首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
Erler  Dirk V.  Nothdurft  Luke  McNeil  Mardi  Moras  Charly A. 《Coral reefs (Online)》2018,37(4):1003-1011
Coral Reefs - The nitrogen (N) isotopic composition (δ15N) of water column nitrate (NO3−) reveals important information about the source(s) of N, and/or the transformation processes...  相似文献   

2.
农业流域有机质流失造成水体富营养化和土地退化,不仅威胁水质和粮食安全,而且会导致温室气体排放等潜在环境问题.本研究用13C、15N和C/N作为指纹标志物,分析了南岳小流域出口沉积有机质的来源及其在林地、稻田和菜地等典型土地利用类型土壤的空间分布特征,并结合贝叶斯稳定同位素混合模型定量估算了各土地利用类型的贡献率.结果 ...  相似文献   

3.
The objective of our study was to isolate and determine the phylogenetic affiliation of culturable estuarine bacteria capable of catabolizing riverine dissolved organic matter (RDOM) under laboratory conditions. Additions of RDOM consistently promoted the growth of estuarine bacteria in carbon-limited dilution cultures, with seasonal variation in growth rates and yields. At least 42 different taxa were culturable on solid agar media and, according to quantitative DNA-DNA hybridizations, constituted 32 to 89% of the total bacterial number in the enriched treatments. Five species in the Cytophaga-Flexibacter-Bacteroides group and one in the gamma-proteobacteria phylogenetic group (Marinomonas sp.) were numerically dominant during the stationary phase of the RDOM-enriched dilution cultures but not in the control cultures. Four of the isolates in Cytophaga-Flexibacter-Bacteroides group were putatively affiliated with the genus FLAVOBACTERIUM: All dominating isolates were determined to be new species based on comparison to the current databases. The same group of species dominated independently of the season investigated, suggesting a low diversity of bacteria catabolizing RDOM in the estuary. It also suggested a broad tolerance of the dominating species to seasonal variation in hydrography, chemistry, and competition with other species. Taken together, our results suggest that a limited group of bacteria, mainly in the Flavobacterium genus, played an important role in introducing new energy and carbon to the marine system in the northern Baltic Sea.  相似文献   

4.
The Cefas SmartBuoy network provides a unique insight into the biogeochemical dynamics of the Northern European shelf seas, particularly the North Sea, through high-resolution automated offshore water sampling. We present total dissolved nitrogen and dissolved organic nitrogen (DON) from the Dowsing SmartBuoy site (53.531° N, 1.053° E) from January to October 2010, the first high resolution seasonal (winter-autumn) cycle of DON from the open North Sea. On top of a refractory background DON concentration of approximately 5 μM, a rapid increase in DON of a further ~5 μM is observed over the course of the spring bloom. This rapidly produced DON declines at an estimated net decay rate of between 0.6 and 1.8 μM month?1. The slow decay suggests that the majority of the additional DON produced during the spring bloom is of semi-labile nature and has a lifetime of weeks to months. The dataset allows us to tightly constrain the budget for water column nitrogen over the winter, spring and summer of 2010 and clearly demonstrates the ‘sawtooth’ nature of the seasonal cycle of DON in the open North Sea, which has been impossible to resolve with a more traditional ship-based mode of operation. This work highlights the importance of autonomous sampling approaches in better understanding shelf sea biogeochemistry in the future.  相似文献   

