首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies suggest a protective effect of vitamin D3 on zinc deficiency-induced insulin secretion and on pancreas β-cell function. The aim of this study was to investigate the effect of vitamin D on blood biochemical parameters, tissue zinc and liver glutathione in diabetic rats fed a zinc-deficient diet. For that purpose, Alloxan-induced diabetic rats were divided into four groups. The first group was fed a zinc-sufficient diet while the second group was fed a zinc-deficient diet. The third and fourth groups received zinc-sufficient or zinc-deficient diets plus oral vitamin D3 for 27 days. At the end of the experiment, blood, femur, pancreas, kidney and liver samples were taken from all rats. The serum, femur, pancreas, kidney and liver zinc concentrations, liver glutathione, serum alkaline phosphatase activity, daily body weight gain and food intake were lower in the zinc-deficient rats in comparison with those receiving adequate amounts of zinc. These values were increased in the zinc-deficient group that was supplemented with vitamin D3. The serum total cholesterol, triglycerides, total protein, urea, glutamate oxaloacetate transaminase, glutamate pyruvate transaminase and blood glucose values were higher in rats fed a zinc adequate diet, but their concentrations were decreased by vitamin D3 supplementation. The serum total protein levels were not changed by zinc deficiency and vitamin D3 supplementation. These results suggest that vitamin D3 modulates tissue zinc, liver glutathione and blood biochemical values in diabetic rats fed a zinc-deficient diet.  相似文献   

2.
In this study, we investigated the effects of selenium (Se) on the properties of erythrocytes and atherogenic index in the presence and absence of high cholesterol diet (HCD). The effect of selected two different doses (1 μg and 50 μg Se/kg/body weight) on HCD-induced oxidative stress was investigated. The hemolysis of the erythrocytes of the HCD rats as well as by high levels of selenium or their combination was markedly increased. Likewise, atherogenic index and plasma glutathione peroxidase (GPx) activity were significantly increased in the same groups of rats compared to control ones. In contrast, paraoxonase activity, glutathione levels and protein thiol levels, catalase, GPx, and superoxide dismutase activities were significantly decreased in rats that received the HCD, high selenium dose, or their combination. Malondialdehyde and protein carbonyl levels in the plasma and red blood cells were significantly increased by HCD and high selenium dose administration. Co-administration of selenium at low dose with or without an HCD restored all of the investigated parameters to near-normal values. The results of this study suggest that excess selenium administration with HCD worsens the atherogenic index and enhances formation of oxidized red blood cells. At dosage levels in the nutritional range such as 1 μg Se/kg body weight, selenium ameliorates the atherogenic index and preserves the antioxidant capacity of the erythrocytes.  相似文献   

3.
Oxidative stress is a main factor in the pathogenesis of severe acute pancreatitis (SAP). The ability of zinc (Zn) to retard oxidative processes has been recognized for many years. This study aims to examine the levels of free oxygen radicals and antioxidant enzyme in SAP rats and know the effect of Zn supplementation on free oxygen radicals and antioxidant system in rats with SAP. Forty-five male Wistar rats were divided into three groups—the SAP group (n?=?15), the Zn-treated group (n?=?15), and the controlled group (n?=?15). For the SAP group, sodium taurocholate is injected into the pancreatic duct to induce SAP; for the Zn-treated group, Zn (5 mg/kg) is subcutaneously injected immediately after injection of 5 % sodium taurocholate. Firstly, the activity of erythrocyte glutathione peroxidase (GSH-Px), erythrocyte superoxide dismutase (SOD), and the content of plasma malondialdehyde (MDA), which are the toxic products of oxidative stress, is measured. Secondly, the levels of free oxygen radicals in the liver and kidney are detected. The result showed that the activity of GSH-Px and SOD was lower in the SAP group than that in the controlled group, although the content of plasma MDA increased. However, the activity of SOD and GSH-Px in the Zn-treated group was not significantly decreased after comparing with the controlled group; in the mean time, the content of MDA was not significantly increased either. Moreover, the content of free radical in liver and kidney was higher in the SAP group compared with the controlled group, but the content of free radical in the Zn-treated group was not higher than that in the controlled group (p?>?0.05). All of the above indicated that Zn may recover the activity of free radical-scavenging enzymes and decrease the content of free radical for the SAP group rats. In conclusion, the content of free radical increase may be one of the reasons that SAP rats are injured, and it is possible for Zn to be used to treat SAP through scavenging free radical and increasing the activity of SOD and GSH-Px of erythrocyte.  相似文献   

