of diamine oxidase and polyamine oxidase have been associated with increasing drought and salinity tolerance. Based on the biochemical and physiological parameters that were evaluated, we concluded that the genotype ‘ACSKI’ was superior in terms of drought and salinity tolerance. This superiority was mainly a result of better enzymatic and non-enzymatic antioxidant defence system and better osmotic adjustment under stress conditions.  相似文献   

13.
Drought is a major limiting factor for turfgrass growth. Protection of triploid bermudagrass against drought stress by abscisic acid (ABA) and its association with hydrogen peroxide (H2O2) and nitric oxide (NO) were investigated. ABA treatment increased relative water content, decreased ion leakage and the percentage of dead plants significantly under drought stress. Superoxide dismutase (SOD) and catalase (CAT) activities increased in both ABA-treated and control plants, but more in ABA-treated plants, under drought stress. Malondialdehyde, an indicator of plant lipid peroxidation, was lower in ABA-treated plants than in control plants, indicating that ABA alleviated drought-induced oxidative injury. ABA treatment increased H2O2 and NO contents. ABA-induced SOD and CAT activities could be blocked by scavengers of H2O2 and NO, and inhibitors of H2O2 and NO generation. The results indicated that H2O2 and NO were essential for ABA-induced SOD and CAT activities. Both H2O2 and NO could induce SOD and CAT activities individually. SOD and CAT induced by H2O2 could be blocked by scavenger of NO and inhibitors of NO generation, while SOD and CAT induced by NO could not be blocked by scavenger of H2O2 and inhibitor of H2O2. The results revealed that ABA-induced SOD and CAT activities were mediated sequentially by H2O2 and NO, and NO acted downstream of H2O2.  相似文献   

14.
Barley seedlings were pre-treated with 1 and 5 μM H2O2 for 2 d and then supplied with water or 150 mM NaCl for 4 and 7 d. Exogenous H2O2 alone had no effect on the proline, malondialdehyde (MDA) and H2O2 contents, decreased catalase (CAT) activity and had no effect on peroxidase (POX) activity. Three new superoxide dismutase (SOD) isoenzymes appeared in the leaves as a result of 1 μM H2O2 treatment. NaCl enhanced CAT and POX activity. SOD activity and isoenzyme patterns were changed due to H2O2 pre-treatment, NaCl stress and leaf ageing. In pre-treated seedlings the rate of 14CO2 fixation was higher and MDA, H2O2 and proline contents were lower in comparison to the seedlings subjected directly to NaCl stress. Cl content in the leaves 4 and 7 d after NaCl supply increased considerably, but less in pre-treated plants. It was suggested that H2O2 metabolism is involved as a signal in the processes of barley salt tolerance.  相似文献   

15.
A hydroponic experiment was carried out to study the role of hydrogen peroxide (H2O2) in enhancing tolerance and reducing translocation of cadmium (Cd) in rice seedlings. Plant growth (length and biomass of shoot and root) was significantly repressed by Cd exposure. However, pretreatment with 100 μM H2O2 for 1d mitigated Cd stress by inducing enzyme activities for antioxidation (e.g., superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX)) and detoxification (e.g., glutathione S-transferase (GST)) as well as by elevating contents of reduced glutathione (GSH) and ascorbic acid (AsA). As a result, H2O2 and malondialdehyde (MDA) content decreased in plants and the seedling growth was less inhibited. On the other hand, H2O2 pretreatment decreased Cd concentration in shoots, thus lowered the ratio of Cd concentration in shoots and roots (S/R), indicating that H2O2 may affect Cd distribution in rice seedlings. The improved Cd tolerance is partly due to an enhanced antioxidative system that efficiently prevents the accumulation of H2O2 during Cd stress. Increased Cd sequestration in rice roots may contribute to the decline of Cd translocation.  相似文献   

16.
Drought tolerance of two sunflower (Helianthus annuus L.) genotypes, cultivated cultivar 1114 and interspecific line H. annuus × H. mollis, was studied under laboratory conditions using PEG-6000. Four levels of osmotic stress (?0.4, ?0.6, ?0.8 and ?1.0 MPa) were created and performances were monitored against a control. Physiological and biochemical stress determining parameters such as malondialdechyde (MDA), proline content, and hydrogen peroxide (H2O2) were compared between seedlings of both genotypes. The results indicated that both genotypes have similar responses at four osmotic potentials for all traits studied. All seedling growth parameters such as germination percentage, root length, shoot length, root and shoot dry weight decreased with increasing osmotic stress. MDA, proline, and H2O2 were found to be increased at different osmotic gradients in comparison to control. Cultivar 1114 was less affected than the interspecific line under these stress conditions. The data observed in the experiments revealed that perennial wild H. mollis can hardly be considered to be an excellent candidate of drought tolerance genes.  相似文献   

17.
Salinity stress is a major factor limiting plant growth and productivity of many crops including oilseed. The present study investigated the identification of salt tolerant mustard genotypes and better understanding the mechanism of salinity tolerance. Salt stresses significantly reduced relative water content (RWC), chlorophyll (Chl) content, K+ and K+ /Na+ ratio, photosynthetic rate (PN), transpiration rate (Tr), stomatal conductance (gs), intercellular CO2 concentration (Ci) and increased the levels of proline (Pro) and lipid peroxidation (MDA) contents, Na+ , superoxide (O2•− ) and hydrogen peroxide (H2O2) in both tolerant and sensitive mustard genotypes. The tolerant genotypes maintained higher Pro and lower MDA content than the salt sensitive genotypes under stress condition. The activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione peroxidase (GPX), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR) were increased with increasing salinity in salt tolerant genotypes, BJ-1603, BARI Sarisha-11 and BARI Sarisha-16, but the activities were unchanged in salt sensitive genotype, BARI Sarisha-14. Besides, the increment of ascorbate peroxidase (APX) activity was higher in salt sensitive genotype as compared to tolerant ones. However, the activities of glutathione reductase (GR) and glutathione S-transferase (GST) were increased sharply at stress conditions in tolerant genotypes as compared to sensitive genotype. Higher accumulation of Pro along with improved physiological and biochemical parameters as well as reduced oxidative damage by up-regulation of antioxidant defense system are the mechanisms of salt tolerance in selected mustard genotypes, BJ-1603 and BARI Sarisha-16.  相似文献   

