首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper shows that the sub-surface light regime in the offshore North Sea varies spatially and seasonally between different ecohydrodynamic regions, which is likely to have important implications for primary production and carbon and nutrient fluxes in different areas of the North Sea. Measurements of downward irradiance were collected using different instruments (i.e. water column-profiling instruments, semi-autonomous moorings, and remote sensing) at three ecohydrodynamically distinct sites in the North Sea: in the southern Bight (SB), at the Oyster Grounds (OG) and north of the Dogger Bank (ND). The ND site was the deepest, and had the lowest and least variable light attenuation coefficients (mean Kd(PAR) = 0.11 m?1). The onset of the phytoplankton spring bloom was earlier than at the other two sites. In summer, ND had low Kd(PAR) ~ 0.07 m?1 and light penetration was shifted towards blue-green wavelengths (490–560 nm), with water itself being one of the strongest contributors to overall attenuation. In contrast, the SB site was characterised by the highest and most variable values of Kd(PAR) (mean = 0.54 m?1), comparable to near-coastal waters, and the spring bloom started almost a month later than at the ND site. The vertical variability of the attenuation coefficient and the strong PAR attenuation in the blue region of the spectrum were the result of higher concentrations of phytoplankton, CDOM and SPM, due to riverine inputs, shallow depth and strong tidal mixing. The OG site showed intermediate conditions between the ND and SB sites with a mean Kd(PAR) = 0.23 m?1, and deepest penetration of irradiance in the green region of the spectrum at 560 nm. The implications of these results for phytoplankton growth and ecosystem modelling are discussed.  相似文献   

2.
The Baltic Sea is known for its ecological problems due to eutrophication caused by high nutrient input via nitrogen fixation and rivers, which deliver up to 70% of nitrogen in the form of dissolved organic nitrogen (DON) compounds. We therefore measured organic nitrogen uptake rates using self produced 15N labeled allochthonous (derived from Brassica napus and Phragmites sp.) and autochthonous (derived from Skeletonema costatum) DON at twelve stations along a salinity gradient (34 to 2) from the North Sea to the Baltic Sea in August/September 2009. Both labeled DON sources were exploited by the size fractions 0.2–1.6 μm (bacteria size fraction) and >1.6 μm (phytoplankton size fraction). Higher DON uptake rates were measured in the Baltic Sea compared to the North Sea, with rates of up to 1213 nmol N l?1 h?1. The autochthonous DON was the dominant nitrogen form used by the phytoplankton size fraction, whereas the heterotrophic bacteria size fraction preferred the allochthonous DON. We detected a moderate shift from >1.6 μm plankton dominated DON uptake in the North Sea and central Baltic Sea towards a 0.2–1.6 μm dominated DON uptake in the Bothnian Bay and a weak positive relationship between DON concentrations and uptake. These findings indicate that DON is an important component of plankton nutrition and can fuel primary production. It may therefore also contribute substantially to eutrophication in the Baltic Sea especially when inorganic nitrogen sources are depleted.  相似文献   

3.
Field cages were used to manipulate the density of the thalassinidean Callianassa kraussi Stebbing to test its effects on the turnover of sediment and on the abundance of benthic microflora, bacteria, and meiofauna. By introducing layers of stained sediment into the cages the rate of bioturbation could be quantified, and over a month averaged 59% turnover down to a depth of 30 cm (equivalent to a deposit of 12.14 kg · m −2 · day−1 on the surface). Virtually no bioturbation occurred in cages lacking Callianassa, even although all other infaunal species had been left undisturbed in the cages. Benthic microalgae accumulated on the surface in the absence of Callianassa, but were relatively more abundant at depths of 15 to 25 cm in their presence. Even at this depth they were fully viable, presumably because the turnover of sediment brought them to the surface often enough to maintain them. Bacterial numbers increased between 30 and 100% in the presence of Callianassa, and were concentrated around the linings of their burrows. Meiofaunal numbers declined in proportion to the density of Callianassa, although the reason for this decline is unknown. Taken in conjunction with published work on the detrimental effects Callianassa spp. have on corals, suspension-feeders and seagrasses, these results emphasize the powerful rôle Callianassa plays in structuring the communities of soft sediments.  相似文献   

