首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experiment is conducted to investigate the effects of selenium (Se) source and level on growth performance, tissue Se concentrations, antioxidation, and immune functions of heat-stressed broilers from 22 to 42?days of age. A total of 210 22-day-old Arbor Acres commercial male chicks were assigned by body weight to one of seven treatments with six replicates of five birds each in a completely randomized design involving a 3?×?2 factorial arrangement plus one Se-unsupplemented basal diet control (containing 0.027?mg of Se/kg). The three Se sources were sodium selenite (Na2SeO3), Se yeast, and AMMS Se (Se protein), and the two supplemental Se levels were 0.15 or 0.30?mg Se/kg. All birds were reared under heat-stressed condition (33?±?1?°C during 0900?C1700?hours and 27?±?1?°C during 1900?C0700?hours with a relative humidity of 60?C80?%). The results showed that heat-stressed chicks fed Se-supplemented diets had higher (P?<?0.10) average daily feed intake, Se concentrations in liver and breast muscle, liver glutathione peroxidase (GSH-Px) activity, serum antibody titers against H5N1(Re-4 strain), H5N1(Re-5 strain) and lower (P?<?0.01) mortality compared with the control. Chicks fed the diets supplemented with 0.30?mg/kg of Se had higher (P?<?0.05) Se concentrations in liver and breast muscle, liver GSH-Px activity, and serum antibody titer against H5N1 (Re-4 strain) than those fed the diets supplemented with 0.15?mg/kg of Se. Broilers fed the diets supplemented with Se yeast had higher (P?<?0.001) Se concentrations in liver and breast muscle than those fed the diets supplemented with Na2SeO3 or AMMS Se. However, broilers fed the diets supplemented with AMMS Se had higher (P?<?0.05) serum antibody titers against H5N1 (Re-4 strain) and H5N1 (Re-5 strain) than those fed the diets supplemented with Na2SeO3. These results indicated that Se yeast was more effective than Na2SeO3 or AMMS Se in increasing tissue Se retention; however, AMMS Se was more effective than Na2SeO3 or Se yeast in improving immune functions of heat-stressed broilers.  相似文献   

2.
The objectives of this study were to determine (1) the individual ad libitum intake of mineral mix by beef cows managed under a year-long, fall-calving, forage-based production regimen and (2) if Se form in the mineral mix affected the blood Se concentrations of cows and suckling calves. Twenty-four late-gestation (6 to 8 months) Angus-cross cows (2.7?±?0.8 years; body weight [BW]?=?585?±?58 kg) were blocked by BW and randomly assigned (n?=?8) to a mineral supplement treatment (TRT) containing 35 ppm Se as either inorganic (ISe; sodium selenite), organic (OSe; Sel-Plex®), or a 1:1 combination of ISe/OSe (MIX). Cows commonly grazed a 10.1-ha predominately tall fescue pasture and had individual ad libitum access to TRT using in-pasture Calan gates. Cows calved from August to November and calves had common ad libitum access to creep feed and a mineral supplement that lacked Se. Cow jugular blood was taken at 28-day intervals (13 periods) and calf blood was taken with cows from birth through weaning. Individual cow mineral mix (mean?=?54.0?±?7.0 g/day, range?=?97.3 to 27.9?±?7.4 g/day) and Se (mean?=?1.82?±?0.25 mg/day, range?=?3.31 to 0.95?±?0.25 mg/day) intakes were affected by period (P?<?0.0001), but not by cow Se TRT (P?>?0.30). Cow blood Se (0.109 to 0.229?±?0.01 μg/mL) was affected (P?<?0.002) by period, Se form, and their interaction, with ISe?< MIX for periods 8 and 11, ISe?<?OSe for all periods except period 1, and MIX?<?OSe for periods 2 to 4, 7, 8, 10, and 12. Calf blood Se (in micrograms Se per milliliter) was correlated with cow blood Se and affected (P?<?0.0001) by cow Se TRT, with ISe (0.07 to 0.11)?<?MIX (0.10 to 0.15)?=?OSe (0.16 to 0.19). These data reveal that (1) mean supplemental ad libitum cow mineral intake was 36 % less than the typical formulation intake expectations (85 g/day) and, correspondingly, mean supplemental Se intake was 33 % less than that allowed by the FDA and (2) cow Se TRT differentially affected both cow and calf blood Se concentrations, resulting in adequate concentrations for all cows but inadequate concentrations for ISe calves.  相似文献   

