首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 701 毫秒
1.
The human epidermal growth factor receptor 2/neuregulin (HER2/neu) receptor is overexpressed in highly malignant mammary and ovarian tumors and correlates with a poor prognosis. It is a target for therapy; humanized monoclonal antibodies to HER2 have led to increased survival of patients with HER2/neu-positive breast cancer. As a first step in the design of an oncolytic herpes simplex virus able to selectively infect HER2/neu-positive cells, we constructed two recombinants, R-LM11 and R-LM11L, that carry a single-chain antibody (scFv) against HER2 inserted at residue 24 of gD. The inserts were 247 or 256 amino acids long, and the size of the gD ectodomain was almost doubled by the insertion. We report the following. R-LM11 and R-LM11L infected derivatives of receptor-negative J or CHO cells that expressed HER2/neu as the sole receptor. Entry was dependent on HER2/neu, since it was inhibited in a dose-dependent manner by monoclonal antibodies to HER2/neu and by a soluble form of the receptor. The scFv insertion in gD disrupted the ability of the virus to enter cells through HVEM but maintained the ability to enter through nectin1. This report provides proof of principle that gD can tolerate fusion to a heterologous protein almost as large as the gD ectodomain itself without loss of profusion activity. Because the number of scFv's to a variety of receptors is continually increasing, this report makes possible the specific targeting of herpes simplex virus to a large collection of cell surface molecules for both oncolytic activity and visualization of tumor cells.  相似文献   

2.
Tumor-targeted vectors with controllable expression of therapeutic genes and specific antitumor antibodies are promising tools for the reduction of malignant tumors. Here we describe a new plasmid for the eukaryotic expression of an anti-HER2/neu mini-antibody-barnase fusion protein (4D5 scFv-barnase-His(5)) with an NH(2)-terminal leader peptide. The 4D5 scFv-barnase-His(5) gene was placed downstream of the tetracycline responsive-element minimal promoter in the vector using the Tet-Off gene-expression system. The Bacillus amyloliquefaciens ribonuclease barnase is toxic for the host cells. To overcome this problem, barstar gene under its own minimal cytomegalovirus promoter was used in designed vector. Barstar inhibits the background level of barnase in the cells in the presence of tetracycline in culture medium. The HEK 293T cells were transfected with the designed vector, and the 4D5 scFv-barnase-His(5) fusion protein was identified by anti-barnase antibodies in cell culture medium and after purification from cell lysates using metal-affinity chromatography. The overexpression of the anti-HER2/neu mini-antibody-barnase fusion protein decreased the intensity of fluorescence of HEK 293T cells co-transfected with the generated plasmid and a plasmid containing the gene of enhanced green fluorescent protein (pEGFP-N1), in comparison with the intensity of fluorescence of HEK 293T cells transfected with pEGFP-N1, in the absence of tetracycline in the medium. The effect of the 4D5 scFv-barnase-His(5) on EGFP fluorescence indicates that the introduced barnase functions as a ribonuclease inside the cells. The anti-HER2/neu mini-antibody could be used to deliver barnase to HER2/neu-positive cells and provide its penetration into the target cells, as HER2/neu is a ligand-internalizing receptor. This expression vector has potential applications to both gene and antibody therapies of cancer.  相似文献   

