首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
ped/pea-15 is a ubiquitously expressed 15-kDa protein featuring a broad anti-apoptotic function. In a yeast two-hybrid screen, the pro-apoptotic Omi/HtrA2 mitochondrial serine protease was identified as a specific interactor of the ped/pea-15 death effector domain. Omi/HtrA2 also bound recombinant ped/pea-15 in vitro and co-precipitated with ped/pea-15 in 293 and HeLa cell extracts. In these cells, the binding of Omi/HtrA2 to ped/pea-15 was induced by UVC exposure and followed the mitochondrial release of Omi/HtrA2 into the cytoplasm. Upon UVC exposure, cellular ped/pea-15 protein expression levels decreased. This effect was prevented by the ucf-101 specific inhibitor of the Omi/HtrA2 proteolytic activity, in a dose-dependent fashion. In vitro incubation of ped/pea-15 with Omi/HtrA2 resulted in ped/pea-15 degradation. In intact cells, the inhibitory action of ped/pea-15 on UVC-induced apoptosis progressively declined at increasing Omi/HtrA2 expression. This further effect of Omi/HtrA2 was also inhibited by ucf-101. In addition, ped/pea-15 expression blocked Omi/HtrA2 co-precipitation with the caspase inhibitor protein XIAP and caspase 3 activation. Thus, in part, apoptosis following Omi/HtrA2 mitochondrial release is mediated by reduction in ped/pea-15 cellular levels. The ability of Omi/HtrA2 to relieve XIAP inhibition on caspases is modulated by the relative levels of Omi/HtrA2 and ped/pea-15.  相似文献   

3.
Rami A  Kim M  Niquet J 《Neurochemical research》2010,35(12):2199-2207
Omi/HtrA2 is a pro-apoptotic mitochondrial serine protease involved in caspase-dependent as well as caspase-independent cell death upon various brain injuries. However, the role of Omi/HtrA2 in neuronal death induced by status epilepticus (SE) in the immature brain has not been reported. In this study, we analyzed the contribution of serine protease Omi/HtrA2, its substrate X-linked inhibitor of apoptosis protein (XIAP) and the caspase-3 activation to damage of hippocamplal CA1 cells following lithium-pilocarpine SE in P14 rat pups. Status epilepticus in the immature brain significantly induced translocation of Omi/HtrA2 from mitochondria into the cytosol, increased cytosolic accumulation of Omi/HtrA2, induced appearance of XIAP-breakdown products and enhanced caspase-3 activity in the selectively vulnerable hippocampal CA1-subfield. Taken together, these results demonstrate for the first time that SE in the immature brain results in Omi/HtrA2 accumulation in the cytosol, where it probably promotes neuronal death by neutralizing and cleaving XIAP, one of the most potent endogenous inhibitors of apoptosis.  相似文献   

4.
5.
Omi/HtrA2 is a mitochondrial serine protease that is released into the cytosol during apoptosis and promotes cytochrome c (Cyt c)dependent caspase activation by neutralizing inhibitor of apoptosis proteins (IAPs) via its IAP-binding motif. The protease activity of Omi/HtrA2 also contributes to the progression of both apoptosis and caspase-independent cell death. In this study, we found that wild-type Omi/HtrA2 is more effective at caspase activation than a catalytically inactive mutant of Omi/HtrA2 in response to apoptotic stimuli, such as UV irradiation or tumor necrosis factor. Although similar levels of Omi/HtrA2 expression, XIAP-binding activity, and Omi/HtrA2 mitochondrial release were observed among cells transfected with catalytically inactive and wild-type Omi/HtrA2 protein, XIAP protein expression after UV irradiation was significantly reduced in cells transfected with wild-type Omi/HtrA2. Recombinant Omi/HtrA2 was observed to catalytically cleave IAPs and to inactivate XIAP in vitro, suggesting that the protease activity of Omi/HtrA2 might be responsible for its IAP-inhibiting activity. Extramitochondrial expression of Omi/HtrA2 indirectly induced permeabilization of the outer mitochondrial membrane and subsequent Cyt c-dependent caspase activation in HeLa cells. These results indicate that protease activity of Omi/HtrA2 promotes caspase activation through multiple pathways.  相似文献   