3.
Selenium (Se), an essential micronutrient, is believed to enhance neutrophil functions. This study aimed to compare the effects of supplemented organic (Sel-Plex®) and inorganic (sodium selenite) Se on neutrophil functions in high-producing dairy cows, during the periparturient period. Twenty-five Holstein cows were randomly allocated to five dietary treatments as follows: control diet (basal diet without Se supplementation), IN 0.3 (basal diet supplemented with inorganic Se at 0.3 mg/kg dry matter (DM)), IN 0.5 (inorganic Se at 0.5 mg/kg DM), OR 0.3 (organic Se at 0.3 mg/kg DM) and OR 0.5 (organic Se at 0.5 mg/kg DM). Some evaluated parameters included neutrophil functions and plasma Se concentrations in cows and plasma Se concentrations in calves. Neutrophil phagocytosis did not significantly differ among the five groups. However, organic Se supplementation significantly increased (P < 0.01) the respiratory burst of neutrophils when compared to cows fed IN 0.3 and the control diet. In comparison to inorganic Se, neutrophil apoptosis was decreased (P < 0.01) when cows were fed organic Se or the control diets. These effects of organic Se on respiratory burst activities and apoptosis of neutrophils were in a dose-dependent manner. Calf plasma Se concentrations were higher (P < 0.05) when cows were fed OR 0.5 and IN 0.5.  相似文献   

4.
This study aimed to determine the effectiveness of Se from hydroponically produced Se-enriched kale sprout (HPSeKS) on productive performance, egg quality, and Se concentrations in egg and tissue of laying quails. Two-hundred quails, 63 days of age, were divided into four groups. Each group consisted of five replicates and each replicate had ten birds, according to a completely randomized design. The experiment lasted for 6 weeks. The dietary treatments were T1 (control diet), T2 (control diet plus 0.2 mg Se/kg from sodium selenite), T3 (control diet plus 0.2 mg Se/kg from Se-enriched yeast), T4 (control diet plus 0.2 mg Se/kg from HPSeKS). The findings revealed that productive performance and egg quality of quails were not altered (p?>?0.05) by Se sources. Whole egg Se concentrations of quails fed Se from HPSeKS and Se-enriched yeast were higher (p?<?0.05) than that of quails fed the control diet. Breast muscle Se concentrations in quails fed Se from HPSeKS were higher (p?<?0.05) than that of quails fed Se from sodium selenite and Se-enriched yeast. Heart tissue Se concentrations of quails fed Se from Se-enriched yeast and HPSeKS were similar (p?>?0.05), but higher (p?<?0.05) than that of quails fed Se from sodium selenite. The results reveal that Se from HPSeKS did not change the performance and egg quality of quails. The effectiveness of Se from HPSeKS was comparable to that of Se-enriched yeast, which was higher than that of Se from sodium selenite.  相似文献   

5.
Previously, we reported that feeding selenium (Se)-enriched forage improves antibody titers in mature beef cows, and whole-blood Se concentrations and growth rates in weaned beef calves. Our current objective was to test whether beef calves fed Se-enriched alfalfa hay during the transition period between weaning and movement to a feedlot also have improved immune responses and slaughter weights. Recently weaned beef calves (n?=?60) were fed an alfalfa-hay-based diet for 7 weeks, which was harvested from fields fertilized with sodium selenate at 0, 22.5, 45.0, or 89.9 g Se/ha. All calves were immunized with J-5 Escherichia coli bacterin. Serum was collected for antibody titers 2 weeks after the third immunization. Whole-blood neutrophils collected at 6 or 7 weeks were evaluated for total antioxidant potential, bacterial killing activity, and expression of genes associated with selenoproteins and innate immunity. Calves fed the highest versus the lowest level of Se-enriched alfalfa hay had higher antibody titers (P?=?0.02), thioredoxin reductase-2 mRNA levels (P?=?0.07), and a greater neutrophil total antioxidant potential (P?=?0.10), whereas mRNA levels of interleukin-8 receptor (P?=?0.02), l-selectin (P?=?0.07), and thioredoxin reductase-1 (P?=?0.07) were lower. In the feedlot, calves previously fed the highest-Se forage had lower mortality (P?=?0.04) and greater slaughter weights (P?=?0.02). Our results suggest that, in areas with low-forage Se concentrations, feeding beef calves Se-enriched alfalfa hay during the weaning transition period improves vaccination responses and subsequent growth and survival in the feedlot.  相似文献   