4.
We investigated the influence of bioturbation by macrofauna on the vertical distribution of living (stained) benthic foraminifera in marine intertidal sediments. We investigated the links between macrofaunal bioturbation and foraminiferal distribution, by sampling from stations situated on a gradient of perturbation by oyster-farming, which has a major effect on benthic faunal assemblages. Sediment cores were collected on the French Atlantic coast, from three intertidal stations: an oyster farm, an area without oysters but affected by oyster biodeposits, and a control station. Axial tomodensitometry (CT-scan) was used for three-dimensional visualization and two-dimensional analysis of the cores. Biogenic structure volumes were quantified and compared between cores. We collected the macrofauna, living foraminifera, shells and gravel from the cores after scanning, to validate image analysis. We did not investigate differences in the biogenic structure volume between cores. However, biogenic structure volume is not necessarily proportional to the extent of bioturbation in a core, given that many biodiffusive activities cannot be detected on CT-scans. Biodiffusors and larger gallery-diffusors were abundant in macrofaunal assemblage at the control station. By contrast, macrofaunal assemblages consisted principally of downward-conveyors at the two stations affected by oyster farming. At the control station, the vertical distribution of biogenic structures mainly built by the biodiffusor Scorbicularia plana and the large gallery-diffusor Hediste diversicolor was significantly correlated with the vertical profiles of living foraminifera in the sediment, whereas vertical distributions of foraminifera and downward-conveyors were not correlated at the station affected by oyster farming. This relationship was probably responsible for the collection of foraminifera in deep sediment layers (> 6 cm below the sediment surface) at the control station. As previously suggested for other species, oxygen diffusion may occur via the burrows built by S. plana and H. diversicolor, potentially increasing oxygen penetration and providing a favorable microhabitat for foraminifera in terms of oxygen levels. By contrast, the absence of living foraminifera below 6 cm at the stations affected by oyster farming was probably associated with a lack of biodiffusor and large gallery-diffusor bioturbation. Our findings suggest that the effect of macrofaunal bioturbation on the vertical distribution of foraminiferal assemblages in sediments depends on the effects of the macrofauna on bioirrigation and sediment oxidation, as deduced by Eh values, rather than on the biogenic structure volume produced by macrofauna. The loss of bioturbator functional diversity due to oyster farming may thus indirectly affect infaunal communities by suppressing favorable microhabitats produced by bioturbation.  相似文献   

5.
To predict selenium cycling in sediments, it is crucial to identify and quantify the processes leading to selenium sequestration in sediments. More specifically, it is essential to obtain environmentally-relevant kinetic parameters for selenium reduction and information on how they spatially vary in sediments. The Salton Sea (California, USA) is an ideal model system to examine selenium processes in sediments due to its semi-enclosed conditions and increasing selenium concentration over the last century. Selenium enters the Salton Sea mainly as selenate and might be sequestered in the sediment through microbial reduction. To determine the potential selenium sequestration of Salton Sea littoral sediments and which sediment properties are controlling selenate reduction kinetics, we determined the centimeter-scale vertical distribution of potential selenate reduction rates and apparent kinetic parameters (maximum selenate reduction rates, Vmax, and selenate half-saturation concentration, Km) using flow-through reactor (FTR) experiments. We compared sediments from two littoral sites (South and North) and four depth intervals (0–2, 2–4, 4–6 and 6–8 cm). Furthermore, we characterized the selenium fractions in the sediment recovered from the FTR experiments to identify the processes leading to the sequestration of selenium. Our results reveal higher potential for selenium reduction and sequestration in the topmost sediment (0–2 cm) suggesting that microorganisms inhabiting surface sediment are well adapted to reduce selenate entering the Salton Sea. As apparent Km values (103–2144 µM) exceed the average selenium concentration in the overlying water (6–25 nM), in situ selenate reduction is limited by the low availability of selenate and the resident selenate-reducing microorganisms operate well below their Vmax (11 and 43 nmol cm?3 h?1). Selenium speciation after FTR experiments confirms the primary sequestration of reduced biomass-associated and elemental selenium (68–99% of total selenium) in the sediment. Further, the absence of correlation between the tested sediment physical (porosity, bulk density, clay content), chemical (Corg, Ntot, total selenium content) and biological characteristics (abundance of culturable selenate-reducers) with the kinetic parameters of selenate reduction indicates that these sediment characteristics cannot be used as predictors of apparent Vmax or Km. Conclusively, microbial selenate reduction is an important, if not the primary process, leading to the sequestration of reduced selenium in the Salton Sea sediments and making the surficial Salton Sea sediments an important selenium sink.  相似文献   