6.
Abstract: Histamine is a known chromaffin cell secretagogue that induces Ca2+-dependent release of catecholamines. However, conflicting evidence exists as to the source of Ca2+ utilized in histamine-evoked secretion. Here we report that histamine-H1 receptor activation induces redistribution of scinderin, a Ca2+-dependent F-actin severing protein, cortical F-actin disassembly, and catecholamine release. Histamine evoked similar patterns of distribution of scinderin and filamentous actin. The rapid responses to histamine occurred in the absence of extracellular Ca2+ and were triggered by release of Ca2+ from intracellular stores. The trigger for the release of Ca2+ was inositol 1,4,5-trisphosphate because U-73122, a phospholipase C inhibitor, but not its inactive isomer (U-73343), inhibited the increases in IP3 and intracellular Ca2+ levels, scinderin redistribution, cortical F-actin disassembly, and catecholamine release in response to histamine. Thapsigargin, an agent known to mobilize intracellular Ca2+, blocked the rise in intracellular Ca2+ concentration, scinderin redistribution, F-actin disassembly, and catecholamine secretion in response to histamine. Calphostin C and chelerythrine, two inhibitors of protein kinase C, blocked all responses to histamine with the exception of the release of Ca2+ from intracellular stores. This suggests that protein kinase C is involved in histamine-induced responses. The results also show that in the absence of F-actin disassembly, rises in intracellular Ca2+ concentration are not by themselves capable of triggering catecholamine release.  相似文献   

7.
Protein kinases in plants have not been examined in detail, but protein phosphorylation has been shown to be essential for regulating plant growth via the signal transduction system. A Ca2+- and phospholipid-dependent protein kinase, possibly involved in the intracellular signal transduction system from rice leaves, was partially purified by sequential chromatography on DE52, Phenyl Superose and Superose 12. This protein kinase phosphorylated the substrate, histone III-S, in the presence of Ca2+ and phosphatidylserine. The apparent molecular mass of the Ca2+- and phosphatidylserine-dependent protein kinase (Ca2+/PS PK), determined by phosphorylation in SDS-polyacrylamide gel containing histone III-S, was 50 kDa. The protein kinase differed from Ca2+-dependent protein kinase (CDPK) in rice leaves in that Ca2+/PS PK showed phospholipid dependency and the molecular mass of Ca2+/PS PK exceeded that of CDPK. Investigations were carried out on changes in Ca2+/PS PK and CDPK activity in the cytosolic and membrane fractions during germination. The maximum activity of Ca2+/PS PK in the cytosolic fraction was observed before imbibition and that of CDPK in the membrane fraction was noted at 6 days following imbibition. Protein kinases are likely to regulate plant growth through protein phosphorylation.  相似文献   

8.
In a search for sweet taste receptor interacting proteins, we have identified the calcium- and integrin-binding protein 1 (CIB1) as specific binding partner of the intracellular carboxyterminal domain of the rat sweet taste receptor subunit Tas1r2. In heterologous human embryonic kidney 293 (HEK293) cells, the G protein chimeras Gα16gust44 and Gα15i3 link the sweet taste receptor dimer TAS1R2/TAS1R3 to an inositol 1,4,5-trisphosphate (InsP3)-dependent Ca2+ release pathway. To demonstrate the influence of CIB1 on the cytosolic Ca2+ concentration, we used sweet and umami compounds as well as other InsP3-generating ligands in FURA-2-based Ca2+ assays in wild-type HEK293 cells and HEK293 cells expressing functional human sweet and umami taste receptor dimers. Stable and transient depletion of CIB1 by short-hairpin RNA increased the Ca2+ response of HEK293 cells to the InsP3-generating ligands ATP, UTP and carbachol. Over-expression of CIB1 had the opposite effect as shown for the sweet ligand saccharin, the umami receptor ligand monosodium glutamate and UTP. The CIB1 effect was dependent on the thapsigargin-sensitive Ca2+ store of the endoplasmic reticulum (ER) and independent of extracellular Ca2+. The function of CIB1 on InsP3-evoked Ca2+ release from the ER is most likely mediated by its interaction with the InsP3 receptor. Thus, CIB1 seems to be an inhibitor of InsP3-dependent Ca2+ release in vivo .  相似文献   

