首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Benthic–pelagic coupling is manifested as the exchange of energy, mass, or nutrients between benthic and pelagic habitats. It plays a prominent role in aquatic ecosystems, and it is crucial to functions from nutrient cycling to energy transfer in food webs. Coastal and estuarine ecosystem structure and function are strongly affected by anthropogenic pressures; however, there are large gaps in our understanding of the responses of inorganic nutrient and organic matter fluxes between benthic habitats and the water column. We illustrate the varied nature of physical and biological benthic–pelagic coupling processes and their potential sensitivity to three anthropogenic pressures – climate change, nutrient loading, and fishing – using the Baltic Sea as a case study and summarize current knowledge on the exchange of inorganic nutrients and organic material between habitats. Traditionally measured benthic–pelagic coupling processes (e.g., nutrient exchange and sedimentation of organic material) are to some extent quantifiable, but the magnitude and variability of biological processes are rarely assessed, preventing quantitative comparisons. Changing oxygen conditions will continue to have widespread effects on the processes that govern inorganic and organic matter exchange among habitats while climate change and nutrient load reductions may have large effects on organic matter sedimentation. Many biological processes (predation, bioturbation) are expected to be sensitive to anthropogenic drivers, but the outcomes for ecosystem function are largely unknown. We emphasize how improved empirical and experimental understanding of benthic–pelagic coupling processes and their variability are necessary to inform models that can quantify the feedbacks among processes and ecosystem responses to a changing world.  相似文献   

2.
Nutrient loading and climate change affect coastal ecosystems worldwide. Unravelling the combined effects of these pressures on benthic macrofauna is essential for understanding the future functioning of coastal ecosystems, as it is an important component linking the benthic and pelagic realms. In this study, we extended an existing model of benthic macrofauna coupled with a physical–biogeochemical model of the Baltic Sea to study the combined effects of changing nutrient loads and climate on biomass and metabolism of benthic macrofauna historically and in scenarios for the future. Based on a statistical comparison with a large validation dataset of measured biomasses, the model showed good or reasonable performance across the different basins and depth strata in the model area. In scenarios with decreasing nutrient loads according to the Baltic Sea Action Plan but also with continued recent loads (mean loads 2012–2014), overall macrofaunal biomass and carbon processing were projected to decrease significantly by the end of the century despite improved oxygen conditions at the seafloor. Climate change led to intensified pelagic recycling of primary production and reduced export of particulate organic carbon to the seafloor with negative effects on macrofaunal biomass. In the high nutrient load scenario, representing the highest recorded historical loads, climate change counteracted the effects of increased productivity leading to a hyperbolic response: biomass and carbon processing increased up to mid‐21st century but then decreased, giving almost no net change by the end of the 21st century compared to present. The study shows that benthic responses to environmental change are nonlinear and partly decoupled from pelagic responses and indicates that benthic–pelagic coupling might be weaker in a warmer and less eutrophic sea.  相似文献   

3.
Marine eutrophication and benthos: the need for new approaches and concepts   总被引:6,自引:0,他引:6  
In this review, using examples drawn from field observations or experimental studies, our goals are (i) to briefly summarize the major changes, in terms of species composition and functional structure, occurring in phyto and zoobenthic communities in relation to nutrient enrichment of the ecosystems; particular interest is given to the major abiotic and biotic factors occurring during the eutrophication process, (ii) to discuss the direct and indirect influences of benthic organisms on eutrophication and whether the latter can be controlled or favoured by benthos; most benthic species play a major role in the process of benthic nutrient regeneration, affecting primary production by supplying nutrients directly and enhancing rates of pelagic recycling; experimental studies have shown that the impact of benthic fauna on benthic–pelagic coupling and nutrient release is considerable. Thus, once the eutrophication process is engaged—that is, high organic matter sedimentation—it may be indirectly favoured by benthic organisms; benthos should always be considered in eutrophication studies, (iii) to evaluate the limits of our observations and data, highlighting the strong need for integrated studies leading to new concepts. Coastal ecosystems and benthic communities are potentially impacted by numerous human activities (demersal fishing, toxic contaminants, aquaculture…); in order to design strategies of ecosystem restoration or rehabilitation, we have to better understand coastal eutrophication and develop tools for quantifying the impacts; in order to achieve this goal, some possible directions proposed are: integrated studies leading to new concepts, model development based on these concepts and finally comparison of various ecosystems on a global scale.  相似文献   