6.
The periparturient period represents a stressful time for dairy cows as they transition from late gestation to early lactation. Oxidation stress occurs during this period owing to the increased metabolic activity. Antioxidants supplementation slightly above the suggested requirements may be beneficial in relieving this kind of stress. The objective of this study was to determine whether supplementing selenium (Se) yeast to diets with adequate Se concentrations affects Se status, oxidative stress, and antioxidant status in dairy cows during the periparturient period. Twenty multiparous Holstein cows were randomly divided into two groups with ten replicates in each group. During the last 4 weeks before calving, cows were fed Se-yeast at 0 (control) or 0.3 mg Se/kg dry matter (Se-yeast supplementation), in addition to Na selenite at 0.3 mg Se/kg dry matter in their rations. The concentrations of Se, reactive oxygen species (ROS), hydrogen peroxide (H2O2), hydroxyl radical, malonaldehyde (MDA), α-tocopherol and glutathione (GSH), the activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT), and the total antioxidant capacity (T-AOC) in plasma or erythrocyte of dairy cows were measured at 21 and 7 days prepartum, and at 7 and 21 days postpartum. Cows fed Se-yeast supplement during the last 4 weeks of gestation had higher plasma Se and lower MDA concentrations at 7 days prepartum, and at 7 and 21 days postpartum, and had higher whole blood Se and lower plasma ROS and H2O2 concentrations at 7 and 21 days postpartum compared with control cows. Se-yeast supplementation increased plasma and erythrocyte GSH-Px activities and erythrocyte GSH concentration at 7 days postpartum as compared to Se-adequate control cows. Compared with control cows, the enhanced SOD and CAT activities, increased α-tocopherol and GSH concentrations, and improved T-AOC in plasma at 7 and 21 days postpartum in Se-yeast-supplemented cows were also observed in this study. The results indicate that feeding Se-adequate cows a Se-yeast supplement during late gestation increases plasma Se status, improves antioxidant function, and relieves effectively oxidative stress occurred in early lactation.  相似文献   

7.
The objective of this study was to compare the efficiency of transfer of selenium (Se) to plasma and milk from inorganic sodium selenite, either free or microencapsulated, and from selenized yeast in dairy cows. The study consisted of an in situ-nylon bags incubation, and in an in vivo experiment to compare the Se status of cows supplemented with either sodium selenite, microencapsulated sodium selenite, or Se yeast. Thirty dairy cows, divided in five groups, were fed the following diets: the control group (CTR) received a total mixed ration supplemented with sodium selenite in order to have 0.3 mg/kg DM of total Se; 0.3M and 0.5M groups received the same control diet supplemented with lipid microencapsulated sodium selenite to provide 0.3 and 0.5 mg/kg DM of total Se, respectively; 0.3Y and 0.5Y groups received selenized yeast to provide 0.3 and 0.5 mg/kg of total Se, respectively. Cows were fed the supplements for 56 days during which milk, blood, and fecal samples were collected weekly to conduct analysis of Se and glutathione peroxidase (GSH-px) activity. Se concentration in the nylon bags was assessed to 72%, 64%, and 40% of the initial value (time 0) after 4, 8, and 24 h of incubation, respectively. In vivo, cows supplemented with 0.3 mg/kg of microencapsulated Se had higher milk Se concentration compared to CTR. The increment was more pronounced at the highest inclusion rate (0.5 mg/kg, 0.5M group). GSH-px activity was not significantly affected by treatments. The results indicate that lipid microencapsulation has the potential to protect nutrients from complete rumen reduction and that Se from microencapsulated selenite is incorporated in milk more efficiently than the free form. Microencapsulated sodium selenite was shown to be comparable to Se-yeast in terms of availability and incorporation in milk when fed at 0.3 mg/kg DM, whereas the inclusion in the diet at 0.5 mg/kg DM resulted in higher plasma and milk concentrations than selenized yeast.  相似文献   

