共查询到20条相似文献,搜索用时 0 毫秒
4.
In order to meet dominant growth of Salmonella spp. in a composed system of five pathogens for accurate detection, designing an appropriate selective enrichment broth was clearly needed. First, we built a high-throughput assay procedure based on SYBR Green Ι real-time PCR, which possessed the necessary specificity for Salmonella spp., a good linear standard curve with typical R 2 value (0.9984) and high amplification efficiency (99.0 %). Further, for the larger target biomass in the mixed microflora, acarbose, LiCl and bile salt were selected to optimize their concentrations using response surface methodology (RSM). A central composite design was employed to collect the data and fit the response. A quadratic polynomial model was derived by computer simulation. Statistical analysis was carried out to explore the action and interaction of the variables on the response. In the end, a novel broth (Sal-5) was formulated to allow the efficient enrichment of Salmonella spp. and inhibit the growth of other tested strains. A detection platform was developed, including selective enrichment in Sal-5, DNA extraction by the boiling lysis method and real-time PCR test based on SYBR Green Ι. This work could extend the application of RSM and real-time PCR in the design of other selective enrichment media for common pathogens. 相似文献
5.
Real-time polymerase chain reaction melting curve analysis (MCA) allows differentiation of several free-living amoebae species.
Distinctive characteristics were found for Naegleria fowleri, N. lovaniensis, N. australiensis, N. gruberi, Hartmanella vermiformis, and Willaertia magna. Species specificity of the amplicons was confirmed using agarose gel electrophoresis and sequence-based approaches. Amplification
efficiency ranged from 91% to 98%, indicating the quantitative potential of the assay. This MCA approach can be used for quantitative
detection of free-living amoebae after cultivation but also as a culture-independent detection method. 相似文献
7.
Escherichia coli is a group of bacteria which has raised a lot of safety concerns in recent years. Five major intestinal pathogenic groups have been recognized amongst which the verocytotoxin or shiga-toxin (stx1 and/or stx2) producing E. coli (VTEC or STEC respectively) have received a lot of attention recently. Indeed, due to the high number of outbreaks related to VTEC strains, the European Food Safety Authority (EFSA) has requested the monitoring of the "top-five" serogroups (O26, O103, O111, O145 and O157) most often encountered in food borne diseases and addressed the need for validated VTEC detection methods. Here we report the development of a set of intercalating dye Real-time PCR methods capable of rapidly detecting the presence of the toxin genes together with intimin (eae) in the case of VTEC, or aggregative protein (aggR), in the case of the O104:H4 strain responsible for the outbreak in Germany in 2011. All reactions were optimized to perform at the same annealing temperature permitting the multiplex application in order to minimize the need of material and to allow for high-throughput analysis. In addition, High Resolution Melting (HRM) analysis allowing the discrimination among strains possessing similar virulence traits was established. The development, application to food samples and the flexibility in use of the methods are thoroughly discussed. Together, these Real-time PCR methods facilitate the detection of VTEC in a new highly efficient way and could represent the basis for developing a simple pathogenic E. coli platform. 相似文献
8.
Fusarium head blight (FHB) caused by several Fusarium species is one of the most serious diseases affecting wheat throughout the world. The efficiency of microbiological assays and real-time PCR to quantify major FHB pathogens in wheat ears after inoculation with F. graminearum, F. culmorum, F. avenaceum and F. poae under greenhouse and field conditions were evaluated. The frequency of infected kernel, content of fungal biomass, disease severity and kernel weight were determined. To measure the fungal biomass an improved DNA extraction method and a Sybr® Green real-time PCR were developed. The Sybr® Green real-time PCR proved to be highly specific for individual detection of the species in a matrix including fungal and plant DNA. The effect of Fusarium infection on visible FHB severity, frequency of infected kernels and thousand-kernel mass (TKM) significantly depended on the Fusarium species/isolate. F. graminearum resulted in highest disease level, frequency of infected kernels, content of fungal biomass, and TKM reduction followed by F. culmorum, F. avenaceum and F. poae, respectively. The comparison of frequency and intensity of kernel colonization proved differences in aggressiveness and development of the fungi in the kernels. Only for F. graminearum, the most aggressive isolate, application of microbiological and real-time PCR assays gave similar results. For the other species, the intensity of kernel colonization was lower than expected from the frequency of infection. 相似文献
9.