4.
Climatic variables, water quality, benthic fluxes, sediment properties, and infauna were measured six times over an annual cycle in a shallow sub-tropical embayment to characterize carbon and nutrient cycling, and elucidate the role of pelagic–benthic coupling. Organic carbon (OC) inputs to the bay are dominated by phytoplankton (mean 74%), followed by catchment inputs (15%), and benthic microalgae (BMA; 9%). The importance of catchment inputs was highly variable and dependent on antecedent rainfall, with significant storage of allochthonous OC in sediments following high flow events and remineralization of this material supporting productivity during the subsequent period. Outputs were dominated by benthic mineralization (mean 59% of total inputs), followed by pelagic mineralization (16%), burial (1%), and assimilation in macrofaunal biomass (2%). The net ecosystem metabolism (NEM = production minus respiration) varied between ?4 and 33% (mean 9%) of total primary production, whereas the productivity/respiration (p/r) ranged between 0.96 and 1.5 (mean 1.13). Up to 100% of the NEM is potentially removed via the demersal detritivore pathway. Dissolved inorganic nitrogen (DIN) inputs from the catchment contributed less than 1% of the total phytoplankton demand, implicating internal DIN recycling (pelagic 23% and benthic 19%) and potentially benthic dissolved organic nitrogen (DON) fluxes (27%) or N fixation (up to 47%) as important processes sustaining productivity. Although phytoplankton dominated OC inputs in this system, BMA exerted strong seasonal controls over benthic DIN fluxes, limiting pelagic productivity when mixing/photic depth approached 1.3. The results of this study suggest low DIN:TOC and net autotrophic NEM may be a significant feature of shallow sub-tropical systems where the mixing/photic depth is consistently less than 4.  相似文献   

5.
Research so far has provided little evidence that benthic biogeochemical cycling is affected by ocean acidification under realistic climate change scenarios. We measured nutrient exchange and sediment community oxygen consumption (SCOC) rates to estimate nitrification in natural coastal permeable and fine sandy sediments under pre-phytoplankton bloom and bloom conditions. Ocean acidification, as mimicked in the laboratory by a realistic pH decrease of 0.3, significantly reduced SCOC on average by 60% and benthic nitrification rates on average by 94% in both sediment types in February (pre-bloom period), but not in April (bloom period). No changes in macrofauna functional community (density, structural and functional diversity) were observed between ambient and acidified conditions, suggesting that changes in benthic biogeochemical cycling were predominantly mediated by changes in the activity of the microbial community during the short-term incubations (14 days), rather than by changes in engineering effects of bioturbating and bio-irrigating macrofauna. As benthic nitrification makes up the gross of ocean nitrification, a slowdown of this nitrogen cycling pathway in both permeable and fine sediments in winter, could therefore have global impacts on coupled nitrification-denitrification and hence eventually on pelagic nutrient availability.  相似文献   

6.
Bottom trawling has widespread impacts on benthic communities and habitats. It is argued that the impact of chronic bottom trawling on benthic infauna depends on the natural disturbance levels to which benthic communities are adapted. We analysed biomass, production and size structure of two communities from a muddy and a sandy habitat, in relation to quantified gradients of trawling disturbance on real fishing grounds. We used an allometric relationship between body mass and individual production to biomass ratio to estimate community production. Chronic trawling had a negative impact on the biomass and production of benthic communities in the muddy habitat, while no impact was identified on benthic communities from the sandy habitat. These differences are the result of differences in size structure within the two communities that occur in response to increasing trawling disturbance.  相似文献   