6.
Influences of infaunal burrows constructed by the polychaete (Tylorrhynchus heterochaetus) on O2 concentrations and community structures and abundances of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in intertidal sediments were analyzed by the combined use of a 16S rRNA gene-based molecular approach and microelectrodes. The microelectrode measurements performed in an experimental system developed in an aquarium showed direct evidence of O2 transport down to a depth of 350 mm of the sediment through a burrow. The 16S rRNA gene-cloning analysis revealed that the betaproteobacterial AOB communities in the sediment surface and the burrow walls were dominated by Nitrosomonas sp. strain Nm143-like sequences, and most of the clones in Nitrospira-like NOB clone libraries of the sediment surface and the burrow walls were related to the Nitrospira marina lineage. Furthermore, we investigated vertical distributions of AOB and NOB in the infaunal burrow walls and the bulk sediments by real-time quantitative PCR (Q-PCR) assay. The AOB and Nitrospira-like NOB-specific 16S rRNA gene copy numbers in the burrow walls were comparable with those in the sediment surfaces. These numbers in the burrow wall at a depth of 50 to 55 mm from the surface were, however, higher than those in the bulk sediment at the same depth. The microelectrode measurements showed higher NH4+ consumption activity at the burrow wall than those at the surrounding sediment. This result was consistent with the results of microcosm experiments showing that the consumption rates of NH4+ and total inorganic nitrogen increased with increasing infaunal density in the sediment. These results clearly demonstrated that the infaunal burrows stimulated O2 transport into the sediment in which otherwise reducing conditions prevailed, resulting in development of high NH4+ consumption capacity. Consequently, the infaunal burrow became an important site for NH4+ consumption in the intertidal sediment.  相似文献   

7.
We propose a simple and inexpensive method to determine the rate and pattern of surface sediment reworking by benthic organisms. Unlike many existing methods commonly used in bioturbation studies, which usually require sediment sampling, our approach is fully non-destructive and is well suited for investigating non-cohesive fine sediments in streams and rivers. Optical tracer (e.g. luminophores or coloured sand) disappearance or appearance is assessed through time based on optical quantification of surfaces occupied by tracers. Data are used to calculate surface sediment reworking (SSR) coefficients depicting bioturbation intensities. Using this method, we evaluated reworking activity of stream organisms (three benthic invertebrates and a fish) in laboratory microcosms mimicking pool habitats or directly in the field within arenas set in depositional zones. Our method was sensitive enough to measure SSR as low as 0.2 cm2 day?1, such as triggered by intermediate density (774 m?2) of Gammarus fossarum (Amphipoda) in microcosms. In contrast, complex invertebrate community in the field and a fish (Barbatula barabatula) in laboratory microcosms were found to yield to excessively high SSR (>60 cm2 day?1). Lastly, we suggest that images acquired during experiments can be used for qualitative evaluation of species-specific effects on sediment distribution.  相似文献   

8.
The American razor clamEnsis americanus (=E. directus) was introduced into the eastern North Sea in the late 1970s. By larval and poslarval drifting the species rapidly extended its distribution, now ranging from the English Channel to the Kattegat. Near the island of Sylt in the eastern North Sea it has been recorded since 1979. Recruitment was rather irregular, with about six strong year-classes within two decades. Growth seems comparable with populations in its native range (Atlantic North America). Although present in the lower intertidal zone, maximum densities occurred in shallow subtidal sand with a biomass similar to that of dense beds of native cockles and mussels in the adjacent intertidal zone.Ensis americanus established in otherwise sparsely faunated sand (channels exposed to strong currents) as well as in dense infaunal assemblages (lower intertidal and subtidally). There were no significant interactions with resident species. In dense beds of razor clams, however, fine sediment particles accumulated which may have altered abundances of polychaetes. In spite of high annual variability,E. americanus has become a prominent component of the macrobenthos in shallow subtidal sands of the North Sea.  相似文献   