Aims: The aim of this study was to develop a real‐time PCR test for differentiation between Shigella spp. and E. coli, in particular enteroinvasive Escherichia coli (EIEC). Methods and Results: A duplex real‐time PCR specific for the genes encoding for β‐glucuronidase ( uidA) and lactose permease ( lacY) was developed. Ninety‐six isolates including 11 EIEC isolates of different serotypes and at least three representatives of each Shigella species were used for selectivity testing. All isolates tested were positive for the uidA gene. Additionally, all E. coli isolates were positive for the lacY gene, whereas no Shigella isolate tested harboured lacY. Conclusions: The duplex real‐time PCR assay was found to be simple, rapid, reliable and specific. Significance and Impact of the Study: If possible at all, delineation of so‐called inactive EIEC from Shigella spp. is cumbersome. Biochemical and serological methods are limited to specific pheno‐ and serotypes. This assay clearly simplifies the differentiation of both. 相似文献
10.
Here we present the optimization of PCR conditions for microsatellite analysis of coniferous trees. The use of touchdown protocol for annealing resulted in a high success rate for optimization using fewer temperature profiles. The use of SYBR ¢ Green gel stain to detect PCR products in agarose gels was more sensitive than ethidium bromide. This is valuable for determining the success of PCR reactions and estimating the amount of PCR products formed—which is crucial in determining the dilution required to produce bands of similar intensity upon silver staining of the polyacrylamide gels. The use of SYBR ¢ Gold for staining polyacrylamide gels was not satisfactory in terms of the image quality produced. However, it was comparable to silver staining in terms of sensitivity, and could possibly be used in cases where the products are present as sharp single bands. In those cases, the use of SYBR ¢ Gold gel stain would save time and money for staining polyacrylamide gels. 相似文献
11.
Minimal inhibitory concentration of antimicrobials, determined by the broth microdilution method, requires visual assessment or absorbance measurement using a spectrophotometer. Both procedures are usually performed manually, requiring the presence of an operator to assess the plates at specific time point. To increase the throughput of antimicrobial susceptibility testing, and concurrently convert into an automatic assay, the Biolog OmniLog ® system was validated for a new, label-free application using standard 96-well microplates. OmniLog was evaluated for its signal strength to ensure that the signal intensity, detected and measured by the system's camera, was satisfactory. Variability due to the plate location inside the OmniLog incubator, as well as variation between wells, was investigated. Then the system was validated by determining the minimal inhibitory concentration of ciprofloxacin, piperacillin and linezolid against a selected Gram-negative and Gram-positive strains. No significant difference was observed in relation to position of the plates within the system. Plate edge effects were noticeable, thus the edge wells were not included in further experiments. Minimal inhibitory concentration results were comparable to those obtained by conventional protocol as well as to values defined by the Clinical Laboratory Standards Institute or published in the literature. 相似文献
13.
Dear Editor,
Prototype foamy virus (PFV) belongs to the genus Spumavirus in the Spumaretrovirinae subfamily of Retroviridae.Although PFV and HIV have much in common,research into PFV has lagged far behind that into HIV,as PFV appeared to be non-pathogenic both in accidentally infected humans and in experimentally infected animals.In recent decades,however,more attention has been focused on PFV because it seems to be a promising candidate vector for gene therapy in clinical applications.Compared with other retroviral vectors,vectors derived from PFV appear to be safer (Sastry L,et al.,2005).In addition,it was found that PFV vectors are efficient vehicles for stable gene transfer in proliferating cells,and that the transferred genes are able to achieve stable integration and long-term expression in the target cells. 相似文献
16.
ABSTRACT: BACKGROUND: High-resolution genetic maps are needed in many crops to help characterize the genetic diversity that determines agriculturally important traits. Hybridization to microarrays to detect single feature polymorphisms is a powerful technique for marker discovery and genotyping because of its highly parallel nature. However, microarrays designed for gene expression analysis rarely provide sufficient gene coverage for optimal detection of nucleotide polymorphisms, which limits utility in species with low rates of polymorphism such as lettuce (Lactuca sativa). RESULTS: We developed a 6.5 million feature Affymetrix GeneChip? for efficient polymorphism discovery and genotyping, as well as for analysis of gene expression in lettuce. Probes on the microarray were designed from 26,809 unigenes from cultivated lettuce and an additional 8,819 unigenes from four related species (L. serriola, L. saligna, L. virosa and L. perennis). Where possible, probes were tiled with a 2 bp stagger, alternating on each DNA strand; providing an average of 187 probes covering approximately 600 bp for each of over 35,000 unigenes; resulting in up to 13 fold redundancy in coverage per nucleotide. We developed protocols for hybridization of genomic DNA to the GeneChip? and refined custom algorithms that utilized coverage from multiple, high quality probes to detect single position polymorphisms in 2 bp sliding windows across each unigene. This allowed us to detect greater than 18,000 polymorphisms between the parental lines of our core mapping population, as well as numerous polymorphisms between cultivated lettuce and wild species in the lettuce genepool. Using marker data from our diversity panel comprised of 52 accessions from the five species listed above, we were able to separate accessions by species using both phylogenetic and principal component analyses. Additionally, we estimated the diversity between different types of cultivated lettuce and distinguished morphological types. CONCLUSION: By hybridizing genomic DNA to a custom oligonucleotide array designed for maximum gene coverage, we were able to identify polymorphisms using two approaches for pair-wise. 相似文献
17.