3.
The antitumor effects of therapeutic mAbs may depend on immune effector cells that express FcRs for IgG. IL-12 is a cytokine that stimulates IFN-γ production from NK cells and T cells. We hypothesized that coadministration of IL-12 with a murine anti-HER2/neu mAb (4D5) would enhance the FcR-dependent immune mechanisms that contribute to its antitumor activity. Thrice-weekly therapy with IL-12 (1 μg) and 4D5 (1 mg/kg) significantly suppressed the growth of a murine colon adenocarcinoma that was engineered to express human HER2 (CT-26(HER2/neu)) in BALB/c mice compared with the result of therapy with IL-12, 4D5, or PBS alone. Combination therapy was associated with increased circulating levels of IFN-γ, monokine induced by IFN-γ, and RANTES. Experiments with IFN-γ-deficient mice demonstrated that this cytokine was necessary for the observed antitumor effects of therapy with IL-12 plus 4D5. Immune cell depletion experiments showed that NK cells (but not CD4(+) or CD8(+) T cells) mediated the antitumor effects of this treatment combination. Therapy of HER2/neu-positive tumors with trastuzumab plus IL-12 induced tumor necrosis but did not affect tumor proliferation, apoptosis, vascularity, or lymphocyte infiltration. In vitro experiments with CT-26(HER2/neu) tumor cells revealed that IFN-γ induced an intracellular signal but did not inhibit cellular proliferation or induce apoptosis. Taken together, these data suggest that tumor regression in response to trastuzumab plus IL-12 is mediated through NK cell IFN-γ production and provide a rationale for the coadministration of NK cell-activating cytokines with therapeutic mAbs.  相似文献   

4.
5.
The human epidermal growth factor receptor (HER) family plays an important role in cell growth and signaling and alteration of its function has been demonstrated in many different kinds of cancer. Receptor dimerization is necessary for the HER signal transduction pathway and tyrosine kinase activity. Recently, several monoclonal antibodies have been developed to directly interfere with ligand–HER receptor binding and receptor dimerization. A single chain variable fragment (ScFv) is a valuable alternative to an intact antibody. This report describes the production and purification of an ScFv specific for domain II of the HER2 receptor in Escherichia coli BL21 (DE3) cytoplasm. The majority of expressed of anti-her2his-ScFv protein was produced as inclusion bodies. A Ni-NTA affinity column was used to purify the anti-her2his-ScFv protein. The molecular weight of anti-her2his-ScFv protein was estimated to be approximately 27 kDa, as confirmed by SDS-PAGE and Western blotting assay. The anti-her2his-ScFv showed near 95 % purity and reached a yield of approximately 29 mg/l in flask fermentation. The purified anti-her2his-ScFv showed its biological activity by binding to HER2 receptor on the surface of BT-474 cells. This ScFv may be a potential pharmaceutical candidate for targeting tumour cells overexpressing HER2 receptor.  相似文献   

6.
Photosensitizer-antibody conjugates are successfully used for targeted elimination of cancer cells bearing specific membrane markers. This method is known as photoimmunotherapy. However, chemical conjugation of photosensitizer and antibody poses a number of complications such as low reproducibility, aggregation and unconjugated photosensitizer impurities. Here we report a fully genetically encoded photoimmunosensitizer, consisting of an anti-HER2/neu miniantibody 4D5scFv and a phototoxic fluorescent protein KillerRed. Both domains in this photoimmunosensitizer retained their functional qualities - high affinity for HER2/neu antigen and phototoxicity respectively. 4D5scFv-KillerRed fusion protein showed high specificity for HER2/neu-over-expressing cells and effectively lowered their viability upon illumination.  相似文献   

