首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
AIMS: To assess the intraspecific genetic diversity of lactococci and enterococci isolated from 24-h, 1- and 2-month-old home-made Pecorino Sardo ewes' milk cheese. METHODS AND RESULTS: Two molecular techniques, plasmid profiling and pulsed-field gel electrophoresis, were used in order to type the isolates at strain level. The present study revealed that the lactococcal and enterococcal microbial populations of home-made Pecorino Sardo cheese were complex, not only 24 h after manufacture, but also after 1 and 2 months of ripening. The genetic diversity at subspecies level ranged from 58 to 80% during the three periods examined. The study also showed that the strains that dominated in the first stage of ripening were not necessarily predominant in the later periods. A high number of strains isolated at 24 h were still present in the mature cheese, but many of the genotypes were only found in the cheese after 1 or 2 months. CONCLUSIONS: The results showed a high intraspecific genetic diversity in the natural microbial population colonizing home-made Pecorino Sardo cheese. Two molecular techniques are necessary for a thorough and precise typing at strain level in order to better distinguish between closely related isolates and between isolates that probably belong to the same clonal lineage. SIGNIFICANCE AND IMPACT OF THE STUDY: The genetic complexity observed in the present study is of particular relevance in the preservation of the natural microflora of traditional Protected Designation of Origin raw milk cheeses, as well as in the selection of new starter strains for the dairy industry.  相似文献   

2.
A total of 23 strains of Lactobacillus helveticus isolated from natural whey starter cultures for Italian hard cheeses and three reference strains were characterized by plasmid profiling, ribotyping and random amplified polymorphic DNA (RAPD) fingerprinting. The data showed an interesting strain heterogeneity in natural cheese starters, that seemed not only strain-dependent, but also related to the source of isolates. Nineteen of the strains tested harboured extrachromosomal elements, whilst 11 different plasmid profiles were detected. Ribotyping with a variety of restriction enzymes differentiated 11 strains and in a few cases, RAPD fingerprinting allowed differentiation amongst strains that were not distinguished by the other two techniques.  相似文献   

3.
Diversity among lactococci isolated from ewes' raw milk and cheese   总被引:1,自引:0,他引:1  
P. GAYA, M. BABÍN, M. MEDINA and M. NUÑEZ.1999.The technological and genetic characteristics of lactococci present in ewes' raw milk and 1-d-old ewes' raw milk cheeses sampled over a 1-year period were investigated. The proportion of lactic acid bacteria isolates from milk samples able to decrease milk pH by more than 1·25 units after 6 h incubation at 30 °C reached 14·5% in spring vs 10·7% in summer, 8·3% in autumn and 3·0% in winter. In 1-d-old cheese samples, the proportion of lactic acid bacteria able to lower milk pH by more than 1·25 units increased up to 32·3% in spring vs 23·4% in summer, 8·0% in autumn and 10·3% in winter. Fast acid-producing lactic acid bacteria mainly belonged to the genus Lactococcus . Using polymerase chain reaction protocols, fast acid-producing lactococci were grouped as 61  Lactococcus lactis subsp. lactis , 13  L. lactis subsp. cremoris and 14  L. lactis subsp. lactis biovar diacetylactis. Randomly amplified polymorphic DNA (RAPD) fingerprinting of fast acid-producing lactococci, using two primers, resulted in 21 different RAPD patterns for L. lactis subsp. lactis isolates, nine RAPD patterns for L. lactis subsp. cremoris isolates and three RAPD patterns for L. lactis subsp. lactis biovar diacetylactis isolates. Up to 19 different RAPD patterns were found for L. lactis isolates from cheeses made in a particular month.  相似文献   