9.
Rod and cone cells of the mammalian retina harbor two types of a membrane bound guanylate cyclase (GC), rod outer segment guanylate cyclase type 1 (ROS-GC1) and ROS-GC2. Both enzymes are regulated by small Ca2+-binding proteins named GC-activating proteins that operate as Ca2+ sensors and enable cyclases to respond to changes of intracellular Ca2+after illumination. We determined the expression level of ROS-GC2 in bovine ROS preparations and compared it with the level of ROS-GC1 in ROSs. The molar ratio of a ROS-GC2 dimer to rhodopsin was 1 : 13 200. The amount of ROS-GC1 was 25-fold higher than the amount of ROS-GC2. Heterologously expressed ROS-GC2 was differentially activated by GC-activating protein 1 and 2 at low free Ca2+ concentrations. Mutants of GC-activating protein 2 modulated ROS-GC2 in a manner different from their action on ROS-GC1 indicating that the Ca2+ sensitivity of the Ca2+ sensor is controlled by the mode of target–sensor interaction.  相似文献   

10.
Omi/HtrA2 is a pro-apoptotic mitochondrial serine protease involved in both forms of apoptosis, caspase-dependent as well as caspase-independent cell death. However, the impact of Omi/HtrA2 in the apoptotic cell machinery that takes place in vivo under pathological conditions such as cerebral ischemia remains unknown. The present study was monitored in order to examine whether Omi/HtrA2 plays a decisive role in apoptosis observed after focal cerebral ischemia in rats. Male adult rats were subjected to 90min of focal cerebral ischemia followed by reperfusion and treated with vehicle or ucf-101, a novel and specific Omi/HtrA2 inhibitor, prior reperfusion. Focal cerebral ischemia/reperfusion induced a mitochondrial up-regulation of Omi/HtrA2 and significantly increased cytosolic accumulation of Omi/HtrA2. Furthermore, ischemia led to activation of caspase-3 and degradation X-linked inhibitor of apoptosis protein (XIAP). Treatment of animals prior ischemia with ucf-101, the specific inhibitor of Omi/HtrA2, was able to (1) reduce the number of TUNEL-positive cells, to (2) attenuate the XIAP-breakdown and to (3) reduce the infarct size. This study shows for the first time that focal cerebral ischemia in rats results in Omi/HtrA2 translocation from the mitochondria to the cytosol, where it participates in neuronal cell death. Blocking the proteolytic activity of Omi/HtrA2 with specific inhibitors, such as the ucf-101, could be a novel way to afford neuroprotection and minimize cellular damage in cerebral ischemia/reperfusion.  相似文献   

11.
The synaptic vesicle accumulation and subsequent morphological remodeling of axon terminals are characteristic features of presynaptic differentiation of zebrafish olfactory sensory neurons. The synaptic vesicle accumulation and axon terminal remodeling are regulated by protein kinase A and calcineurin signaling, respectively. To investigate upstream signals of presynaptic differentiation, we focused on Ca2+ signaling as Ca2+/calmodulin is required for the activation of both calcineurin and some adenylyl cyclases. We here showed that application of Ca2+/calmodulin inhibitor or olfactory sensory neuron-specific expression of calmodulin inhibitory peptide suppressed both synaptic vesicle accumulation and axon terminal remodeling. Thus, the trigger of presynaptic differentiation could be Ca2+ release from intracellular stores or Ca2+ influx. Application of a phospholipase C inhibitor or olfactory sensory neuron-specific expression of inositol 1,4,5-trisphosphate (IP3) 5-phosphatase suppressed synaptic vesicle accumulation, but not morphological remodeling. In contrast, application of a voltage-gated Ca2+ channel blocker or expression of Kir2.1 inward rectifying potassium channel prevented the morphological remodeling. We also provided evidence that IP3 signaling acted upstream of protein kinase A signaling. Our results suggest that IP3-mediated Ca2+/calmodulin signaling stimulates synaptic vesicle accumulation and subsequent neuronal activity-dependent Ca2+/calmodulin signaling induces the morphological remodeling of axon terminals.  相似文献   