Milbemectin is a widely used veterinary antiparasitic agent. A high-performance liquid chromatography with fluorescent detection (HPLC–FLD) method is described for the determination of milbemectin in dog plasma. The derivative procedure included mixing 1-methylimizole [MI, MI-ACN (1:1, v/v), 100 μL], trifluoroacetic anhydride [TFAA, TFAA-ACN (1:2, v/v), 150 μL] with a subsequent incubation for 3 s at the room temperature to obtain a fluorescent derivative, which is reproducible in different blood samples and the derivatives proved to be stable for at least 80 h at room temperature. HPLC method was developed on C18 column with FLD detection at an excitation wavelength of 365 nm and emission wavelength of 475 nm, with the mobile phase consisting of methanol and water in the ratio of 98:2 (v/v). The assay lower limit of quantification was 1 ng/mL. The calibration curve was linear over concentration range of 1–200 ng/mL. The intra- and inter-day accuracy was >94% and precision expressed as % coefficient of variation was <5%. This method is specific, simple, accurate, precise and easily adaptable to measure milbemycin in blood of other animals. 相似文献
19.
The root (wilt) disease caused by phytoplasma (Ca. Phytoplasma) is one of the major and destructive occurs in coconut gardens of Southern India. As this organism could not be cultured in vitro, the early detection in the palm is very much challenging. Hence, proper early diagnosis and inoculum assessment relay mostly on the molecular techniques namely nested and quantitative PCR (qPCR). So, the present study qPCR assay conjugated with TaqMan® probe was developed which is a rapid, sensitive method to detect the phytoplasma. For the study, samples from different parts of infected coconut palms viz., spindle leaflets, roots and the insect vector—leaf hopper (Proutista moesta) were collected and assessed by targeting 16S rRNA gene. Further, nested PCR has been carried out using p1/p7 and fU5/rU3 primers and resulted in the amplification product size of 890 bp. From this amplified product, specifically a target of 69 bp from the 16S rRNA gene region has been detected through primers conjugated with Taqman probe in a step one instrument. The results indicated that the concentration of phytoplasma was more in spindle leaflets (8.9?×?105 g of tissue) followed by roots (7.4?×?105 g of tissue). Thus, a qPCR approach for detection and quantification of coconut phytoplasma was more advantageous than other PCR methods in terms of sensitivity and also reduced risk of cross contamination in the samples. Early diagnosis and quantification will pave way for the healthy coconut saplings selection and management under field conditions. 相似文献
20.
Walking speed is a fundamental indicator for human well-being. In a clinical setting, walking speed is typically measured by means of walking tests using different protocols. However, walking speed obtained in this way is unlikely to be representative of the conditions in a free-living environment. Recently, mobile accelerometry has opened up the possibility to extract walking speed from long-time observations in free-living individuals, but the validity of these measurements needs to be determined. In this investigation, we have developed algorithms for walking speed prediction based on 3D accelerometry data (actibelt?) and created a framework using a standardized data set with gold standard annotations to facilitate the validation and comparison of these algorithms. For this purpose 17 healthy subjects operated a newly developed mobile gold standard while walking/running on an indoor track. Subsequently, the validity of 12 candidate algorithms for walking speed prediction ranging from well-known simple approaches like combining step length with frequency to more sophisticated algorithms such as linear and non-linear models was assessed using statistical measures. As a result, a novel algorithm employing support vector regression was found to perform best with a concordance correlation coefficient of 0.93 (95%CI 0.92-0.94) and a coverage probability CP1 of 0.46 (95%CI 0.12-0.70) for a deviation of 0.1 m/s (CP2 0.78, CP3 0.94) when compared to the mobile gold standard while walking indoors. A smaller outdoor experiment confirmed those results with even better coverage probability. We conclude that walking speed thus obtained has the potential to help establish walking speed in free-living environments as a patient-oriented outcome measure. 相似文献
|