7.
HER2/neu oncogene encodes a 185 kDa trans-membrane protein which is overexpressed in 20-30% of breast and ovarian cancers and portends a poor prognosis. We have studied the targeting and therapy of this oncoprotein with 4D5, a murine monoclonal antibody which recognizes a distinct epitope on the extracelluar domain of HER2/neu. We conjugated the antibody with an active ester of the macrocyclic chelating agent DOTA, radiolabeled the conjugate with either (111)In or (90)Y, and studied the antibody distribution and therapy, respectively, in athymic mice bearing xenografts of MCF7/HER2/neu, a human breast cancer cell line transfected with the HER2/neu oncogene. For the biodistribution of (111)In-labeled DOTA-4D5, a high specificity of tumor localization (30% ID/g) was seen with a tumor-to-blood ratio of greater than 2 at 48 h postinjection. Compared to a previously published study with (125)I-labeled 4D5 in beige nude mice bearing NIH3T3/HER2/neu xenografts [De Santes et al. (1992) Cancer Res. 52, 1916-1923], (111)In-labeled 4D5 antibody gave superior antibody uptake in tumor (30% ID/g vs 17% ID/g at 48h). In the therapy study, treatment of the nude mice bearing MCF7/HER2/neu xenografts with 100 microCi (3 microg) of (90)Y-labeled DOTA-4D5 caused a 3-fold reduction of tumor growth compared to untreated controls (injected with human serum albumin) in 40 days. Treatment of animals with 100 microCi of nonspecific antibody (90)Y-labeled DOTA-Leu16 (3 microg) had no tumor growth inhibition. Treatment with unlabeled DOTA-4D5 (3 microg) had a slight effect on tumor growth compared to untreated controls. When analyzed at the level of single animals, no effect was seen in seven of nine animals; however, in two of the animals, tumor growth inhibition was observed. Although a cold antibody therapeutic effect was unexpected at this dose level (3 microg), it may be possible that in some animals that 3 microg of antibody of (90)Y-labeled DOTA-4D5 augmented tumor growth reduction. To further explore the effects of cold antibody treatment alone, animals were treated with 100 or 400 microg of unlabeled 4D5 administered in two doses. These animals showed a 1.7-1.8-fold reduction in tumor growth over 28 days, a result less than that obtained with RIT only.  相似文献   

8.
Conjugates of antibodies with photosensitizers are successfully used for the targeted killing of cancer cells bearing particular surface markers by the method known as photoimmunotherapy. However, the chemical conjugation of photosensitizers with antibodies poses a number of problems. Among these are a low reproducibility, aggregation, and the presence of impurities of the unconjugated photosensitizer. Here we describe a method of designing a fully genetically encoded immunophotosensitizer, which consists of the anti-HER2/neu miniantibody 4D5scFv as a targeting molecule and the phototoxic fluorescent protein KillerRed as a photosensitizing molecule. Both domains in the recombinant protein retained their functional properties: a high affinity for the HER2/neu antigen and phototoxicity. The recombinant protein 4D5scFv-KillerRed showed a high specificity for HER2/neu-overexpressing cancer cells and effectively lowered their viability upon irradiation.  相似文献   

9.
We tested the hypothesis that bispecific Abs (Bsab) with increased binding affinity for tumor Ags augment retargeted antitumor cytotoxicity. We report that an increase in the affinity of Bsab for the HER2/neu Ag correlates with an increase in the ability of the Bsab to promote retargeted cytotoxicity against HER2/neu-positive cell lines. A series of anti-HER2/neu extracellular domain-directed single-chain Fv fragments (scFv), ranging in affinity for HER2/neu from 10(-7) to 10(-11) M, were fused to the phage display-derived NM3E2 human scFV: NM3E2 associates with the extracellular domain of human FcgammaRIII (CD16). The resulting series of Bsab promoted cytotoxicity of SKOV3 human ovarian carcinoma cells overexpressing HER2/neu by human PBMC preparations containing CD16-positive NK cells. The affinity for HER2/neu clearly influenced the ability of the Bsab to promote cytotoxicity of (51)Cr-labeled SKOV3 cells. Lysis was 6.5% with an anti-HER2/neu K(D) = 1.7 x 10(-7) M, 14.5% with K(D) = 5.7 x 10(-9) M, and 21.3% with K(D) = 1.7 x 10(-10) M at 50:1 E:T ratios. These scFv-based Bsab did not cross-link receptors and induce leukocyte calcium mobilization in the absence of tumor cell engagement. Thus, these novel Bsab structures should not induce the dose-limiting cytokine release syndromes that have been observed in clinical trials with intact IgG BSAB: Additional manipulations in Bsab structure that improve selective tumor retention or facilitate the ability of Bsab to selectively cross-link tumor and effector cells at tumor sites should further improve the utility of this therapeutic strategy.  相似文献   