9.
A previous study has demonstrated that in sandy sediment the marine yabby (Trypaea australiensis) stimulated benthic metabolism, nitrogen regeneration and nitrification, but did not stimulate denitrification, as the intense bioturbation of the yabbies eliminated anoxic microzones amenable to denitrification. It was hypothesised that organic matter additions would alleviate this effect as the buried particles would provide anoxic microniches for denitrifiers. To test this hypothesis a 55-day microcosm (75 cm × 36 cm diameter) experiment, comprising four treatments: sandy sediment (S), sediment + yabbies (S + Y), sediment + A. marina litter (S + OM) and sediment + yabbies + A. marina litter (S + Y + OM), was conducted. Trypaea australiensis significantly stimulated benthic metabolism, nitrogen regeneration, nitrification and nitrate reduction in the presence and the absence of litter additions. In contrast, the effects of litter additions alone were more subtle, developed gradually and were only significant for sediment oxygen demand. However, there was a significant interaction between yabbies and litter with rates of total nitrate reduction and denitrification being significantly greater in the S + Y + OM than all other treatments, presumably due to the decaying buried litter providing anoxic micro-niches suitable to nitrate reduction. In addition, both T. australiensis and litter significantly decreased rates of DNRA and its contribution to nitrate reduction.  相似文献   

10.
The potential effect of sustained hypoxia (up to 70 days) on the production of N2 gas through denitrification and anammox, as well as sediment–water exchange of nitrite, nitrate and ammonia, oxygen consumption and penetration, were measured in mesocosms using sediment collected from the southern North Sea (north of Dogger Bank). As expected, both the penetration of oxygen into, and consumption of oxygen by, the sediment decreased by 42 and 46 %, respectively, once hypoxia was established. Importantly, the oxygen regime did not change significantly (P > 0.05) during the experiment, suggesting that organic carbon was not depleted. During the first 10 days, the exchange of NO3 ?, NO2 ? and NH4 + between the sediment and water was erratic but once a steady state was established the sediment acted as either a sink for fixed nitrogen under hypoxia or as a source in the controls. Over the course of the mesocosm experiment the rate of both anammox and denitrification increased, with anammox increasing disproportionately under hypoxia relative to the controls, whereas the rate of increase in denitrification was the same for both. Under sustained hypoxia the production of N2 gas increased by 72 % relative to the controls, with this increase in N2 production remaining constant regardless of the duration of hypoxia. Longer periods of stratification and oxygen depletion are predicted to occur more regularly in the bottom waters of shallow coastal seas as one manifestation of climate change. Under sustained hypoxia the potential for nitrogen removal by the production of N2 gas in this region of the southern North Sea was estimated to increase from 2.1 kt N 150 days?1 to 3.6 kt 150 days?1, while the efflux of dissolved inorganic nitrogen ceased altogether; both of which could down regulate the productivity of this region as a whole.  相似文献   

11.
Composition, abundance and stratification of soft-bottom macrobenthos were studied at three selected sites on the Ross Sea shelf (Antarctica) with different geomorphology and sedimentation regimes. Sites A (southwest Ross Sea, 810 m depth) and B (Joides basin, 580 m depth) were characterized by biogenic mud and clay sediments, whereas site C (Mawson bank, 450 m depth) featured sandy sediments mixed with a conspicuous biogenic component characterized by shells and tests of calcareous invertebrates (mainly barnacles of the genus Bathylasma). The macrofauna of sites A and B was mainly composed of infaunal polychaetes and bivalves. The assemblages comprised both surface and sub-surface deposit feeders, including some conveyor-belt polychaetes (Maldanidae and Capitellidae) that are responsible for high sediment mixing and bioturbation. The macrobenthos of site C was dominated by crustaceans, polychaetes and echinoderms (ophiuroids), and mainly by filter feeders and epifaunal or interstitial forms. Abundances were higher (up to 1040 ind. m−2) at site B than at sites A and C (430 and 516 ind. m−2, respectively). At sites A and B the benthos was mainly concentrated in the upper 5 cm of the sediment, and abundances declined sharply in the deeper sediment layers. These results indicate a high degree of consistency between sediment features and benthic community structure, which are both strongly related to local hydrography and bottom dynamics. Sites A and B represent areas where the organic input to the seafloor by vertical sedimentation from the upper water column is high. Site C, however, is characterized by high sediment instability and food particles advecting mainly horizontally. The community is more physically controlled by unpredictable, and probably frequent, disturbance events (e.g., bottom turbid currents, sediment reworking and displacement). Individuals were relatively small, indicating that probably they are not able to grow up to the adult size and reproduce. The community may be represented by “pseudopopulations” depending on the settlement of larvae invading from neighbouring areas. Accepted: 23 October 1998  相似文献   