7.
The effects of bottom trawling on benthic invertebrates include reductions of biomass, diversity and body size. These changes may negatively affect prey availability for demersal fishes, potentially leading to reduced food intake, body condition and yield of fishes in chronically trawled areas. Here, the effect of trawling on the prey availability and diet of two commercially important flatfish species, plaice (Pleuronectes platessa) and dab (Limanda limanda), was investigated over a trawling intensity gradient in the Irish Sea. Previous work in this area has shown that trawling negatively affects the condition of plaice but not of dab. This study showed that reductions in local prey availability did not result in reduced feeding of fish. As trawling frequency increased, both fish and prey biomass declined, such that the ratio of fish to prey remained unchanged. Consequently, even at frequently trawled sites with low prey biomass, both plaice and dab maintained constant levels of stomach fullness and gut energy contents. However, dietary shifts in plaice towards energy-poor prey items were evident when prey species were analysed individually. This, together with a potential decrease in foraging efficiency due to low prey densities, was seen as the most plausible cause for the reduced body condition observed. Understanding the relationship between trawling, benthic impacts, fish foraging and resultant body condition is an important step in designing successful mitigation measures for future management strategies in bottom trawl fisheries.  相似文献   

8.
Productivity and trophic structure of aquatic ecosystems result from a complex interplay of bottom‐up and top‐down forces that operate across benthic and pelagic food web compartments. Projected global changes urge the question how this interplay will be affected by browning (increasing input of terrestrial dissolved organic matter), nutrient enrichment and warming. We explored this with a process‐based model of a shallow lake food web consisting of benthic and pelagic components (abiotic resources, primary producers, grazers, carnivores), and compared model expectations with the results of a browning and warming experiment in nutrient‐poor ponds harboring a boreal lake community. Under low nutrient conditions, the model makes three major predictions. (a) Browning reduces light and increases nutrient supply; this decreases benthic and increases pelagic production, gradually shifting productivity from the benthic to the pelagic habitat. (b) Because of active habitat choice, fish exert top‐down control on grazers and benefit primary producers primarily in the more productive of the two habitats. (c) Warming relaxes top‐down control of grazers by fish and decreases primary producer biomass, but effects of warming are generally small compared to effects of browning and nutrient supply. Experimental results were consistent with most model predictions for browning: light penetration, benthic algal production, and zoobenthos biomass decreased, and pelagic nutrients and pelagic algal production increased with browning. Also consistent with expectations, warming had negative effects on benthic and pelagic algal biomass and weak effects on algal production and zoobenthos and zooplankton biomass. Inconsistent with expectations, browning had no effect on zooplankton and warming effects on fish depended on browning. The model is applicable also to nutrient‐rich systems, and we propose that it is a useful tool for the exploration of the consequences of different climate change scenarios for productivity and food web dynamics in shallow lakes, the worldwide most common lake type.  相似文献   

9.
A conceptual model of the main carbon and nitrogen flows through pelagic and benthic food webs was used to identify the key biogeochemical processes representing ecosystem functioning, and to select indicators of each of these processes. A combined fieldwork and modelling approach was used to provide the data required to evaluate the indicators in terms of their suitability for assessing and managing the impacts of climate change and demersal trawling. Four of our 16 proposed indicators (phytoplankton production and productivity, near-bed oxygen concentrations and oxygen penetration of the seabed) met the majority of criteria we used for evaluating indicators. Five indicators (depth of anoxic sediment, zoobenthos biomass, production, productivity and bioturbation potential) did not comply with sufficient criteria to be considered as good indicators. Six of our proposed indicators (zooplankton biomass, size structure, production and productivity; ecosystem productivity; ecosystem balance) could not be assessed for sensitivity and specificity using our models, and therefore need to be addressed in future work aimed at improving both the models and the fieldwork. Our results indicate that evaluation of indicators is difficult, because of the number and variety of human pressures which need to be considered in reality, and the interactions between these pressures and the ecosystem components which they affect. The challenge will be to establish if there are indeed any indicators which are able to meet the majority of criteria for good indicators in holistic ecosystem-based assessments.  相似文献   