5.
In this investigation, we used stable isotope and fatty acid biomarker analyses to estimate and compare the potential food sources that support macrobenthos (Nuttallia olivacea, Corbicula japonica, and Hediste sp.) in the Natori estuarine tidal flats of Japan. The δ13C and δ15N mean values for the sediment organic matter (SOM) were ?23.6‰ and 6.1‰, respectively, which were due to the contribution of terrestrial and/or aquatic vascular plant particulate organic matter (POM) from upper stream river or surrounding areas. Furthermore, from the results of the IsoSource mixing model, the contributions of estuarine POM to the diets of Hediste sp., C. japonica, and N. olivacea were 85.1%, 74.9%, and 48.9%, respectively. Moreover, essential fatty acids such as 20:5ω3, 18:2ω6 and 18:3ω3 highly contributed to the diets of macrobenthos from benthic diatoms, terrestrial and/or aquatic vascular plants. The contents of fatty acid markers of terrestrial OM (e.g., long chain fatty acids [LCFAs]) in the 3 species of macrobenthos were low in comparison to those of other food sources. Overall, the marine POM dietary contribution was minimal, while terrestrial OM, bacteria, and benthic diatoms constituted a significant portion of the macrobenthos diet, although the contribution varied among the 3 species of macrobenthos.  相似文献   

6.
The Wadden Sea is a shallow tidal area along the North Sea coast of The Netherlands, Germany and Denmark. The area is strongly influenced by rivers, the most important of which are the rivers Rhine, Meuse and Elbe. Due to the increased nutrient load into the coastal zone the primary production in the Wadden Sea almost tripled during the past few decades. A conceptual model is presented that links nitrogen input (mainly nitrate) via Rhine and Meuse with the annual nitrogen cycle within the Wadden Sea. Three essential steps in the model are: (1) nitrogen limits the primary production in the coastal zone, (2) a proportional part of the primary produced organic matter is transported into the Wadden Sea and (3) the imported organic matter is remineralized within the Wadden Sea and supports the local productivity by nitrogen turn-over. The conceptual model predicts that during years with a high nutrient load more organic matter is produced in the coastal zone and more organic matter is transported into and remineralized within the Wadden Sea than during years with low nutrient loads. As a proxy for the remineralisation intensity ammonium plus nitrite concentrations in autumn were used. Based on monitoring data from the Dutch Wadden Sea (1977–1997) the above mentioned model was statistically tested. In autumn, however, a significant correlation was found between autumn values of ammonium and nitrite and river input of nitrogen during the previous winter, spring and summer. The analysis supports that in years with a high riverine nitrogen load more organic matter is remineralized within the Wadden Sea than in years with a low nitrogen load. A comparison with older data from 1960 to 1961 suggests that the remineralisation intensity in the Wadden Sea has increased by a factor of two to three. This is not reflected by a two to three-fold increase in riverine nitrogen load from 1960 to present. It is suggested that the increased remineralisation rates in the Dutch Wadden Sea between the 1960s and the 1980s/1990s are largely caused by an increased nitrogen flux through the Channel and the Strait of Dover and by an increased atmospheric nitrogen input.  相似文献   

7.
The Asian clam, Corbicula fluminea, is among the most pervasive invasive species in freshwater ecosystems worldwide. Our objective was to study C. fluminea’s functional response in terms of feeding behavior and food selectivity, using the natural variation in organic matter (OM) sources that occur in estuarine environments. Using C and N stable isotopes, we identified and quantified the contribution of different OM sources supporting the production of C. fluminea along the salinity gradient occupied in the Minho River estuary (NW-Iberian Peninsula, Europe), where this species presently dominates the benthic macrofauna biomass. We observed a pronounced shift in the quality of OM available for C. fluminea along the estuarine mixing zone. Stable isotope analysis, POM C/N, and phytoplankton contribution estimates based on C:Chl a revealed that POM was largely comprised of terrestrial-derived OM in tidal freshwater stations (TFW) and was increasingly comprised of phytoplankton, a more palatable food source, towards the polyhaline estuary. A similar shift in the isotopic composition along the estuarine mixing zone was observed in C. fluminea, suggesting a shift in food resources. Accordingly, based on a Bayesian stable isotope mixing model, there was an upstream–downstream counter gradient in the contribution to C. fluminea biomass from terrestrial-derived OM (41–64 % in TFW) and phytoplankton (29–55 % in the brackish estuary). Although the majority of the food sources identified were filtered from the water column (70–80 %), reliance on sediment OM and microphytobenthos provided evidence for deposit feeding by C. fluminea. We conclude that C. fluminea has the ability to adapt to environments with low food quality because it can consume terrestrial-derived OM. This can be a competitive adaptation in systems with perennial low food quality such as the Minho River estuary. Moreover, its ability to couple benthic and pelagic environments and terrestrial ecosystems demonstrates a strong potential to alter food web flows in aquatic ecosystems.  相似文献   