12.
The impact of fiddler crabs (Uca spp.) on benthic mineralization rates and pathways in deposits of shrimp pond waste (SPW) with planted mangrove trees (Rhizophora apiculata) were determined in the Ranong mangrove forest, Thailand. Sediment metabolism, measured as CO2 flux, increased by 2- to 3-fold when either fiddler crabs or mangrove trees were present compared to control plots. Sulfate reduction rates (SRR) were always high and partitioning of various electron acceptors to total carbon oxidation revealed that sulfate reduction contributed by >90%, with iron reduction being important only near the sediment-water interface. However, significant iron reduction appeared down to 7 cm when bioturbation and plant roots were combined in the easily oxidizable mangrove sediment (MS), indicating that infaunal activity and plant roots were able to alter the substratum. Microprofiles around individual Uca burrows showed 46% lower SRRs in a 15-mm-thick oxidized layer around the burrows compared to the surrounding sediment. The burrow wall environment appears to be a zone of intense reoxidation of reduced compounds as indicated by low pools of reduced sulfide compounds and a high Fe(III) content. Despite the decreased SRRs near the burrow, and the introduction of Fe(III) to deeper sediment layers, fiddler crabs and mangrove trees have only limited impact on rates and partitioning of anaerobic carbon mineralization in the SPW. This lack of response was attributed to the relative small volume of sediment affected by crab activities.  相似文献   

13.
Nitrogen removal in coastal sediments of the German Wadden Sea   总被引:1,自引:0,他引:1  
Although sediments of the German Wadden Sea are suspected to eliminate a considerable share of nitrate delivered to the SE North Sea, their denitrification rates have not been systematically assessed. We determined N2 production rates over seasonal cycles (February 2009–April 2010) at two locations with two sediments types each, the first site (Meldorf Bight) receiving nitrate during all seasons from the Elbe river plume, and a second site on the island of Sylt, where nitrate is depleted during summer months. In sediments from the Sylt site, N2 production ranged from 15 to 32 μmol N2 m?2 h?1 in the fine sand station and from 7 to 13 μmol N2 m?2 h?1 in the coarse sand station; N2 production was not detected when nitrate was depleted in May and July of 2009. N2 production in the Meldorf Bight sediments were consistently detected at higher rates (58–130 μmol N2 m?2 h?1 in the very fine sand station and between 14 and 30 μmol N2 m?2 h?1 in the medium sand station). Analysis of ancillary parameters suggests that major factors controlling N2 production in coastal sediments of the German Wadden Sea are the nitrate concentrations in the overlying water, the ambient temperature, and the organic matter content of the sediment. Extrapolating our spot measurements to the zone of nitrate availability and sediment types, we estimate an annual nitrogen removal rate around 16 kt N year?1 for the entire northern sector of the German Wadden Sea area. This corresponds to 14% of the annual Elbe river nitrogen load.  相似文献   

14.
Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions – with tidal cycles and natural seawater – was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g−1 wet sediment), the common burrowing organism Hediste (Nereis) diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled) showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition) revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by Gammaproteobacteria and Deltaproteobacteria. In the oiled-microcosms, the addition of H. diversicolor reduced the phylotype-richness, sequences associated to Actinobacteria, Firmicutes and Plantomycetes were not detected. These observations highlight the influence of the bioturbation on the bacterial community structure without affecting the biodegradation capacities.  相似文献   