10.
Using the Ecopath with Ecosim software, a trophic structure model of the Beibu Gulf was constructed to explore the energy flows and provide a snapshot of the ecosystem operations. Input data were mainly from the trawl survey data collected from October 1998 to September 1999 and related literatures. The impacts of various fishing pressure on the biomass were examined by simulation at different fishing mortality rates. The model consists of 20 functional groups (boxes), each representing organisms with a similar role in the food web, and only covers the major trophic flows in the Beibu Gulf ecosystem. It was found that the food web of the Beibu Gulf was dominated by the primary producers path, and phytoplankton was the primary producer mostly used as a food source. The fractional trophic levels ranged from 1.0 to 4.02, and the marine mammals occupied the highest trophic level. Using network analysis, the ecosystem network was mapped into a linear food chain, and six discrete trophic levels were found with a mean transfer efficiency of 11.2%. The Finn cycling index was 9.73%. The path length was 1.821. The omnivory index was 0.197. The ecosystem had some degree of instability due to exploitation and other human activities, according to Odum’s theory of ecosystem development. A 10-year simulation was performed for each fishery scenario. The fishing mortality rate was found to have a strong impact on the biomass. By keeping the fishing mortality rate at the current level for all fishing sectors, scenario 1 had a drastic decrease in the large fish groups. The biomass of the small and medium pelagic fish would increase to some extent. The biomass of the small and low trophic level species, jellyfish, prawns and benthic crustaceans would be stable. The total biomass of the fishery resources would have a 10% decrease from the current biomass after 10 years. In contrast, the reduced fishing mortality rate induced the recovery of biomass (scenarios 2–4). In scenario 2, the biomass of the large demersal fish and the large pelagic fish would increase to over 16 times and 10 times, respectively, of their current level. In scenario 4, the biomass of the large pelagic fish would increase to over 3 times of its current level. The total biomass of the fish groups, especially the high trophic level groups, would become significantly higher after 10 years, which illustrates the contribution on biomass recovery by relaxing the fishing pressure. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Author contributions: Xiaoping Jia designed research; Zuozhi Chen and Yongsong Qiu performed research; Zuozhi Chen, Yongsong Qiu, and Shannan Xu analyzed data; and Zuozhi Chen and Shannan Xu wrote the article.  相似文献   

11.
The interactions between physical disturbances and biogeochemical cycling are fundamental to ecology. The benthic microbial community controls the major pathway of nutrient recycling in most shallow-water ecosystems. This community is strongly influenced by physical forcing and nutrient inputs. Our study tests the hypotheses that benthic microbial communities respond to shelter and enrichment with (1) increased biomass, (2) change in community composition and (3) increased uptake of inorganic nutrients from the water column. Replicate in situ plots were sheltered from physical disturbance and enriched with inorganic nutrients or left without additional nutrients. At t(0) and after 10?days, sediment-water fluxes of nutrients, O(2) and N(2) , were measured, the community was characterized with biomarkers. Autochthonous benthic microalgal (BMA) biomass increased 30% with shelter and a natural fivefold increase in nutrient concentration; biomass did not increase with greater enrichment. Diatoms remained the dominant taxon of BMA, suggesting that the sediments were not N or Si limited. Bacteria and other heterotrophic organisms increased with enrichment and shelter. Daily exchanges of inorganic nutrients between sediments and the water column did not change in response to shelter or nutrient enrichment. In these sediments, physical disturbance, perhaps in conjunction with nutrient enrichment, was the primary determinant of microbial biomass.  相似文献   