12.
Treatment with the anti-leukemic drug arsenic trioxide (As(2)O(3), 1-4 microM) sensitizes U937 promonocytes and other human myeloid leukemia cell lines (HL60, NB4) to apoptosis induction by TNFalpha. As(2)O(3) plus TNFalpha increases TNF receptor type 1 (TNF-R1) expression, decreases c-FLIP(L) expression, and causes caspase-8 and Bid activation, and apoptosis is reduced by anti-TNF-R1 neutralizing antibody and caspase-8 inhibitor. The treatment also causes Bax translocation to mitochondria, cytochrome c and Omi/HtrA2 release from mitochondria, XIAP down-regulation, and caspase-9 and caspase-3 activation. Bcl-2 over-expression inhibits cytochrome c release and apoptosis, and also prevents c-FLIP(L) down-regulation and caspase-8 activation, but not TNF-R1 over-expression. As(2)O(3) does not affect Akt phosphorylation/activation or intracellular GSH content, nor prevents the TNFalpha-provoked stimulation of p65-NF-kappaB translocation to the nucleus and the increase in NF-kappaB binding activity. Treatments with TNFalpha alone or with As(2)O(3) plus TNFalpha cause TNF-R1-mediated p38-MAPK phosphorylation/activation. P38-MAPK-specific inhibitors attenuate the As(2)O(3) plus TNFalpha-provoked activation of caspase-8/Bid, Bax translocation, cytochrome c release, and apoptosis induction. In conclusion, the sensitization by As(2)O(3) to TNFalpha-induced apoptosis in promonocytic leukemia cells is an Akt/NF-kappaB-independent, p38-MAPK-regulated process, which involves the interplay of both the receptor-mediated and mitochondrial executioner pathways.  相似文献   

13.
Ca2+ influx through NMDA-type glutamate receptor at excitatory synapses causes activation of post-synaptic Ca2+/calmodulin-dependent protein kinase type II (CaMKII) and its translocation to the NR2B subunit of NMDA receptor. The major binding site for CaMKII on NR2B undergoes phosphorylation at Ser1303, in vivo . Even though some regulatory effects of this phosphorylation are known, the mode of dephosphorylation of NR2B-Ser1303 is still unclear. We show that phosphorylation status at Ser1303 enables NR2B to distinguish between the Ca2+/calmodulin activated form and the autonomously active Thr286-autophosphorylated form of CaMKII. Green fluorescent protein–α-CaMKII co-expressed with NR2B sequence in human embryonic kidney 293 cells was used to study intracellular binding between the two proteins. Binding in vitro was studied by glutathione- S -transferase pull-down assay. Thr286-autophosphorylated α-CaMKII or the autophosphorylation mimicking mutant, T286D-α-CaMKII, binds NR2B sequence independent of Ca2+/calmodulin unlike native wild-type α-CaMKII. We show enhancement of this binding by Ca2+/calmodulin. Phosphorylation or a phosphorylation mimicking mutation on NR2B (NR2B-S1303D) abolishes the Ca2+/calmodulin-independent binding whereas it allows the Ca2+/calmodulin-dependent binding of α-CaMKII in vitro . Similarly, the autonomously active mutants, T286D-α-CaMKII and F293E/N294D-α-CaMKII, exhibited Ca2+-independent binding to non-phosphorylatable mutant of NR2B under intracellular conditions. We also show for the first time that phosphatases in the brain such as protein phosphatase 1 and protein phosphatase 2A dephosphorylate phospho-Ser1303 on NR2B.  相似文献   

14.
The mature serine protease Omi/HtrA2 is released from the mitochondria into the cytosol during apoptosis. Suppression of Omi/HtrA2 by RNA interference in human cell lines reduces cell death in response to TRAIL and etoposide. In contrast, ectopic expression of mature wildtype Omi/HtrA2, but not an active site mutant, induces potent caspase activation and apoptosis. In vitro assays demonstrated that Omi/HtrA2 could degrade inhibitor of apoptosis proteins (IAPs). Consistent with this observation, increased expression of Omi/HtrA2 in cells increases degradation of XIAP, while suppression of Omi/HtrA2 by RNA interference has an opposite effect. Combined, our data demonstrate that IAPs are substrates for Omi/HtrA2, and their degradation could be a mechanism by which the mitochondrially released Omi/HtrA2 activates caspases during apoptosis.  相似文献   