4.
Effects of vitamin E and selenium supplementation on aldehyde oxidase (AO) and xanthine oxidase (XO) activities and antioxidant status in liver, kidney, and heart of streptozotocin (STZ)-induced diabetic rats were examined. AO and XO activities increased significantly after induction of diabetes in rats. Following oral vitamin E (300 mg/kg) and sodium selenite (0.5 mg/kg) intake once a day for 4 weeks, XO activity decreased significantly. AO activity decreased significantly in liver, but remained unchanged in kidney and heart of vitamin E- and selenium-treated rats compared to the diabetic rats. Total antioxidants status, paraoxonase-1 (PON1) and erythrocyte superoxide dismutase activities significantly decreased in the diabetic rats compared to the controls, while a higher fasting plasma glucose level was observed in the diabetic animals. The glutathione peroxidase activity remained statistically unchanged. Malondialdehyde and oxidized low-density lipoprotein levels were higher in the diabetic animals; however, these values were significantly reduced following vitamin E and selenium supplementation. In summary, both AO and XO activities increase in STZ-induced diabetic rats, and vitamin E and selenium supplementation can reduce these activities. The results also indicate that administration of vitamin E and selenium has hypolipidemic, hypoglycemic, and antioxidative effects. It decreases tissue damages in diabetic rats, too.  相似文献   

5.
Apelin is a newly discovered peptide that its serum level increases in diabetic patients with cardiovascular dysfunction. Recent studies indicate the beneficial actions of betaine in reducing the cardiovascular and metabolic complications, however data related to its effect on adipocytokine expression is limited. The aim of this study was to evaluate the effect of betaine supplementation on Apelin gene expression in cardiac muscle and adipose tissue of insulin resistance, diabetic rats fed by a high calorie diet. To induce insulin resistance rats were fed with high fat/high carbohydrate diet for five weeks and then 30 mg/kg STZ was injected intraperitoneally. After confirming of diabetes incidence (serum glucose above 7.5 mmol/l) the animals were treated with 1 % betaine in drinking water for 28 days. At days 14 and 28 after treatment, animals were euthanized and Apelin gene expression was evaluated by real time PCR and western blot in heart and adipose tissues. Serum levels of insulin, Apelin and glucose and HOMA–IR were also measured. Our results showed that feeding of rats by a high calorie diets caused insulin resistance, which was manifested by elevated plasma insulin, glucose and Apelin levels and also HOMA–IR. Apelin gene expression in heart and adipose tissues were significantly increased simultaneously with the progression of diabetes. Betaine supplementation decreased serum Apelin and down regulated Apelin expression in adipose tissue and cardiac muscle, particularly at day 28 of treatment. We concluded that betaine might improve metabolic and cardiovascular complications in diabetic patients by regulation of Apelin expression and secretion.  相似文献   

6.
A randomized, blocked 23 factorial experiment was conducted with 48 young pigs. The treatment factors were: 2 levels of selenium (55 and 115 µg/kg), 2 levels of vitamin E (3 and 53 mg/kg) and 2 levels of the antioxidant feed additive Ethoxyquin (0 and 150 mg/kg). All pigs were kept in single pens and fed ad libitum throughout the experimental period of 9 weeks, i.e. from 3 to 12 weeks of age. Plasma, heart, liver and muscle Se levels as well as whole blood glutathione peroxidase activity (EC 1.11.1.9 GSH-Px) were significantly higher in pigs given a dietary supplement of Se than in pigs given no supplement of Se (P ≤ 0.001). The Se-supplemented pigs showed a tendency to lower mean serum transaminase activity (ASAT and ALAT) than unsupplemented pigs, but the influence was significant (P ≤ 0.05) only for the ALAT activity. Blood vit. E levels were higher for pigs receiving a supplement of vit. E than for unsupplemented pigs (P ≤ 0.001), and so was the resistance of red blood cells against lipid peroxidation (ELP), as expressed by lower ELP values. There were no effects of Ethoxyquin supplementation on the biochemical variables included in the study. The histological examination of heart muscle showed that the score for changes was negatively influenced by both Se and vit. E supplement (P ≤ 0.001) and to some extent also by Ethoxyquin supplement (P ≤ 0.05). The histological picture of m. long dorsi was influenced only by the vit. E supplement (P ≤ 0.01). No histological changes were found in the liver in this study. There were inverse relationships between whole blood GSH-Px defluorescence time and blood Se, and between ELP and whole blood vit. E (P ≤ 0.001).  相似文献   