12.
Oceanic uptake of anthropogenic carbon dioxide (CO2) is altering the carbonate chemistry of seawater, with potentially negative consequences for many calcifying marine organisms. At the same time, increasing fisheries exploitation is impacting on marine ecosystems. Here, using increased benthic‐invertebrate mortality as a proxy for effects of ocean acidification, the potential impact of the two stressors of fishing and acidification on the southeast Australian marine ecosystem to year 2050 was explored. The individual and interaction effects of the two stressors on biomass and diversity were examined for the entire ecosystem and for regional assemblages. For 61 functional groups or species, the cumulative effects of moderate ocean acidification and fishing were additive (30%), synergistic (33%), and antagonistic (37%). Strong ocean acidification resulted in additive (22%), synergistic (40%), and antagonistic (38%) effects. The greatest impact was on the demersal food web, with fishing impacting predation and acidification affecting benthic production. Areas that have been subject to intensive fishing were the most susceptible to acidification effect, although fishing also mitigated some of the decline in biodiversity observed with moderate acidification. The model suggested that ocean acidification and long‐term fisheries exploitation could act synergistically with the increasing sensitivity to change from long‐term (decades) fisheries exploitation potentially causing unexpected restructuring of the pelagic and demersal food webs. Major regime shifts occur around year 2040. Greater focus is needed on how differential fisheries exploitation of marine resources may exacerbate or accelerate effects of environmental changes such as ocean acidification.  相似文献   

13.
The Ecosystem Approach to Fisheries requires that managers take account of the environmental impacts of fishing. We develop linked state and pressure indicators that show the impact of bottom-trawling on benthic communities. The state indicator measures the proportion of an area where benthic invertebrate biomass (B) or production (P) is more than 90% of pristine benthic biomass (B 0.9) or production (P0.9). The pressure indicator measures the proportion of the area where trawling frequency is sufficiently high to prevent reaching predicted B0.9 or P0.9. Time to recovery to B0.9 and P0.9 after trawling, depending on the habitat, was estimated using a validated size-based model of the benthic community. Based on trawling intensity in 2003, 53.5% of the southern North Sea was trawled too frequently for biomass to reach B0.9, and 27.1% was trawled too frequently for production to reach P0.9. As a result of bottom-trawling in 2003, in 56% of the southern North Sea benthic biomass was below B0.9, whereas in 27% of the southern North Sea benthic production was below P0.9. Modeled recovery times were comparable to literature estimates (2.5 to more than 6 years). The advantages of using the area with an ecological impact of trawling as a pressure indicator are that it is conceptually easy to understand, it responds quickly to changes in management action, it can be implemented at a relevant scale for fisheries management, and the necessary effort distribution data are centrally collected. One of this approach’s greatest utilities, therefore, will be to communicate to policy makers and fishing enterprises the expected medium- to long-term ecological benefits that will accrue if the frequency of trawling in particular parts of fishing grounds is reduced.  相似文献   

14.
The ecological effect of prawn trawling on the benthos of the Gulf of Carpentaria, northern Australia, was investigated by examining stomach contents of common demersal fishes incidentally caught as by‐catch in the fishery. Fishes were collected from high and low fishing intensity sites in three regions based on vessel monitoring system data. The diets of eight species of benthic fish predators were compared between regions and fishing intensities. A regional effect on diet was evident for seven species. Only one generalist species had no significant difference in diet among the three regions. For the comparisons within each region, five predator species had significantly different diet between high and low fishing intensities in at least one region. Across the three regions, high fishing intensity sites had predators that consumed a greater biomass of crustaceans, molluscs and echinoderms. At low fishing intensity sites, predators had diets comprising a greater biomass of cnidarians and teleosts, and a different assemblage of molluscs, crustaceans and fishes. These changes in diet suggest that there may have been a shift in the structure of the benthic community following intensive fishing. Analysis of predator diets is a useful tool to help identify changes in the benthic community composition after exposure to fishing. This study also provided valuable diet information on a range of abundant generalist benthic predators to improve the ecosystem modelling tools needed to support ecosystem‐based fisheries management.  相似文献   