8.
Maternal nutrition affects the development of the fetus and postnatal performance of the calf. Methionine may play a critical role in developmental programming and is likely deficient in beef cows fed low-quality forage. The objective of this study was to determine the effect of metabolizable methionine supply to lactating beef cows during the periconception period on performance of cows, calves, and subsequent offspring. This project involved two consecutive production cycles commencing at calving in which dietary treatments were fed to cows during the periconception period along with measurements on cows and initial calves in Production Cycle 1, and measurements on subsequent calves in Production Cycle 2. Brangus-Angus crossbred lactating beef cows (N = 108; age = 6.4 (2.8) year) were stratified by previous calving date and assigned to one of three supplements: (1) control, molasses plus urea at 2.72 kg/day as fed, (2) fishmeal, 2.27 kg/day molasses plus urea plus 0.33 kg/day as fed of fishmeal, and (3) methionine, 2.72 kg/day of molasses plus urea plus 9.5 g/day of 2-hydroxy-4-(methylthio)-butanoic acid. Cows were fed supplements and low-quality limpograss (Hemarthria altissima) hay while grazing dormant bahiagrass (Paspalum notatum Flüggé) pastures during the 115-day periconception period from December 2014 to April 2015 in Production Cycle 1 only. Body weight change and milk yield of cows were measured during the periconception period in Production Cycle 1. Body weight of calves was measured at birth and weaning in both production cycles. Following weaning in Production Cycle 2, eight subsequent steer calves per treatment were individually housed for a 42-day metabolism experiment. Treatment did not affect (P > 0.10) BW change of cows, but cows fed methionine tended (P = 0.09) to produce more energy-corrected milk than control and fishmeal. Treatment did not affect (P > 0.10) 205-day adjusted weaning weight of calves in either production cycle. During the metabolism experiment, subsequent calves from dams fed fishmeal and methionine gained faster (P < 0.05) and had greater (P < 0.05) gain:feed than control calves. Methionine calves tended (P = 0.06) to have greater apparent total tract NDF and ADF digestibility and lesser (P < 0.05) blood glucose concentration than control and fishmeal calves. These data indicate that maternal methionine supply during the periconception period plays an important role in programming future performance of the offspring.  相似文献   

9.
Dietary selenium (Se) deficiency can influence the function of the brain. Our objective was to investigate the effects of Se deficiency on oxidative damage and calcium (Ca) homeostasis in brain of chicken. In the present study, 1-day-old chickens were fed either a commercial diet (as control group) with 0.15 mg/kg Se or a Se-deficient diet (as L group) with 0.033 mg/kg Se for 75 days. Then, brain injury biomarkers were examined, including histological analysis, ultrastructure assay, and apoptosis assay. We also examined the effect of Se deficiency on the Se-containing antioxidative enzyme glutathione peroxidase (GSH-Px), the level of glutathione (GSH), and the Ca homeostasis in brain of chicken. The results showed that the levels of Se and GSH and activity of GSH-Px are seriously reduced by 33.8–96 % (P?<?0.001), 24.51–27.84 % (P?<?0.001), and 20.70–64.24 % (P?<?0.01), respectively. In the present study, we also perform histological analysis and ultrastructure assay and find that Se deficiency caused disorganized histological structure, damage to the mitochondria, fusion of nuclear membrane and nucleus shrinkage, higher apoptosis rate (P?<?0.001), and increase of Ca homeostasis (P?<?0.05 or P?<?0.01 or P?<?0.001) in the brain of chicken. In conclusion, the results demonstrated that Se deficiency induced oxidative damage and disbalance of Ca homeostasis in the brain of chicken. Similar to mammals, chickens brain is also extremely susceptible to oxidative damage and selenium deficiency.  相似文献   