18.
Peroxiredoxins (Prxs) are ubiquitous thiol-specific antioxidant enzymes that are critically involved in cell defense and protect cells from oxidative damage. In this study, a putative Type II Prx (ThPrx1) was identified and characterized from Tamarix hispida. The expression of ThPrx1 is highly induced in response to hydrogen peroxide (H2O2) and methyl viologen (MV) stresses. When expressed ectopically, ThPrx1 showed enhanced tolerance against oxidative stress in yeast and Arabidopsis. In addition, transgenic Arabidopsis plants overexpressing ThPrx1 displayed improved seedling survival rates and increased root growth and fresh weight gain under H2O2 and MV treatments. Moreover, transgenic Arabidopsis plants showed decreased accumulation of H2O2, superoxide (O2??) and malondialdehyde (MDA), increased superoxide dismutase (SOD) activity compared to wild-type (WT) plants under oxidative stress. Moreover, transgenic plants maintained higher photosynthesis efficiency and lower electrolyte leakage rates than that of WT plants under stress conditions. These results clearly indicated that ThPrx1 plays an important role in cellular redox homeostasis under stress conditions, leading to the maintenance of membrane integrity and increased tolerance to oxidative stress.  相似文献   

19.
This study compared the effectiveness of four arbuscular mycorrhizal (AM) fungal isolates (two autochthonous presumably drought-tolerant Glomus sp and two allochthonous presumably drought-sensitive strains) on a drought-adapted plant (Lavandula spica) growing under drought conditions. The autochthonous AM fungal strains produced a higher lavender biomass, specially root biomass, and a more efficient N and K absorption than with the inoculation of similar allochthonous strains under drought conditions. The autochthonous strains of Glomus intraradices and Glomus mosseae increased root growth by 35% and 100%, respectively, when compared to similar allochthonous strains. These effects were concomitant with an increase in water content and a decline in antioxidant compounds: 25% glutathione, 7% ascorbate and 15% H2O2 by G. intraradices, and 108% glutathione, 26% ascorbate and 43% H2O2 by G. mosseae. Glutathione and ascorbate have an important role in plant protection and metabolic function under water deficit; the low cell accumulation of these compounds in plants colonized by autochthonous AM fungal strains is an indication of high drought tolerance. Non-significant differences between antioxidant activities such as glutathione reductase (GR), catalase (CAT) and superoxide dismutase (SOD) in colonized plants were found. Thus, these results do not allow the generalization that GR, CAT and SOD were correlated with the symbiotic efficiency of these AM fungi on lavender drought tolerance. Plants colonized by allochthonous G. mosseae (the less efficient strain under drought conditions) had less N and K content than those colonized by similar autochthonous strain. These ions play a key role in osmoregulation. The AM symbiosis by autochthonous adapted strains also produced the highest intraradical and arbuscular development and extraradical mycelial having the greatest fungal SDH and ALP-ase activities in the root systems. Inoculation of autochthonous drought tolerant fungal strains is an important strategy that assured the greatest tolerance water stress contributing to the best lavender growth under drought.  相似文献   

20.
以酿酒葡萄‘雷司令’(Riesling)一年生营养袋扦插苗为材料,采用人工气候室水培试验,考察在聚乙二醇6000(PEG)模拟干旱条件下,不同浓度(0.05、0.10和0.20mg/L)24-表油菜素内酯(EBR)预处理对‘雷司令’幼苗活性氧、抗氧化物质、渗透调节物质含量和抗氧化酶活性的影响,以揭示EBR预处理对干旱胁迫下葡萄幼苗的抗旱机理。结果显示:(1)与正常生长(对照)相比,干旱胁迫显著提高葡萄幼苗叶片中超氧阴离子自由基(■)、过氧化氢(H_2O_2)和丙二醛(MDA)含量;与干旱胁迫处理(PEG)相比,不同浓度EBR预处理均可降低叶片中■、H_2O_2和MDA的含量。(2)与对照相比,PEG处理显著降低葡萄幼苗叶片的抗坏血酸(AsA)和还原型谷胱甘肽(GSH)含量;与PEG处理相比,各浓度EBR预处理均可显著提高葡萄叶片AsA与GSH的含量,且以0.10mg/LEBR处理效果最好。(3)随着干旱胁迫时间的延长,葡萄幼苗叶片中的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)与抗坏血酸过氧化物酶(APX)活性均呈先上升后下降的变化趋势,而在正常生长条件下酶活性基本保持不变;EBR预处理的葡萄叶片SOD、CAT、POD和APX活性均始终高于同期PEG处理。(4)PEG处理条件下,渗透调节物质脯氨酸和可溶性蛋白的含量整体高于对照;与PEG处理相比,不同浓度EBR预处理在干旱胁迫中后期均能显著提高葡萄叶片中脯氨酸和可溶性蛋白含量。研究表明,在干旱胁迫下,外源EBR预处理能够提高葡萄叶片抗氧化系统酶活性和渗透调节物质含量,有效降低干旱胁迫诱导的活性氧过度积累及膜脂过氧化程度,提高葡萄幼苗的抗旱能力,且以0.10mg/L EBR处理效果最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号