15.
In a 10-stations bathymetrical transect in the Bay of Biscay, we observed important changes in the density, composition and microhabitats of live foraminiferal faunas from the outer continental shelf to the abyssal plain. Four zones are recognised: (1) at the upper continental shelf (140 m water depth), foraminiferal densities are very high and the superficial sediment is occupied by Bolivina subaenariensis and Valvulineria bradyana. Globobulimina spp., Chilostomella oolina and Nonion fabum dominate the infaunal niches, which are positioned close to the sediment-water interface due to a strong compaction of the vertical succession of redox zones. (2) At the upper continental slope stations (300-1000 m), foraminiferal densities are high and the superficial sediments are dominated by Uvigerina mediterranea/peregrina. Deeper in the sediment, intermediate infaunal niches are occupied by Melonis barleeanus. Due to a deeper oxygen penetration, the deep infaunal taxa Globobulimina spp. and C. oolina live at a considerable depth in the sediment. (3) At the mid and lower slope stations (1000-2000 m) in the superficial sediment Cibicidoides kullenbergi and Hoeglundina elegans progressively replace U. mediterranea. U. peregrina is still a dominant taxon, reflecting its preference for a somewhat intermediate organic flux level. Deep infaunal taxa become increasingly rare. (4) At the lower slope and abyssal plane stations (deeper than 2000 m), faunal densities are very low and the fauna is composed exclusively by shallow infaunal species, such as Nuttallides umboniferus and Melonis pompilioides. The foraminiferal data together with the pore water data in the sediment give evidence of the presence of a trophic gradient from very eutrophic settings at the upper continental shelf towards oligotrophic settings at the abyssal area.  相似文献   

16.
Nitrification plays a significant role in the global nitrogen cycle, and this concept has been challenged with the discovery of ammonia-oxidizing archaea (AOA) in the environment. In this paper, the vertical variations of the diversity and abundance of AOA in the hyporheic zone of the Fuyang River in North China were investigated by molecular techniques, including clone libraries, phylogenetic analysis and real-time polymerase chain reaction. The archaeal amoA gene was detected in all sediments along the profile, and all AOA fell within marine group 1.1a and soil group1.1b of the Thaumarchaeota phylum, with the latter being the dominant type. The diversity of AOA decreased with the sediment depth, and there was a shift in AOA community between top-sediments (0–5 cm) and sub-sediments (5–70 cm). The abundance of the archaeal amoA gene (1.48 × 107 to 5.50 × 107 copies g?1 dry sediment) was higher than that of the bacterial amoA gene (4.01 × 104 to 1.75 × 10copies g?1 dry sediment) in sub-sediments, resulting in a log10 ratio of AOA to ammonia-oxidizing bacteria (AOB) from 2.27 to 2.69, whereas AOB outnumbered AOA in top-sediments with a low log10 ratio of (?0.24). The variations in the AOA community were primarily attributed to the combined effect of the nutrients (ammonium-N, nitrate-N and total organic carbon) and oxygen in sediments. Ammonium-N was the major factor influencing the relative abundance of AOA and AOB, although other factors, such as total organic carbon, were involved. This study helps elucidate the roles of AOA and AOB in the nitrogen cycling of hyporheic zone.  相似文献   

17.
Meiofauna play an essential role in the diet of small and juvenile fish. However, it is less well documented which meiofaunal prey groups in the sediment are eaten by fish. Trophic relationships between five demersal fish species (solenette, goby, scaldfish, dab <20 cm and plaice <20 cm) and meiofaunal prey were investigated by means of comparing sediment samples and fish stomach contents collected seasonally between January 2009 and January 2010 in the German Bight. In all seasons, meiofauna in the sediment was numerically dominated by nematodes, whereas harpacticoids dominated in terms of occurrence and biomass. Between autumn and spring, the harpacticoid community was characterized by Pseudobradya minor and Halectinosoma canaliculatum, and in summer by Longipedia coronata. Meiofaunal prey dominated the diets of solenette and gobies in all seasons, occurred only seasonally in the diet of scaldfish and dab, and was completely absent in the diet of plaice. For all fish species (excluding plaice) and in each season, harpacticoids were the most important meiofauna prey group in terms of occurrence, abundance and biomass. High values of Ivlev’s index of selectivity for Pseudobradya spp. in winter and Longipedia spp. in summer provided evidence that predation on harpacticoids was species-selective, even though both harpacticoids co-occurred in high densities in the sediments. Most surficial feeding strategies of the studied fish species and emergent behaviours of Pseudobradya spp. and Longipedia spp. might have caused this prey selection. With increasing fish sizes, harpacticoid prey densities decreased in the fish stomachs, indicating a diet change towards larger benthic prey during the ontogeny of all fish species investigated.  相似文献   