10.
Dietary selenium (Se) can be supplemented from organic or inorganic sources and this may affect Se metabolism and functional outcome such as antioxidative status and immune functions in dairy cows. A feeding trial was performed with 16 Holstein-Friesian dairy cows fed with a total mixed ration (0.18 mg Se/kg dry matter (DM)) either without Se supplement (Control, n = 5), or with Se from sodium selenite (Group SeS, n = 5) or Se yeast (Group SeY, n = 6). In Groups SeS and SeY, the Se supplementation amounted to an additional intake of 4 mg Se and 6 mg Se/d during gestation and lactation, respectively. The effect of both Se sources was characterised by milk Se and antioxidant levels, and the phenotyping and functional assessment of phagocytic activity of milk immune cells. Se yeast has been found to increase (p ≤ 0.001) the milk Se and antioxidant levels markedly compared to the control group. The experimental treatment did not affect the immune parameters of the cows. Lymphocyte subpopulations and phagocytosis activity of neutrophilic granulocytes were affected neither by the Se intake nor by the two different dietary supplements. It can be concluded that sodium selenite and Se yeast differ considerably in their effects on antioxidant status in dairy cows. However, the basal dietary Se concentration of 0.18 mg/kg DM seemed to be high enough for the measured immune variables.  相似文献   

11.
Thirty-two wether lambs of Tan sheep were randomly assigned into four dietary treatment groups (eight per group) for an 8-wk study and then fed a basal diet deficient in Se (0.06 mg/kg) or diets supplemented to provide 0.10 mg/kg Se from sodium selenite, selenized yeast, and selenium-enriched probiotics, respectively. Blood samples were collected at d 0, 28, and 56 of the experiment and tissue samples were collected at experiment termination. Tissue and blood Se concentrations, blood glutathione peroxidase (GSH-Px) activities, and plasma interleukin levels were analyzed. The results showed that the concentrations of Se in the kidney, liver, and muscle increased in all of the supplemented groups (p<0.01) compared with the control group. However, the Se concentrations in the kidney, liver, and muscle in the groups supplemented with Se yeast and Se-enriched probiotics were higher than those in the group supplemented with sodium selenite (p<0.01). The activities of GSH-Px and the concentrations of Se in blood also increased in all of the supplemented groups during the period of supplementation (p<0.01) compared with the control group. The activities of GSH-Px and the concentrations of Se in the whole blood of the lambs fed with selenized yeast and Se-enriched probiotics were higher than those of lambs fed with sodium selenite (p<0.01 or p<0.05). The concentrations of interleukin-1 and interleukin-2 in plasma significantly increased in all of the supplemented groups during the entire period of experiment (p<0.01) compared with the control group, but had no significant differences among all of the supplemented groups. In conclusion, a diet supplemented with Se for finishing lambs was able to increase the concentrations of Se in tissue and blood, activities of GSH-Px in blood, and levels of interleukins in plasma. Organic Se sources (selenized yeast and Se-enriched probiotics) were more effective than the inorganic Se source (sodium selenite) in increasing tissue and blood Se concentrations and blood GSH-Px activities of lambs. However, there were no significant differences in plasma interleukin levels of lambs between organic and inorganic Se sources.  相似文献   

12.
Two trials were conducted in a 2?×?2?+?1 factorial arrangement based on a completely randomized design to evaluate the effects of different sources of selenium (Se) on performance, blood metabolites, and nutrient digestibility in male lambs on a barley-based diet. The first trial lasted for 70 days and consisted of 30 lambs (35.6?±?2.6 kg mean body weight, about 4–5 months of age) which were randomly allotted to five treatments including: (1) basal diet (containing 0.06 mg Se/kg DM; control) without supplementary Se, (2) basal diet?+?0.20 mg/kg Se as sodium selenite (SeS 0.20), (3) basal diet?+?0.40 mg/kg Se as sodium selenite (SeS 0.40), (4) basal diet?+?0.20 mg/kg Se as selenium yeast (SeY 0.20), and (5) basal diet?+?0.40 mg/kg Se as selenium yeast (SeY 0.40). For the second trial, four lambs from each group of experiment 1 were randomly allocated to individual metabolic cages for 14 days to measure the effects of dietary Se on nutrient digestibility. The results revealed that there were no significant differences for average daily gain, average daily feed intake, feed/gain ratio, hematological parameters (packed cell volume, red blood cell, white blood cell, and hemoglobin values), serum total protein, albumin, globulin, aspartate amino transferase, alkaline phosphatase, and creatine phosphokinase due to supplementation of different amounts and sources of Se in lambs. Dietary Se supplementation significantly improved (P?<?0.001) glutathione peroxidase activity in blood. Furthermore, at the end of the trial, serum tri-iodothyronine (T3) amount also increased (P?<?0.05), while serum thyroxine (T4) amount decreased (P?<?0.05). Digestibility of dry matter, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber increased (P?<?0.05) by Se yeast supplementation. It may be concluded that supplementation of Se in lambs had no significant effect on performance and blood hematology, but increased blood glutathione peroxidase activity and serum T3 amount and decreased serum T4 amount as compared to non-supplemented control lambs. Furthermore, Se yeast improved nutrient digestibility in lambs.  相似文献   