10.
11.
12.
IFN-alpha, a cytokine crucial for the innate immune response, also demonstrates antitumor activity. However, use of IFN-alpha as an anticancer drug is hampered by its short half-life and toxicity. One approach to improving IFN-alpha's therapeutic index is to increase its half-life and tumor localization by fusing it to a tumor-specific Ab. In the present study, we constructed a fusion protein consisting of anti-HER2/neu-IgG3 and IFN-alpha (anti-HER2/neu-IgG3-IFN-alpha) and investigated its effect on a murine B cell lymphoma, 38C13, expressing human HER2/neu. Anti-HER2/neu-IgG3-IFN-alpha exhibited potent inhibition of 38C13/HER2 tumor growth in vivo. Administration of three daily 1-microg doses of anti-HER2/neu-IgG3-IFN-alpha beginning 1 day after tumor challenge resulted in 88% of the mice remaining tumor free. Remarkably, anti-HER2/neu-IgG3-IFN-alpha demonstrated potent activity against established 38C13/HER2 tumors, with complete tumor remission observed in 38% of the mice treated with three daily doses of 5 microg of the fusion protein (p = 0.0001). Ab-mediated targeting of IFN-alpha induced growth arrest and apoptosis of lymphoma cells contributing to the antitumor effect. The fusion protein also had a longer in vivo half-life than rIFN-alpha. These results suggest that IFN-alpha Ab fusion proteins may be effective in the treatment of B cell lymphoma.  相似文献   

13.
BACKGROUND AND PURPOSE: Expression of the HER2/neu proto-oncogene, a receptor-like transmembrane protein expressed at low levels on some normal cells, is markedly increased in a subset of human breast, colon, lung, and ovarian cancers. A humanized HER2/neu antibody has been tested as a therapeutic agent in several clinical trials, with promising results. We have developed a family of anti-HER2/neu fusion proteins. To evaluate the immunologic efficacy of these proteins, it is critical that tumors expressing the target antigen can grow in immunologically intact mice. METHOD: To produce murine tumors expressing human HER2/neu on the surface, CT26, MC38, and EL4 murine cell lines were transduced by use of a retroviral construct containing the cDNA encoding the human HER2/neu gene. RESULTS: Histologic features and kinetics of tumor growth in subcutaneous space of the human HER2/neu-expressing cells were similar to those of the respective parental cell lines. Intravenous inoculation with these cells induced disseminated malignant disease. Flow cytometric and immmunohistochemical analyses of freshly isolated tumors revealed in vivo expression of human HER2/neu. Secretion of antigen was not detected by use of an ELISA. CONCLUSION: Although an antibody response against the human HER2/neu antigen was observed, this response does not affect the growth rate of the HER2/neu-expressing cells. These murine models may be useful tools for evaluation of anti-cancer therapeutic approaches that target human HER2/neu.  相似文献   