15.
We assessed the spatial variability in both, surface carbon dioxide (CO2) fluxes and in pelagic respiration rates in a newly created 600-km2 boreal reservoir, located in Northern Quebec. We show that total CO2 emission to the atmosphere was highest in the first year after flooding, and that surface fluxes were spatially heterogeneous. This spatial heterogeneity was not random, but was linked to the pre-flood landscapes: reservoir areas overlying former peatbogs and mature forests had the highest average emissions, whereas areas overlying former non-forest and burned soils had the lowest emissions. Total reservoir emissions appeared to decline exponentially in the next 2 years, and so did the degree of spatial heterogeneity in surface fluxes, suggesting a progressive weakening of the link to the pre-flood landscapes, and a homogenization of reservoir processes. We show that pelagic respiration rates were also initially high and spatially heterogeneous, the latter linked to the pre-flood landscapes. A simple, first-order mass balance for the first 3 years after flooding was used to derive potential benthic CO2 production rates, and thus to apportion the total reservoir emissions between its pelagic and benthic components. Extrapolation of the observed declines (normal exponential) in total emission, as well as of the underlying pelagic and benthic fluxes, results in a large underestimation of the fluxes for the fourth year, relative to the measured emissions. We postulate that the initial exponential decline in total emissions is driven primarily by the patterns of decomposition of surface plant biomass, whereas at later stages emission is increasingly dominated by sediment and pelagic respiration, which decline in time at a slower rate.  相似文献   

16.
捕捞对北部湾海洋生态系统的影响   总被引:12,自引:0,他引:12  
利用Ecopath with Ecosim (EwE) 5.1软件构建了北部湾海洋生态系统1959—1960年的Ecosim模型,包含渔业、海洋哺乳动物、海鸟、中上层鱼类、底层鱼类、底栖无脊椎动物等20个功能组,通过与1997—1999年调查数据对比,分析了捕捞活动对北部湾生态系统的结构和功能的影响.结果表明:近40年来在捕捞强度不断增加的压力下,生态系统的结构和功能发生显著变化,长寿命、高营养级的肉食性鱼类生物量下降明显,系统以短寿命、小型鱼类和无脊椎动物占优势.1999年的大中型鱼类的生物量仅为1960年的6%,而小型鱼类和无脊椎动物则明显上升,尤其是头足类生物量上升了2.7倍,渔获物的营养级则从1960年的3.2降低到1999年的298,体现了“捕捞降低海洋食物网”的特点,目前的开发模式是不可持续的.利用20世纪90年代数据预测了降低捕捞压力后生态系统的变化.本研究证实了可以使用Ecosim模型预测捕捞压力对生态系统的影响.  相似文献   

17.
Stable isotopes (δ13C and δ15N) were used to examine the origin of organic matter for the most representative demersal species of the SW Icelandic fishery, accounting for over 70% of landings of those species in the North Atlantic. Samples were collected during a 2-week period in early September 2004 from landings and directly during fishing cruises. Stable isotopes showed that particulate organic matter and sedimentary organic matter were at the base of the food web and appeared to fill two different compartments: the pelagic and the benthic. The pelagic realm was composed of only capelin and sandeel; krill and redfish occupied an intermediate position between pelagic and benthic realms; while anglerfish, haddock, cod and ling resulted as the true demersal species while tusk, rays and plaice were strongly linked to the benthic habitat.  相似文献   