7.
The present study aims to evaluate the effect of selenium supplementation on lipid peroxidation and lactate levels in rats subjected to acute swimming exercise. Thirty-two adult male rats of Sprague–Dawley type were divided into four groups. Group 1, control; group 2, selenium-supplemented; group 3, swimming control; group 4, selenium-supplemented swimming group. The animals in groups 2 and 4 were supplemented with (i.p.) 6 mg/kg/day sodium selenite for 4 weeks. The blood samples taken from the animals by decapitation method were analyzed in terms of erythrocyte-reduced glutathione (GSH), serum glutathione peroxidase (GPx) and superoxide dismutase (SOD), and plasma malondialdehyde (MDA) and lactate using the colorimetric method, and serum selenium values using an atomic emission device. In the study, the highest MDA and lactate values were found in group 3, while the highest GSH, GPx and SOD values were obtained in group 4 (p < 0,001). Group 2 had the highest and group 3 had the lowest selenium levels (p < 0,001). Results of the study indicate that the increase in free radical production and lactate levels due to acute swimming exercise in rats might be offset by selenium supplementation. Selenium supplementation may be important in that it supports the antioxidant system in physical activity.  相似文献   

8.
Cigarette smoke contains about 5,000 chemicals that include organic and metallic compounds. The current study was undertaken to investigate the effects of selenium and vitamin E on oxidative stress-induced damage in rats exposed to cigarette smoke. Forty male rats were equally divided into four groups. The first and second groups were used as control and cigarette smoke groups, respectively. Selenium was administered to rats constituting the third group for 27 days. The Se and vitamin E combination was given to animals in fourth group for 27 days. All groups except the control, were exposed to cigarette smoke starting at the third day of the experiment and continuing for 27 days. The blood samples from all groups were taken at the end of 27 days. Plasma lipid peroxidation, triacylglycerol, and total cholesterol levels were higher in the cigarette smoke group than in the control, although erythrocytic superoxide dismutase and glutathione peroxidase activities were lower in the cigarette smoke group than in the control. The plasma lipid peroxidation, triacylglycerol, and total cholesterol levels were lower in cigarette smoke+Se+VE group than in the cigarette smoke group, although erythrocytic superoxide dismutase activity and glutathione peroxidase activity in selenium and vitamin E-administered groups were higher than in the exposed to cigarette smoke group. High-density lipoprotein-cholesterol level was not affect by selenium and vitamin E administrations. In conclusion, selenium and vitamin E seem to have protective effects on the cigarette smoke-induced blood toxicity by supporting the enzymatic antioxidant redox systems.  相似文献   

9.
Growing and laying chickens were fed graded levels of selenium in the form of sodium selenite. One day old Norwegian bred broiler chickens and 20 weeks old Norwegian bred White Leghorn chickens were divided into 5 groups each and fed a basal diet supplemented with 0, 0.1, 1.0, 3.0 or 6.0 μg Se/g for 6 and 31 weeks, respectively. At the end of the experiments significantly higher concentrations of selenium were found in the groups fed 1.0, 3.0 and 6.0 μg Se/g diet compared to the control group. Correspondingly higher concentrations of selenium were found in egg samples. The increase in egg yolk selenium was much higher than in egg white. Significant correlations were found between the amounts of selenium added to the ration and the selenium concentrations in liver, kidney, breast muscle, egg white, yolk and homogenized egg. There were no differences in body weight gain and egg production between the groups. A possible positive contribution to animal and human health of selenium supplementation of animals’ diet above the required level is discussed.  相似文献   

10.
Zinc is an element that under physiological conditions preferentially binds to and is a potent inducer of metallothionein under physiological conditions. The present study was conducted to explore whether zinc supplementation morphologically and biochemically protects against diabetic nephropathy through modulation of kidney metallothionein induction and oxidative stress in streptozotocin-induced diabetic rats. Thirty-two Wistar albino male rats were equally divided into four groups. The first group was used as untreated controls and the second group was supplemented with 30?mg/kg/day zinc as zinc sulfate. The third group was treated with streptozotocin to induce diabetes and the fourth group was treated with streptozotocin and supplemented with zinc as described for group 2. The blood glucose and micro-albuminuria levels, body and kidney weights were measured during the 42-day experimental period. At the end of the experiment, the kidneys were removed from all animals from the four groups. Diabetes resulted in degenerative kidney morphological changes. The metallothionein immunoreactivity level was lower and the kidney lipid peroxidation levels were higher in the diabetes group than in the controls. The metallothionein immunoreactivity levels were higher in the tubules of the zinc-supplemented diabetic rats as compared to the non-supplemented diabetic group. The zinc and metallothionein concentrations in kidney tissue were higher in the supplemented diabetic group compared to the non-supplemented diabetes group. The activity of glutathione peroxidase did not change in any of the four groups. In conclusion, the present study shows that zinc has a protective effect against diabetic damage of kidney tissue through stimulation of metallothionein synthesis and regulation of the oxidative stress.  相似文献   