13.
Selenium (Se) is an essential micronutrient in cattle, and Se-deficiency can affect morbidity and mortality. Calves may have greater Se requirements during periods of stress, such as during the transitional period between weaning and movement to a feedlot. Previously, we showed that feeding Se-fertilized forage increases whole-blood (WB) Se concentrations in mature beef cows. Our current objective was to test whether feeding Se-fertilized forage increases WB-Se concentrations and performance in weaned beef calves. Recently weaned beef calves (n = 60) were blocked by body weight, randomly assigned to 4 groups, and fed an alfalfa hay based diet for 7 wk, which was harvested from fields fertilized with sodium-selenate at a rate of 0, 22.5, 45.0, or 89.9 g Se/ha. Blood samples were collected weekly and analyzed for WB-Se concentrations. Body weight and health status of calves were monitored during the 7-wk feeding trial. Increasing application rates of Se fertilizer resulted in increased alfalfa hay Se content for that cutting of alfalfa (0.07, 0.95, 1.55, 3.26 mg Se/kg dry matter for Se application rates of 0, 22.5, 45.0, or 89.9 g Se/ha, respectively). Feeding Se-fertilized alfalfa hay during the 7-wk preconditioning period increased WB-Se concentrations (P Linear<0.001) and body weights (P Linear = 0.002) depending upon the Se-application rate. Based upon our results we suggest that soil-Se fertilization is a potential management tool to improve Se-status and performance in weaned calves in areas with low soil-Se concentrations.  相似文献   

14.
The nutritional essentialities of transition element vanadium (V) as micro-nutrient in farm animals have not yet been established, though in rat model, vanadium as vanadate has been reported to exert insulin-mimetic effect and shown to be needed for proper development of bones. The objective of this study was to determine the effect of V supplementation on growth performance, plasma hormones and bone health status in calves. Twenty-four crossbred calves (body weight 72.83 ± 2.5 kg; age 3–9 months) were blocked in four groups and randomly assigned to four treatment groups (n = 6) on body weight and age basis. Experimental animals were kept on similar feeding regimen except that different groups were supplemented with either 0, 3, 6 or 9 ppm inorganic V/kg DM. Effect of supplementation during 150-day experimental period was observed on feed intake, body weight gain, feed efficiency, body measures, endocrine variables, plasma glucose and biomarkers of bone health status. Supplementation of V did not change average daily gain (ADG), dry matter intake (DMI), feed efficiency and body measures during the experimental period. During the post-V supplementation period plasma insulin-like growth factor-1 (IGF-1), triiodothyronine (T3) and thyroxin (T4) concentrations were increased and observed highest in 9 mg V/kg DM fed calves; however, levels of insulin, glucose, parathyroid hormone (PTH) and calcitonin hormones remained similar among calves fed on basal or V-supplemented diets. Bone alkaline phosphatase (Bone-ALP) concentration was increased (P < 0.05); however, plasma protein tyrosine phosphatase (PTP) level decreased (P < 0.05) in 6 and 9 mg V/kg DM supplemented groups. Plasma hydroxyproline (Hyp) and tartrate-resistant acid phosphatase (TRAP) concentration were unchanged by V supplementation. Blood V concentration showed positive correlation with supplemental V levels. These results suggest that V may play a role in modulation of the action of certain endocrine variables and biomarkers of bone health status in growing crossbred calves.  相似文献   