18.
Deep‐water benthic communities in the ocean are almost wholly dependent on near‐surface pelagic ecosystems for their supply of energy and material resources. Primary production in sunlit surface waters is channelled through complex food webs that extensively recycle organic material, but lose a fraction as particulate organic carbon (POC) that sinks into the ocean interior. This exported production is further rarefied by microbial breakdown in the abyssal ocean, but a residual ultimately drives diverse assemblages of seafloor heterotrophs. Advances have led to an understanding of the importance of size (body mass) in structuring these communities. Here we force a size‐resolved benthic biomass model, BORIS, using seafloor POC flux from a coupled ocean‐biogeochemistry model, NEMO‐MEDUSA, to investigate global patterns in benthic biomass. BORIS resolves 16 size classes of metazoans, successively doubling in mass from approximately 1 μg to 28 mg. Simulations find a wide range of seasonal responses to differing patterns of POC forcing, with both a decline in seasonal variability, and an increase in peak lag times with increasing body size. However, the dominant factor for modelled benthic communities is the integrated magnitude of POC reaching the seafloor rather than its seasonal pattern. Scenarios of POC forcing under climate change and ocean acidification are then applied to investigate how benthic communities may change under different future conditions. Against a backdrop of falling surface primary production (?6.1%), and driven by changes in pelagic remineralization with depth, results show that while benthic communities in shallow seas generally show higher biomass in a warmed world (+3.2%), deep‐sea communities experience a substantial decline (?32%) under a high greenhouse gas emissions scenario. Our results underscore the importance for benthic ecology of reducing uncertainty in the magnitude and seasonality of seafloor POC fluxes, as well as the importance of studying a broader range of seafloor environments for future model development.  相似文献   

19.
The degree to which marine ecosystems may support the pelagic or benthic food chain has been shown to vary across natural and anthropogenic gradients for e.g., in temperature and nutrient availability. Moreover, such external forcing may not only affect the flux of organic matter but could trigger large and abrupt changes, i.e., trophic cascades and ecological regime shifts, which once having occurred may prove potentially irreversible. In this study, we investigate the state and regulatory pathways of the Kattegat; a eutrophied and heavily exploited marine ecosystem, specifically testing for the occurrence of regime shifts and the relative importance of multiple drivers, e.g., climate change, eutrophication and commercial fishing on ecosystem dynamics and trophic pathways. Using multivariate statistics and nonlinear regression on a comprehensive data set, covering abiotic factors and biotic variables across all trophic levels, we here propose a potential regime shift from pelagic to benthic regulatory pathways; a possible first sign of recovery from eutrophication likely triggered by drastic nutrient reductions (involving both nitrogen and phosphorus), in combination with climate‐driven changes in local environmental conditions (e.g., temperature and oxygen concentrations).  相似文献   

20.
How have North Sea skate and shark assemblages changed since the early 20th century when bottom trawling became widespread, whilst their environment became increasingly impacted by fishing, climate change, habitat degradation and other anthropogenic pressures? This article examines long‐term changes in the distribution and occurrence of the elasmobranch assemblage of the southern North Sea, based on extensive historical time series (1902–2013) of fishery‐independent survey data. In general, larger species (thornback ray, tope, spurdog) exhibited long‐term declines, and the largest (common skate complex) became locally extirpated (as did angelshark). Smaller species increased (spotted and starry ray, lesser‐spotted dogfish) as did smooth‐hound, likely benefiting from greater resilience to fishing and/or climate change. This indicates a fundamental shift from historical dominance of larger, commercially valuable species to current prevalence of smaller, more productive species often of low commercial value. In recent years, however, some trends have reversed, with the (cold‐water associated) starry ray now declining and thornback ray increasing. This shift may be attributed to (i) fishing, including mechanised beam trawling introduced in the 1960s–1970s, and historical target fisheries for elasmobranchs; (ii) climate change, currently favouring warm‐water above cold‐water species; and (iii) habitat loss, including potential degradation of coastal and outer estuarine nursery habitats. The same anthropogenic pressures, here documented to have impacted North Sea elasmobranchs over the past century, are likewise impacting shelf seas worldwide and may increase in the future; therefore, parallel changes in elasmobranch communities in other regions are to be expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号