18.
Reproduction and maturation in the economically important, but data-deficient, Mustelus minicanis and M. norrisi were analysed using catches of populations exploited by a gillnet fishery during two years in the southern Caribbean Sea. In total, 691 female (mean ± SD total length–TL of 55.3 ± 5.8 cm) and 503 male (50.4 ± 4.9 cm TL) M. minicanis were assessed, with ~95% of all specimens deemed mature. Almost 25% of females were gravid (occurring between January and October) and with variable temporal development of up to six embryos (3.3 ± 1.2), implying protracted temporal parturition. Parity in the sex ratio of embryos, but not in landed catches, suggested sexual segregation across the fished area. The 50% sizes at maturity (M 50) (± SE) were similarly estimated at 45.11 (± 0.39) and 45.48 (± 0.42) cm TL for females and males, respectively. Relatively fewer (235) M. norrisi were landed, with samples comprising 150 females (82.6 ± 18.1 cm TL) and 85 males (75.5 ± 17.7 cm TL). More than 30% of both sexes were immature. Ten percent of females were gravid (up to 11 embryos) and present in catches between October and February, coinciding with the northern hemisphere autumn/winter. Female and male M 50s were 76.65 (± 1.16) and 69.63 (± 1.92) cm TL, respectively. The results imply variable inter-specific reproductive plasticity and the need for further life-history studies. Increasing gillnet selectivity might represent a simple precautionary management option for concurrently regulating catches of the smaller-bodied M. minicanis during peak abundances of gravid females and similar-sized juvenile M. norrisi.  相似文献   

19.
The late Holocene stratigraphic evolution of a back-barrier tidal basin in the East Frisian Wadden Sea, southern North Sea, was investigated on the basis of a conceptual model relating the rate of sea-level rise to the rate of sediment supply. For this purpose, more than 20 vibra-cores and box-cores were evaluated, complemented by 14C ages of in situ peats and historical charts. In spite of interspersed short regressive events, the late Holocene stratigraphy generally reveals upward-coarsening grain-size trends indicative of transgressive deposition in the course of sea-level rise rather than erosion and redeposition by migrating channels. A particular feature is the general absence of down-core bioturbation traces, which stands out in sharp contrast to the intensely burrowed modern surface layer. Thus, in the Wadden Sea, high sediment turnover in the course of rapid transgression evidently obliterates most bioturbation traces and other tidal signals such as minor regressive deposits, thereby emphasising the importance of preservation potential.  相似文献   

20.
Surveys of genetic structure of introduced populations of nonindigenous species may reveal the source(s) of introduction, the number of introduction events, and total inoculum size. Here we use the mitochondrial cytochrome c oxidase subunit 1 (COI) gene to explore genetic structure and contrast invasion histories of two ecologically similar and highly invasive colonial ascidians, the golden star tunicate Botryllus schlosseri and the violet tunicate Botrylloides violaceus, in their global and introduced North American ranges. Haplotype and nucleotide diversities for B. schlosseri were significantly higher than for B. violaceus both globally (h = 0.872; ?? = 0.054 and h = 0.461; ?? = 0.007, respectively) and in their overlapping North American ranges (h = 0.874; ?? = 0.012 and h = 0.384; ?? = 0.006, respectively). Comparative population genetics and phylogenetic analyses revealed clear differences in patterns of invasion for these two species. B. schlosseri populations on the west and east coasts of North America were seeded from the Pacific and Mediterranean regions, respectively, whereas all North American B. violaceus populations were founded by one or more introduction events from Japan. Differences in genetic structure of invasive populations for these species in North America are consistent with their contrasting probable introduction vectors. B. schlosseri invasions most likely resulted from vessel hull fouling, whereas B. violaceus was likely introduced as a ??fellow traveler?? in the shellfish aquaculture trade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号