15.
We show here that, within 1–2 min of application, systemin triggers a transient increase of cytoplasmic free calcium concentration ([Ca2+]c) in cells from Lycopersicon esculentum mesophyll. The systemin-induced Ca2+ increase was slightly but not significantly reduced by L-type Ca2+ channel blockers (nifedipine, verapamil and diltiazem) and the Ca2+ chelator [ethylene glycol tetraacetic acid (EGTA)], whereas inorganic Ca2+ channel blockers (LaCl3, CdCl2 and GdCl3) and compounds affecting the release of intracellular Ca2+ from the vacuole (ruthenium red, LiCl, neomycin) strongly reduced the systemin-induced [Ca2+]c increase. By contrast, no inhibitory effect was seen with the potassium and chloride channel blockers tested. Unlike systemin, other inducers of proteinase inhibitor (PI) and of wound-induced protein synthesis, such as jasmonic acid (JA) and bestatin, did not trigger an increase of cytoplasmic Ca2+. The systemin-induced elevation of cytoplasmic Ca2+ which might be an early step in the systemin signalling pathway, appears to involve an influx of extracellular Ca2+ simultaneously through several types of Ca2+ permeable channels, and a release of Ca2+ from intracellular stores sensitive to blockers of inositol 1,4,5-triphosphate (IP3)- and cyclic adenasine 5'-diphosphoribose (cADPR)-mediated Ca2+ release.  相似文献   

16.
The inhibitor-of-apoptosis proteins (IAPs) play a critical role in the regulation of apoptosis by binding and inhibiting caspases. Reaper family proteins and Smac/DIABLO use a conserved amino-terminal sequence to bind to IAPs in flies and mammals, respectively, blocking their ability to inhibit caspases and thus promoting apoptosis. Here we have identified the serine protease Omi/HtrA2 as a second mammalian XIAP-binding protein with a Reaper-like motif. This protease autoprocesses to form a protein with amino-terminal homology to Smac/DIABLO and Reaper family proteins. Full-length Omi/HtrA2 is localized to mitochondria but fails to interact with XIAP. Mitochondria also contain processed Omi/HtrA2, which, following apoptotic insult, translocates to the cytosol, where it interacts with XIAP. Overexpression of Omi/HtrA2 sensitizes cells to apoptosis, and its removal by RNA interference reduces cell death. Omi/HtrA2 thus extends the set of mammalian proteins with Reaper-like function that are released from the mitochondria during apoptosis.  相似文献   

17.
The endoplasmic reticulum (ER) is a universal signalling organelle, which regulates a wide range of neuronal functional responses. Calcium release from the ER underlies various forms of intracellular Ca2+ signalling by either amplifying Ca2+ entry through voltage-gated Ca2+ channels by Ca2+-induced Ca2+ release (CICR) or by producing local or global cytosolic calcium fluctuations following stimulation of metabotropic receptors through inositol-1,4,5-trisphosphate-induced Ca2+ release (IICR). The ER Ca2+ store emerges as a single interconnected pool, thus allowing for a long-range Ca2+ signalling via intra-ER tunnels. The fluctuations of intra-ER free Ca2+ concentration regulate the activity of numerous ER resident proteins responsible for post-translational protein folding and modification. Disruption of ER Ca2+ homeostasis results in the developing of ER stress response, which in turn controls neuronal survival. Altered ER Ca2+ handling may be involved in pathogenesis of various, neurodegenerative diseases including brain ischemia and Alzheimer dementia.  相似文献   