11.
Manganese (Mn) is an essential element for normal development and bodily functions in humans. In the present study, we examined whether Mn supplementation can alter the serum lipid parameters and liver function in Ca-deficient ovariectomized (OVX) rats. Sixty female Sprague–Dawley rats (6 weeks) were divided into five groups and bred for 12 weeks: sham-operated control group (Sham), OVX Ca deficiency group (OLCa) with Ca-deficient diet (0.1% Ca modified AIN-93N diet), OVX Ca deficiency and Mn supplementation group (OLCaMn), OVX with adequate Ca group (OACa; 0.5% Ca AIN-93N diet), and OVX with adequate Ca and Mn supplementation group (OACaMn). A low Ca diet increased the liver weight and serum levels of GOT, GPT, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol in OVX rats. Mn supplementation decreased these parameters in Ca-deficient OVX rat. The results of our study suggest Mn supplementation results in reductions of the blood cholesterol levels, which show an increase due to Ca deficiency in OVX rats.  相似文献   

12.
The aim of this study was to evaluate the lipid peroxidation, nitric oxide (NO), and free radical scavenging enzyme activities in erythrocytes of zinc (Zn)-deficient rats and to investigate the relationship among these parameters in either group. Sixteen male rats with a weight of 40-50 g were used for the experiment. The rats were divided into control (n = 8) and Zn-deficient groups. At the end of the experiment, the animals were anesthetized with ketamine-HCl (Ketalar, 20 mg/kg(-1), i.p.), and the blood was collected by cardiac puncture after thoracotomy. Blood samples were collected in vacutainer tubes without and with K(3)-EDTA as anticoagulant. Erythrocyte catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GRD), glutathione-S-transferase (GST), superoxide dismutase (SOD) activities, total (enzymatic plus nonenzymatic) superoxide scavenger activity (TSSA), nonenzymatic superoxide scavenger activity (NSSA), antioxidant potential (AOP), and serum zinc (Zn) values in the Zn-deficient group were significantly lower than those of the control group, whereas NO and malondialdehyde (MDA) levels were significantly higher than those of the control group. The results show that Zn deficiency causes a decrease in antioxidant defense system and an increase in oxidative stress in erythrocyte of rats.  相似文献   

13.
During deficient zinc intake, rats are liable to suffer zinc deficiency under the following conditions: higher protein diet, diet containing higher quality (higher nutritive value) protein, and higher dietary intake. This suggests that a higher protein nutritional status (rapid increase in body protein) in rats leads to a lower zinc nutritional status (higher zinc requirement). In contrast, it is expected that a lower protein nutritional status (lowered body protein biosynthesis) is not liable to result in a lower zinc nutritional status. Therefore, the effects of protein biosynthesis inhibitors on zinc status were studied. Actinomycin D and cycloheximide were administered to rats under a marginally zinc-deficient condition. The growth of rats was depressed and serum and femur zinc concentrations were increased by administration of protein biosynthesis inhibitors. The carcasses of rats administered protein synthesis inhibitors had a higher zinc/protein ratio than those of the respective pair-fed (calorically equivalent to the zinc-deficient group) rats. Results suggest that zinc deficiency in rats is mainly alleviated by decreased food intake with administration of protein synthesis inhibitors. Furthermore, protein biosynthesis inhibition alone alleviated zinc deficiency.  相似文献   