8.
Sampling of the central region of the North Sea was carried out to study the spatial and seasonal changes of dissolved and particulate organic C (DOC and POC, respectively). The surface waters were collected during four cruises over a year (Autumn 2004–Summer 2005). DOC and POC concentrations were measured using high temperature catalytic oxidation methods. The surface water concentrations of DOC and POC were spatially and temporally variable. There were significantly different concentrations of DOC and POC between the inshore and offshore waters in winter and summer only, with no clear trend in autumn and spring. Highest mean concentrations of DOC were measured in spring with lower and similar mean concentrations for other seasons. POC showed a clear seasonal cycle throughout the year with highest surface mean concentrations found in autumn and spring, but lowest in winter and summer. The DOC distributions during autumn and spring were strongly correlated with chlorophyll suggesting extracellular release from phytoplankton was an important DOC source during these two seasons. The lower concentrations of DOC in summer were probably due to the heterotrophic uptake of labile DOC. The seasonal changes in the C:N molar ratios of surface DOM (dissolved organic matter) resulted in higher mean C:N molar ratios in spring and lower ratios in winter. These high ratios may indicate nutrient limitation of heterotrophic uptake immediately after the spring bloom. There is limited data available for DOC cycling in these productive shelf seas and these results show that DOC is a major component of the C cycle with partial decoupling of the DOC and DON cycling in the central North Sea during the spring bloom. Handling editor: Luigi Naselli-Flores  相似文献   

9.
Sediment organic matter (OM) and its stable carbon and nitrogen isotopes were studied in 12 Slovenian mountain lakes in the Julian Alps. The lakes have different catchment areas and display a range of trophic states. Surface sediment atomic C/N ratios ranged from 8.4 to 13.2. Based on these C/N ratios, we concluded that autochthonous OM dominates in these lakes and constitutes approximately 65–92% of the total OM. Higher contributions of autochthonous OM sources were observed in lakes above the tree line. Relatively constant C/N ratios in the deeper sediments suggest that degradation processes are most intense in the upper few centimetres of the sediments and/or that remaining OM is relatively resistant to further degradation. Surface sediment δ13C and δ15N values ranged from −36.1 to −14.1‰ and from −5.2 to +1.1‰, respectively. In sediment cores from seven lakes, higher δ13C and lower δ15N values characterize oligotrophic lakes situated above the tree line, whereas the reverse is true for eutrophic lakes below the tree line that are also exposed to more anthropogenic impact. Carbon and nitrogen biogeochemical cycling differs considerably among the lakes. Stratigraphic shifts in carbon, total nitrogen, C/N ratios and stable C and N isotopes in cores record changes in inputs, and hence water column processes, as well as alterations in loading to the lakes. The stratigraphic variations are also the result of post-depositional diagenetic changes in the upper few centimetres of sediment. All the lakes show impacts from recent increases in atmospheric deposition of dissolved inorganic nitrogen. Application of sediment OM analysis thus proved to be useful to reconstruct paleoecological changes in sensitive mountain lake ecosystems that are either natural and/or anthropogenically derived.  相似文献   