18.
Abstract: Upon addition of the cardiac glycoside ouabain to cultured cerebellar granule cells, an immediate increase in intracellular free sodium is evoked mediated by two pathways, a voltage-sensitive channel blocked by tetrodotoxin and a channel sensitive to flunarizine. Ouabain induces a steady plasma membrane depolarization in low Ca2+ medium; whereas in the presence of Ca2+, a distinct discontinuity is observed always preceded by a large increase in intracellular free Ca2+ ([Ca2+]c). The plateau component of the increase can be inhibited additively by the L-type Ca2+ channel antagonist nifedipine, the spider toxin Aga-Gl, and the NMDA receptor antagonist MK-801. Single-cell imaging reveals that the [Ca2+]c increase occurs asynchronously in the cell population and is not dependent on a critical level of extracellular glutamate or synaptic transmission between the cells. A prolonged release of glutamate is also observed that is predominantly Ca2+ dependent for the first 6–10 min after the evoked increase in [Ca2+]c. This release is four times as large as that observed with 50 m M KCl and is predominantly exocytotic because release was inhibited by tetanus toxin, the V-type ATPase inhibitor bafilomycin, and Aga-Gl. It is proposed, therefore, that ouabain induces a period of membrane excitability culminating in a sustained exocytosis above that observed upon permanent depolarization with KCl.  相似文献   

19.
Abstract: The transduction pathways coupling muscarinic receptors to induction of fos and jun genes were investigated in neuroblastoma SH-SY5Y cells. Stimulation with carbachol induced expression of c- fos , fosB , c- jun , junB , and junD . This effect was abolished by pretreatment with atropine, indicating an involvement of muscarinic receptors. These genes were also induced by activation of protein kinase C with phorbol ester or by elevating the intracellular Ca2+ concentration with a Ca2+ ionophore. The Ca2+ effect was inhibited by KN-62, suggesting an induction through Ca2+/calmodulin-dependent kinase II. Inhibition of protein kinase C with GF109203X suppressed the carbachol-stimulated increase in mRNA levels of c- fos , fosB , and junB by ∼70% but had only minor effects on the expression of c- jun and junD . On the other hand, preincubation with KN-62 attenuated the carbachol-induced increase in c- jun and junD expression by 70% but had no effect on c- fos , fosB , and junB mRNA levels. Simultaneous inhibition of both protein kinase C and Ca2+/calmodulin-dependent kinase II completely abolished the carbachol-stimulated expression of c- jun and junD , but c- fos , fosB , and junB were still expressed to a certain extent under this condition. Comparison of the inhibitory effects of GF109203X and Gö 6976 suggests the involvement of classical protein kinase C isozymes in muscarinic receptor-stimulated expression of fos and jun genes. These results demonstrate that the muscarinic receptor-induced expression of individual fos and jun genes is regulated via different pathways, primarily protein kinase C or Ca2+/calmodulin-dependent kinase II.  相似文献   

20.
Abstract: The metabotropic glutamate receptor mGluR5, but not the closely related mGluR1, is expressed in cultured astrocytes, and this expression is up-regulated by specific growth factors. We investigated the capability and underlying mechanisms of mGluR5 to induce oscillatory responses of intracellular calcium concentration ([Ca2+]i) in cultured rat astrocytes. Single-cell [Ca2+]i recordings indicated that an mGluR-selective agonist, (1 S ,3 R )-1-aminocyclopentane-1,3-dicarboxylate (1 S ,3 R -ACPD), elicits [Ca2+]i oscillations in good agreement with the growth factor-induced up-regulation of mGluR5 in cultured astrocytes. A protein kinase C (PKC) inhibitor, bisindolylmaleimide I, converted a 1 S ,3 R -ACPD-mediated oscillatory response into a nonoscillatory response. In addition, the PKC activator phorbol 12-myristate 13-acetate completely abolished the [Ca2+]i increase. These and other pharmacological properties of 1 S ,3 R -ACPD-induced [Ca2+]i oscillations correlate well with those of the cloned mGluR5 characterized in heterologous expression systems. Furthermore, the potential involvement of protein phosphatases in [Ca2+]i oscillations is suggested. The present study demonstrates that mGluR5 is capable of inducing [Ca2+]i oscillations in cultured astrocytes and that phosphorylation/dephosphorylation of mGluR5 is critical in [Ca2+]i oscillations, analogous to the cloned mGluR5 expressed in heterologous cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号