14.
Zhou NN  Tang J  Chen WD  Feng GK  Xie BF  Liu ZC  Yang D  Zhu XF 《Life sciences》2012,90(19-20):770-775
AimsThe overexpression of HER2/neu receptor plays a key role in tumorigenesis and tumor progression. Small molecules targeting HER2/neu have therapeutic value in cancers that overexpress HER2. In this present study, the effect of houttuyninum, a component in the Chinese herbal medicine Houttuynia cordata Thunb, on HER2/neu tyrosine phosphorylation and its in vivo antitumour activity was investigated.Main methodsThe phosphorylation and expression of proteins were determined by Western blot analysis. The MTT assay was employed to examine the inhibition of cell proliferation in vitro. Xenografts were established in nude mice for evaluating the antitumour activity of houttuyninum in vivo.Key findingsHouttuyninum inhibited phosphorylation of HER2 in a dose-dependent manner with an IC50 of 5.52 μg/ml without reducing HER2/neu protein expression in MDA-MB-453 cells. Houttuyninum also inhibited the activation of ERK1/2 and AKT, downstream molecules in the HER2/neu-mediated signal transduction pathway. In contrast, tyrosine phosphorylation of EGFR was unaffected when the concentration of houttuyninum was increased to 40 μg/ml in both A431 cells and MDA-MB-468 cells. Additionally, houttuyninum preferentially inhibited the growth of MDA-MB-453 cells that overexpressed HER2/neu; the MDA-MB-468 cells that overexpress EGFR remained unaffected. Administration of houttuyninum in vivo resulted in a significant reduction of phosphorylated HER2 levels and in tumor volumes of the BT474 and N87 xenografts, which both overexpress HER2/neu.SignificanceOur findings showed that houttuyninum can inhibit the HER2/neu signalling pathway and the tumor growth of cancer cells that overexpress HER2/neu. This drug may provide therapeutic value in the treatment of cancers that involve overexpression of HER2/neu.  相似文献   

15.
Overexpression of HER2/neu is associated with drug resistance and poor outcome in breast cancer. Solamargine (SM), a glycoalkaloid purified from the herb Solanum incanum, exhibits HER2/neu gene modulation of HER2/neu high-expressing human breast cancer cell line ZR-75-1. SM downregulation of HER2/neu gene expression was determined by RT-PCR and Southern hybridization. Additionally, the membrane-bound HER2/neu receptor in highly HER2/neu-expressing breast cancer cells was determined by radioimmunoassay, immunocytochemistry, fluorescent immunocytochemistry, and flow cytometry. SM significantly decreased the number of HER2/neu receptors on the cell membrane. Methotrexate (MTX), 5-florouracil (5-Fu), and cisplatin (CDDP) are commonly used for breast carcinoma treatment in clinics; however, patients with HER2/neu overexpression exhibit resistance to these anticancer drugs. Notably, combination of MTX, 5-Fu, and CDDP with SM individually increased the susceptibility of breast cancer cells to these chemotherapeutic agents. Experimental results indicated that downregulation of HER2/neu by SM might be an effective strategy for enhancing drug susceptibility of breast cancer cells expressing high levels of HER2/neu.  相似文献   