10.
鼎湖山森林演替序列植物-土壤碳氮同位素特征   总被引:1,自引:0,他引:1       下载免费PDF全文
植物群落对水分利用和养分利用的优化策略, 土壤碳周转和氮循环过程对演替变化如何响应, 森林土壤有机碳积累机制等都是森林生态学需要解决的关键问题。然而, 这些生态学过程的变化在短时间内通过传统的研究手段难以被精确观测, 碳氮同位素(13C、15N)技术的应用或许能提供更多有价值的信息。该文通过对鼎湖山森林演替序列代表性群落——马尾松(Pinus massoniana)针叶林(PF)、针阔叶混交林(MF)和季风常绿阔叶林(BF)植物-土壤碳氮同位素自然丰度的测定, 分析了叶片稳定碳同位素比率(δ13C)和稳定氮同位素比率(δ15N)与其叶片元素含量的关系, 以及叶片-凋落物-土壤δ13C、δ15N在演替水平和垂直方向上的变化特征。结果显示: 1)主要优势树种叶片δ13C与其C:N极显著正相关(p < 0.01), 凋落物和各层土壤δ13C均表现为PF > MF > BF, 沿演替方向逐渐降低; 2)叶片δ15N与叶片N含量正相关(p = 0.05), 凋落物和表层土壤(0-10 cm) δ15N沿演替方向逐渐增大; 3)不同演替阶段土壤δ13C、δ15N均沿垂直剖面呈现增大的趋势。结果表明: 南亚热带地区植物群落的发展并不一定受水分利用和氮素利用的补偿制约; δ13C自然丰度法的应用有助于森林土壤有机碳积累机制, 尤其有助于成熟森林土壤“碳汇”机制的阐释; 植物-土壤δ15N值可作为评估土壤氮素有效性和生态系统“氮饱和”状态的潜在指标。  相似文献   

11.
Nitrogen inputs into stream and river ecosystems, and the factors influencing those inputs, are important for various ecological and environmental concerns. Reliable information on where and how nitrogen compounds flow into aquatic ecosystems is indispensable to understanding the nutrient status of these ecosystems. Such information should include the biogeochemical mechanisms and hydrological controls of nutrient leaching into rivers from terrestrial systems such as forests, agricultural fields, and urbanized areas. Advancements in stable isotopomer measurements over the past two decades have expanded the variety of target substances and the precision with which they can be investigated. The high-throughput microbial denitrifier method allows for simultaneous measurement of nitrogen and oxygen isotope ratios and can provide high-resolution spatiotemporal information on both nitrate sources and biogeochemical processes. Although advanced techniques of stable isotope analysis have been used extensively to detect sources and estimate the relative contributions of multi-source systems in various rivers, there are still new horizons in investigating nitrogen transformations. For example, stable isotopes of oxygen (18O and 17O) occurring in nitrate due to atmospheric deposition can be used as natural tracers for evaluating internal nitrogen cycling; these isotopes are distinct from the oxygen within microbially generated nitrate in soils and water bodies. Another future challenge is improved use of nitrous oxide isotopomers in evaluating the relative contributions of nitrification and denitrification. Such analysis could provide insight into the nitrogen transformation that occurs under redox conditions at the boundary between terrestrial and aquatic systems, where nitrification and denitrification often occur simultaneously in soil and aquatic environments.  相似文献   