14.
Twelve female camels divided into three groups received, after a 2-week adaptation period, an oral Se supplementation (0, 2, and 4 mg, respectively) under sodium selenite form for 3 months. Feed intake was assessed daily, blood samples and body weight were taken on a weekly basis, and feces and urine samples were collected every 2 weeks up to 1 month after the end of the supplementation period. The Se concentration in serum was increased significantly in supplemented groups. The maximum level was observed in the period of supplementation in the camel receiving 4 mg (492.5 ng/mL), which was fourfold higher than the value at the beginning of the trial (126 to 138.5 ng/mL according to the groups). The selenium concentration increased significantly in urine and feces but to a lesser extent. A similar trend was observed with glutathione-peroxidase (GSH-Px) values varying between 8.4 and 96.5 IU/g Hb. However, no difference occurred between the two groups receiving 2 or 4 mg Se at the supplementation period. Vitamin E (mean 1.13 +/- 0.61 microg/mL with range 0.27-3.09) did not change significantly. Significant correlations were reported between serum Se, GSH-Px, fecal, and urinary excretion or concentration.  相似文献   

15.
Blood Se of adult horses was 26.1, 25.8, and 27.0 ng/ml (mean values at 3 farms), where the Se of food was about 20 ng/g dry substance. Experimental adult horses which received about 41 ng Se/g food showed 45.3 ng/ml blood. At low Se intake suckling foals show higher blood Se than mares, but with high Se intake, the opposite will occur. This is reflected in milk Se, which raises but slowly with rise of mare’s blood Se. Se in blood plasma and in blood corpuscles is on the same level. The effect of various dose levels of Se on blood Se was studied: From 1.5 to 6 mg Se/week, blood Se rose rather linearity; 18 and 30 rag Se/week gave but slightly more effect than 6 mg.  相似文献   

16.
Biological Trace Element Research - Selenium is known to be a neuroprotective agent in respect to a number of neuronal diseases and pain. The aim of this study was to evaluate the neuroprotective...  相似文献   

17.
18.
The aim of this study was to trace zinc nanocrystals in the anterior pituitary of zinc-deficient Wistar rats by using autometallographic technique. Male Wistar rats (30–40 days of age, pre-pubertal period) of 40–50 g body weight were divided into the following: the ZC (zinc control) group—fed with 100 ppm zinc in diet, the ZD (zinc-deficient) group—fed with zinc-deficient (1.00 ppm) diet and the PF (pair-fed) group—received 100 ppm zinc in diet. The experiments were set for 2 and 4 weeks. Pituitary was removed and processed for the autometallographic technique. The control and pair-fed groups retained their normal morphological features. However, male Wistar rats fed on zinc-deficient diet for 2 and 4 weeks displayed a wide range of symptoms such as significant (P < 0.05) decrease in diet consumption, body weight and pituitary weight and decrease in gradation of intensity of zinc nanocrystals in the nuclei. The present findings suggest that the dietary zinc deficiency causes decreased intensity of zinc nanocrystals localization and their distribution in the pituitary thereby contributing to the dysfunction of the pituitary of the male Wistar rats. The severity of zinc deficiency symptoms progressed after the second week of the experiment. Decreased intensity of zinc nanocrystals attenuates the pituitary function which would exert its affect on other endocrine organs impairing their functions indicating that the metabolic regulation of pituitary is mediated to a certain extent by zinc and/or hypothalamus-hypophysial system which also reflects its essentiality during the period of growth.  相似文献   

19.
Biological Trace Element Research - Non-enzymatic glycation of lens proteins and elevated polyol pathway in the eye lens have been the characteristic features of a diabetic condition. We have...  相似文献   

20.
The objective of this study was to examine the influence of oral supplementation with Zn or Mg on Cd content in the blood and organs of rabbits exposed to prolonged Cd intoxication. Rabbits were divided into the following groups: Cd group-received orally every day for 4 weeks 10 mg Cd/kg body weight (b.w.), Cd+Zn group and Cd+Mg group-exposed to Cd and supplemented with 20 mg Zn/kg b.w. or 40 mg Mg/kg b.w. 1 h after Cd treatment. Cd content in biological material was determined by atomic absorption spectrophotometry. Blood Cd concentration was determined in all investigated groups at time 0 and after 10, 14, 18, 22, 25, and 28 days, whereas Cd content in the brain, heart, lungs, liver, kidney, spleen, pancreas, skeletal muscle, and bone was determined after 28 days. Blood Cd concentration was significantly increased in all groups from the 14th day of Cd intoxication and lasted till the end of the experiment. Zn or Mg supplementation significantly reduced blood Cd content on the 18th and 25th days. Supplementation with Zn or Mg significantly decreased Cd concentration in the kidney, spleen, and bone and, in addition, Zn reduced Cd content in the brain. Supplementation with Zn or Mg in Cd-intoxicated rabbits caused similar reduction of blood Cd concentration; however, reduction of tissue Cd content was more pronounced in Zn- than in Mg-supplemented group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号