15.
In order to assess the influence of dietary protein levels on the fluoride (F) bioavailability, 30 crossbred calves (6-8 months; approximately 104 kg BW) initially exposed to different dietary protein levels were allotted into six groups in a 3?×?2 factorial design. The factors included three different levels of protein viz. normal (100%; NP), low (75%; LP), and high (125%; HP) as per Kearl recommendations besides two levels of supplemental fluorine (as sodium fluoride) at 0 or 200 mg/kg diet. The animals were fed on the respective concentrate mixture and wheat straw for 210 days. A metabolism trial was conducted at 200 days post-feeding to study digestibility, plane of nutrition, and nutrient balances. The final body weight at the end of 210 days was lower (p?<?0.01) in animals fed 200 mg/kg F (164.2?±?8.92 kg) compared to those fed no F (200.7?±?8.05 kg). Calves on LP diets attained lower (p?<?0.05) average daily gain in comparison to NP or HP fed calves. The F-supplemented calves exhibited lower (p?<?0.01) voluntary feed intake than their non-supplemented control. The digestibility of proximate nutrients other than ether extract exhibited higher (p?<?0.01) values in F-fed calves attributable chiefly to reduced consumption of dry matter. The calves fed extra F retained lower mean daily nitrogen; calcium, and phosphorus compared to the calves fed no F. The mean daily intake, excretion, and retention of F were higher (p?<?0.01) in the F-supplemented calves. A significant (p?<?0.01) interaction between protein levels and F was evident in the urinary excretion of F; calves on LP diet exhibiting lower urinary excretion. Consequently, the bioavailability of F tended to be higher on LP than NP or HP diets. From the results, it is concluded that protein levels in the diet do not impart significant influence on susceptibility to fluorosis in crossbred calves. However, the bioavailability of F tended to increase on diets low in protein.  相似文献   

16.
Forty steer calves averaging 257 kg were allotted to a randomized complete block design experiment containing 10 animals per treatment. Four tall fescue pastures of 5.7 ha each were utilized during the 84-d grazing study. Each pasture treatment block contained 10 calves. Calves were fed a control supplement of 96.9% ground corn and 3.1% trace mineral salt in two pastures, or a sulfur supplement that contained 94.3% ground corn, 3.1% trace mineral salt, and 2.5% elemental sulfur in the remaining two pastures. Each supplement was fed at the rate of 0.45 kg/head daily. One-half of the calves in each pasture were injected with 15 mg selenium (Se) as sodium selenite initially and at 28-d intervals throughout the trial. The treatments were as follows: (1) control-no sulfur, no selenium; (2) selenium, no sulfur; (3) sulfur, no selenium and; (4) selenium plus sulfur. Calf weights were monitored and certain blood parameters measured every 28 d. Average plasma Se values were increased (P < 0.001) from 0.021 ppm in calves not receiving Se to 0.043 ppm in those receiving Se. Plasma urea nitrogen levels were not affected by Se administration, but were lowered (P <0.05) from 16.6 to 15.8 mg/100 mL by sulfur administration. All plasma amino acids measured, except methionine, phenylalanine, argi-nine, and citrulline, were cleared from the blood in response to Se supplementation as reflected by their lower concentrations when compared with other treatment groups. Overall average daily gains were not significantly (P > 0.10) increased by sulfur supplementation, but were increased (P < 0.05) from 0.33 kg/d in calves not receiving Se to 0.43 kg/d in those receiving Se injections. Significant interactions between fulfur and Se were not noted.  相似文献   

17.
The present research evaluated differential effects of sodium selenite and nano-Se on growth performance, tissue Se distribution, and glutathione peroxidase (GSH-Px) activity of avian broiler. Broilers were randomly segregated into 12 groups so that three replicates were available for each of the three treatments (T-1, T-2, and T-3) and control groups. The control groups were fed basal diets without Se addition. T-1, T-2, and T-3 were fed with diets containing 0.2 mg kg−1 sodium selenite, 0.2 mg kg−1 nano-Se, and 0.5 mg kg−1 nano-Se, respectively. Compared with the control, Se supplementation remarkably improved daily weight gain and survival rate and decreased feed conversion ratio (P < 0.05). However, no significant difference was observed between T-1, T-2, and T-3. The tissue Se content was significantly higher (P < 0.05) in Se-supplemented groups than the control, and T-3 showed the highest. Furthermore, higher Se content was observed in liver, and there was a significant difference (P < 0.05) compared with that in muscle. As for serum and hepatic GSH-Px activities, Se supplementation remarkably improved GSH-Px activity (P < 0.05), and there was no significant difference (P > 0.05) between treatments (T-1, T-2, and T-3).  相似文献   