12.
《植物生态学报》2016,40(6):533
Aims The optimal patterns of plant community for water use and nutrient utilization, the responses of soil carbon and nitrogen turnover processes to forest succession, and the mechanisms of soil organic carbon accumulation, are three critical issues in forest ecosystem study. It is difficult to accurately detect these ecological processes with conventional methodologies in the short term, yet the application of 13C and 15N natural abundance technique may yield important information about these processes.Methods This study was conducted in Dinghushan Biosphere Reserve. We investigated the natural isotopic abundance of both 13C and 15N of plant-soil continuum along a successional gradient from Pinus massoniana forest (PF) to coniferous and broad-leaved mixed forest (MF), and monsoon evergreen broad-leaved forest (BF). We also analyzed the correlations of foliar stable carbon isotope ratio (δ13C) and stable nitrogen isotope ratio (δ15N) with foliar elemental contents and the variations of soil δ13C and δ15N along soil profiles at different successional stages.Important findings A significant positive correlation between foliar δ13C and foliar C:N was observed. In both litter and soil, the δ13C values tended to decrease along the forest succession, with the order as PF > MF > BF. Foliar δ15N was positively correlated with foliar N content. The δ15N values of litter and upper soil (0-10 cm) increased with successional status. Both soil δ13C and δ15N values increased with increasing soil depth at all three forests. Our results imply that 1) trade-off between water use efficiency and nitrogen use efficiency did not necessarily exist in subtropical forests of China; 2) the application of isotopic technique could assist understanding of the mechanisms of soil carbon accumulation in subtropical forests, especially in old-grow forests; 3) the 15N natural abundance of plant-soil continuum could be a potential indicator of soil nitrogen availability and ecosystem nitrogen saturation status.  相似文献   

13.
Yılmaz  Ayşen  Tuğrul  Süleyman  Polat  Çolpan  Ediger  Dilek  Çoban  Yeşim  Morkoç  Enis 《Hydrobiologia》1997,363(1-3):141-155
Chemical oceanographic understanding of the southernBlack Sea has been improved by recent measurements ofthe optical transparency, phytoplankton biomass (interms of chlorophyll-a and particulate organic matter)and primary productivity. During the spring-autmunperiod of 1995–1996, light generally penetrated onlyinto the upper 15–40 m, with an attenuation coefficientvarying between 0.125 and 0.350 m2122;1. The averagechlorophyll-a (Chl-a) concentrations for the euphoticzone ranged from 0.1 to 1.5 μg l2122;1. Coherentsub-surface Chl-a maxima were formed near the base ofthe euphotic zone only in summer. Production rate variedbetween 247 and 1925 in the spring and between 405 and687 mgC m2122;2 d2122;1 in the summer-autumn period.The average POM concentrations in the euphotic zonevaried regionally and seasonally between 3.8 and28.6 μm for POC, 0.5 and 3.1 μm for PON and0.02 and 0.1 μm for PP. Atomic ratios of C/N, C/Pand N/P, derived from the regressions of POM data,ranged between 7.5 and 9.6, 109 and 165, and 11.2 and16.6, respectively. In the suboxic/anoxic interface,the elemental ratios change substantially due to anaccumulation of PP cohering to Fe and Mn oxides. Thechemocline boundaries and the distinct chemicalfeatures of the oxic/anoxic transition layer (the so-called suboxic zone) are all located at specificdensity surfaces; however, they exhibit remarkablespatial and temporal variations both in their positionand in their magnitude, which permit the definition of long-term changes in the biochemical properties of theBlack Sea upper layer. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
We investigated spatial and temporal changes in sources of organic matter in sediments within an estuarine environment in South Africa using fatty acids (FA) and stable isotopes (SI). Samples of sediments and sources of organic matter [i.e., particulate organic matter, microphytobenthos (MPB), macrophytes, salt marsh plants, and terrestrial leaves] were collected during spring and summer 2012, and autumn and winter 2013 from the upper, middle, and lower reaches. A Stable Isotope Analysis in R (SIAR) mixing model was used to identify the organic matter sources contributing to sediments in each estuarine reach and season. We found that diatom-associated fatty acids (20:5ω3; 16:1ω7) increased toward the upper reaches, while long-chained terrigenous fatty acids (24:0) tended to be more prevalent in lower reach sediments. In support of the FA results, the SI mixing model showed a substantial contribution from the marsh grass Spartina maritima in sediments of the lower estuary during periods of low-freshwater discharge (autumn and winter), while MPB was the main component in sediments from the upper and middle reaches during all seasons. Our results have implications for evaluating estuarine food webs since the spatial and seasonal variability in the organic matter deposited can influence estuarine community structure.  相似文献   