16.
A novel magnetic resonance imaging (MRI) contrast agent containing Herceptin is reported. The surfaces of superparamagnetic iron oxide nanoparticles were modified with dextran and conjugated with Herceptin (Herceptin–nanoparticles) to improve their dispersion, magnetization, and targeting of the specific receptors on cells. From analytical results, we found that Herceptin–nanoparticles were well dispersed in solutions of various pH range, and had no hysteresis, high saturation magnetization (80 emu/g), and low cytotoxicity to a variety of cells. Notably, the magnetic resonance enhancements for the different breast cancer cell lines (BT-474, SKBR-3, MDA-MB-231, and MCF-7) are proportional to the HER2/neu expression level in vitro. When Herceptin–nanoparticles were administered to mice bearing breast tumor allograft by intravenous injection, the tumor site was detected in T 2-weighted magnetic resonance images as a 45% enhancement drop, indicating a high level of accumulation of the contrast agent within the tumor sites. Therefore, targeting of cancer cells was observed by in vitro and in vivo MRI studies using Herceptin–nanoparticles contrast agent. In addition, Herceptin–nanoparticles enhancing the magnetic resonance signal intensity were sufficient to detect the cell lines with a low level of HER2/neu expression. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
The receptor tyrosine kinase ErbB2 (HER-2/neu) is overexpressed in up to 30% of breast cancers and is associated with poor prognosis and an increased likelihood of metastasis especially in node-positive tumors. In this proteomic study, to identify the proteins that are associated with the aggressive phenotype of HER-2/neu-positive breast cancer, tumor cells from both HER-2/neu-positive and -negative tumors were procured by laser capture microdissection. Differentially expressed proteins in the two subsets of tumors were identified by two-dimensional electrophoresis and MALDI-TOF/TOF MS/MS. We found differential expression of several key cell cycle modulators, which were linked with increased proliferation of the HER-2/neu-overexpressing cells. Nine proteins involved in glycolysis (triose-phosphate isomerase (TPI), phosphoglycerate kinase 1 (PGK1), and enolase 1 (ENO1)), lipid synthesis (fatty acid synthase (FASN)), stress-mediated chaperonage (heat shock protein 27 (Hsp27)), and antioxidant and detoxification pathways (haptoglobin, aldo-keto reductase (AKR), glyoxalase I (GLO), and prolyl-4-hydrolase beta-isoform (P4HB)) were found to be up-regulated in HER-2/neu-positive breast tumors. HER-2/neu-dependent differential expression of PGK1, FASN, Hsp27, and GLO was further validated in four breast cancer cell lines and 12 breast tumors by immunoblotting and confirmed by partially switching off the HER-2/neu signaling in the high HER-2/neu-expressing SKBr3 cell line with Herceptin treatment. Statistical correlations of these protein expressions with HER-2/neu status were further verified by immunohistochemistry on a tissue microarray comprising 97 breast tumors. Our findings suggest that HER-2/neu signaling may result, directly or indirectly, in enhanced activation of various metabolic, stress-responsive, antioxidative, and detoxification processes within the breast tumor microenvironment. We hypothesize that these identified changes in the cellular proteome are likely to drive cell proliferation and tissue invasion and that the key cell cycle modulators involved, when uncovered by future research, would serve as naturally useful targets for the development of therapeutic strategies to negate the metastatic potential of HER-2/neu-positive breast tumors.  相似文献   

18.
Way TD  Kao MC  Lin JK 《FEBS letters》2005,579(1):145-152
We have shown that exposure of the HER2/neu-overexpressing breast cancer cells to apigenin resulted in induction of apoptosis by depleting HER2/neu protein and, in turn, suppressing the signaling of the HER2/HER3-PI3K/Akt pathway. Here, we examined whether inhibition of this pathway played a role in the anti-tumor effect. The results revealed that treatment with apigenin induced apoptosis through cytochrome c release and caused a rapid induction of caspase-3 activity and stimulated proteolytic cleavage of DFF-45. Furthermore, apigenin downregulated cyclin D1, D3 and Cdk4 and increased p27 protein levels. Colony formation in the soft agar assay, a hallmark of the transformation phenotype, was preferentially suppressed in HER2/neu-overexpressing breast cancer cells in the presence of apigenin. In addition, a structure-activity relationship study indicated that (1) the position of B ring; and (2) the existence of the 3', 4'-hydroxyl group on the 2-phenyl group were important for the depletion of HER2/neu protein by flavonoids. These results provided new insights into the structure-activity relationship of flavonoids.  相似文献   

19.
HER2-specific affibody molecules in different formats have previously been shown to be useful tumor targeting agents for radionuclide-based imaging and therapy applications, but their biological effect on tumor cells is not well known. In this study, two dimeric ((ZHER2:4)2 and (ZHER2:342)2) and one monomeric (ZHER2:342) HER2-specific affibody molecules are investigated with respect to biological activity. Both (ZHER2:4)2 and (ZHER2:342)2 were found to decrease the growth rate of SKBR-3 cells to the same extent as the antibody trastuzumab. When the substances were removed, the cells treated with the dimeric affibody molecules continued to be growth suppressed while the cells treated with trastuzumab immediately resumed normal proliferation. The effects of ZHER2:342 were minor on both proliferation and cell signaling. The dimeric (ZHER2:4)2 and (ZHER2:342)2 both reduced growth of SKBR-3 cells and may prove therapeutically useful either by themselves or as carriers of radionuclides or other cytotoxic agents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号