18.
Iodine (I) is an essential trace element that can influence animal health and productivity. In this study, we investigated the effects of dietary iodine on the antioxidant indices of organ (liver and thyroid gland) and messenger RNA (mRNA) expression of glutathione peroxidase (GSH-Px) in Rex rabbits. A total of 120 4-month-old Rex rabbits (2235.4 ± 13.04 g BW) were divided into four equal groups, and their diets were supplemented with iodine (0, 0.2, 2, or 4 mg/kg dry matter (DM)). The iodine concentration in basal diet (control group) was 0.36 mg/kg DM. In most of measured parameters, supplemental iodine exerted no significant effect. Growth and slaughter performance and organ weight were not influenced significantly by iodine supplementation. Serum T3 was significantly lower in 2-mg I group than in 0.2 and 4-mg I groups (P < 0.05). Superoxide dismutase (SOD), GSH-Px, methane dicarboxylic aldehyde (MDA), and thyroperoxidase (TPO) in the serum and liver were not influenced (P > 0.05). Conversely, serum catalase (CAT) was significantly reduced (P < 0.05). In the thyroid, GSH-Px was higher in the 2-mg I group than in the 0.2- and 4-mg I groups (P < 0.05). RT-PCR results showed that the mRNA expression level of GSH-Px in the liver was not significantly influenced (P > 0.05). In the thyroid gland, the mRNA expression level of GSH-Px was higher in the 2-mg I group than in the 4-mg I group (P < 0.05), which agreed with the activity of GSH-Px. In conclusion, iodine supplementation exerted no effect on the performance and antioxidant capacity of the body, but dietary iodine influenced serum T3 or GSH-Px in the thyroid gland. Thus, on the basis of serum T3 and GSH-Px levels in the thyroid gland, we hypothesized that GSH-Px secretion was increased by adding dietary iodine in the thyroid, which may inhibit the H2O2 generation and further influence the thyroid hormone synthesis.  相似文献   

19.
Dietary selenium (Se) deficiency induces muscular dystrophy in chicken, but the molecular mechanism remains unclear. The aim of the present study was to investigate the effect of dietary Se deficiency on the expressions of 25 selenoproteins. One-day-old broiler chickens were fed either an Se deficiency diet (0.033 mg Se/kg; produced in the Se-deficient area of Heilongjiang, China) or a diet supplemented with Se (as sodium selenite) at 0.2 mg/kg for 55 days. Then, the mRNA levels of 25 selenoproteins in chicken muscles were examined, and the principal component was further analyzed. The results showed that antioxidative selenoproteins especially Gpxs and Sepw1 were highly and extensively expressed than other types of selenoproteins in chicken muscles. In 25 selenoproteins, Gpxs, Txnrd2, Txnrd 3, Dio1, Dio 3, Selk, Sels, Sepw1, Selh, Sep15, Selu, Selpb, Sepp1, Selo, Sepx1, and SPS2 were downregulated (P?P?>?0.05). Se deficiency decreased the expressions of 19 selenoproteins (P?P?相似文献   

20.
An experiment was conducted using a total of 840, 1-day-old, Arbor Acres commercial male broilers to compare copper (Cu) sulfate and tribasic Cu chloride (TBCC, Cu2(OH)3Cl) as sources of supplemental Cu for broilers fed in floor pens. Chicks were randomly allotted to one of seven treatments for six replicate pens of 20 birds each, and were fed a basal corn–soybean meal diet (10.20 mg/kg Cu) supplemented with 0, 100, 150, or 200 mg/kg Cu from either Cu sulfate or TBCC for 21 days. Chicks fed 200 mg/kg Cu as TBCC had a higher (P?<?0.05) average daily gain (ADG) than those consuming other diets. Liver Cu contents of broilers fed diets supplemented with TBCC were numerically lower (P?>?0.05) than those of broilers fed diets supplemented with Cu sulfate. The vitamin E contents and the phytase activities in the feed fortified with TBCC were higher (P?<?0.01) and numerically higher (P?>?0.05) compared with those in the feeds fortified with Cu sulfate stored at room temperature, respectively. The vitamin E contents in liver and plasma of broilers fed diets supplemented with TBCC were higher (P?<?0.05) than those of birds fed diets supplemented with Cu sulfate. This result indicates that TBCC is more effective than Cu sulfate in improving the growth of broilers fed in floor pens, and it is chemically less active than Cu sulfate in promoting the undesirable oxidation of vitamin E in feeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号