15.
Weixin Cheng 《Plant and Soil》1996,183(2):263-268
Due to the limitations in methodology it has been a difficult task to measure rhizosphere respiration and original soil carbon decomposition under the influence of living roots. 14C-labeling has been widely used for this purpose in spite of numerous problems associated with the labeling method. In this paper, a natural 13C method was used to measure rhizosphere respiration and original soil carbon decomposition in a short-term growth chamber experiment. The main objective of the experiment was to validate a key assumption of this method: the 13C value of the roots represents the 13C value of the rhizosphere respired CO2. Results from plants grown in inoculated carbon-free medium indicated that this assumption was valid. This natural 13C method was demonstrated to be advantageous for studying rhizosphere respiration and the effects of living roots on original soil carbon decomposition.  相似文献   

16.
Because allochthonous organic matter (OM) loading supplements autochthonous OM in supporting lake and reservoir food webs, C and N elemental and isotopic ratios of sedimenting particulate OM were measured during an annual cycle in a polymictic, eutrophic reservoir. Particulate organic C and N deposition rates were greatest during winter and lowest during spring. C:N ratios decreased through our study indicating that OM largely originated from allochthonous sources in winter and autochthonous sources thereafter. δ13C were influenced by C4 plant signatures and became increasingly light from winter through autumn. δ15N indirectly recorded the OM source shift through nitrate utilization degree with maximum values occurring in May as nitrate concentrations decreased. Unlike relationships from stratified systems, δ13C decreased with increasing algal biomass. This relationship suggests that minimal inorganic C fixation relative to supplies maintained photosynthetic isotopic discrimination during productive periods. Water column mixing likely maintained adequate inorganic C concentrations in the photic zone. Alternatively, OM isotopic composition may have been influenced by changing dissolved inorganic nutrient pools in this rapidly flushed system. δ15N also recorded increased N2 fixation as nitrate concentrations declined through autumn. Secondary sediment transport mechanisms strongly influenced OM delivery. Particulate organic C and N deposition rates were 3× greater near the sediment-water interface. Isotopic ratio mixing models suggested that river plume sedimentation, sediment resuspension, and horizontal advection influenced excess sediment deposition with individual mechanisms being more important seasonally. Our findings suggest that allochthonous OM loading and secondarily-transported OM seasonally supplement phytoplankton production in productive reservoirs.  相似文献   

17.
18.
15N and 13C CPMAS spectra of composted plants are presented. The plants (L. rigidium and Zea mays) were grown in 15N enriched medium and fermented for several months until an approx. 80% of the dry matter was lost. In all 15N spectra the secondary amide/peptide peaks at 87 ppm contributes more than 80% of the total intensity. No new 15N peaks are formed during the fermentation process. Older attempts to assign a significant fraction of humic acid nitrogen to heteroaromatic structures formed in the fermentation process are thus most probably wrong.  相似文献   

19.
20.
To discern the position of horseshoe crabs as a potentially important predator in estuarine food webs, we determined where they foraged and what they ate. We used N and C stable isotopes to link adult horseshoe crabs to their oraging locations and potential food sources in Pleasant Bay, Cape Cod. The δ15N in tissues of horseshoe crabs and their potential foods suggest crabs were loyal to local foraging sites and did not forage substantially in subestuaries receiving >110 kg N ha−1 year−1. Among locations where crabs foraged, δ13C values in potential foods showed that food webs in subestuaries subject to higher N loads were supported by algal producers, while food webs in subestuaries with lower N loads were also supported by Spartina. δ13C values in horseshoe crab tissue did not change with load, suggesting they ate a mixed diet, regardless of N load. N and C isotopes in horseshoe crab feces were similar to signatures of estimated diet, suggesting low assimilation efficiency, perhaps due to ingestion of low quality organic matter. Although horseshoe crabs were relatively opportunistic in foraging habits, conservation or culture of horseshoe crabs may require habitats with higher water quality, ample particulate organic matter, and supporting a variety of prey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号