4.
AIMS: Forty strains of Streptococcus thermophilus isolated from dairy products were identified and typed by a polyphasic approach which included phenotypic and genotypic criteria. METHODS AND RESULTS: Strains were identified by sugar fermentation pattern and species-specific PCR. Phenotypic diversity was evaluated by a chemometric model taking into account some biochemical characteristics (e.g. acidifying and peptidase activities) of technological interest. Genotypic diversity was evidenced by PCR fingerprinting. The overall phenotypic and genotypic information was elaborated on a multivariate statistical basis by principal components analysis and cluster analysis, respectively. When acidifying and peptidase activities were considered, PCA indicated that most of the strains isolated from Pecorino Toscano cheese were separable from the others. Similarly, most of the starter culture strains tended to separate from the cheese isolates. CONCLUSIONS: A wide strain heterogeneity among Strep. thermophilus strains isolated from dairy products was observed. SIGNIFICANCE AND IMPACT OF THE STUDY: A computerized analysis of genotypic and phenotypic information could be applied successfully to differentiate and characterize reliably and rapidly isolates occurring in different dairy products and to comprehend the technological role of specific Strep. thermophilus strains in dairy technology.  相似文献   

5.
6.
AIM: To characterize the genetic and phenotypic diversity of 33 strains of Lactobacillus rossiae. METHODS AND RESULTS: Genotypic identification was carried out by partial 16S rRNA gene sequence analysis. Genetic diversity was evaluated by RAPD-PCR analysis. Phenotypic diversity was evaluated through fermentative profile by Biolog system, proteinase and peptidase activities using synthetic substrates, and acidification capacity and amino acid profile during sourdough fermentation. The genetic analyses excluded clonal relatedness among the strains used. A large phenotypic diversity was found. It mainly concerned the capacity to use carbon sources available in sourdough during fermentation, the quotient of fermentation and the peptidase activities, especially towards proline containing synthetic substrates. The free amino acid profiles differed either for the total concentration or for the type of amino acids. With a few exceptions, proteinase activity towards wheat albumins and globulins was weak. CONCLUSIONS: Overall, no relationships between genetic and physiological analyses were found, and the strains examined showed a marked genetic and phenotypic heterogeneity. L. rossiae strains had interesting properties for application in sourdough fermentation. Although some strains combined several technological traits, the association of more strains seemed to be a requisite to get optimal sourdough characteristics. SIGNIFICANCE AND IMPACT OF THE STUDY: It represents the first characterization of the diversity within the L. rossiae species. Besides, it may represent an example of computerized analysis of genotypic and phenotypic information to select strains for improving sourdough characteristics.  相似文献   

7.
Four Gram-negative bacterial strains, recovered from clay soils cultivated with different crops in the Netherland, were subjected to a polyphasic taxonomic study in order to clarify their taxonomic status. Comparative analysis of the 16S rRNA gene sequences revealed that they belong to the genus Lysobacter and to be highly related to the type strains of L. antibioticus DSM 2044T, L. gummosus DSM 6980T, and L. capsici DSM 19286T, displaying 99.1–99.3%, 99.2–99.6% and 99.4–100% sequence similarities, respectively, to these species. The results of DNA–DNA hybridization studies unambigiously indicated that the four strains belonged to the species L. capsici. Nevertheless, DNA fingerprinting and phenotypic characterization indicated that there was a considerable diversification and niche differentiation among the strains belonging to L. capsici. The newly identified L. capsici strains strongly inhibit Rhizoctonia solani AG2 and originate from Rhizoctonia-suppressive soils where also populations of L. antibioticus and L. gummosus were present. This is the first report of the presence of combined populations of closely related Lysobacter spp. within agricultural soils.  相似文献   

8.
AIMS: To evaluate some physiological characteristics of the Enterobacteriaceae isolated from Pecorino cheese. METHODS AND RESULTS: The production of organic acids, secondary volatile compounds, biogenic amines (BA) and the lipolytic and proteolytic activities of Citrobacter braakii, Enterobacter sakazakii, Escherichia coli, Kluyvera spp., Salmonella enterica ssp. arizonae and Serratia odorifera strains were determined in skim milk after 48 h of fermentation at 30 degrees C. The proteolytic activity observed only in Ser. odorifera and Kluyvera spp. was confirmed by the peptide profiles of the pH 4.6-insoluble fraction using RP-HPLC; however, the lipase activity was evidenced in all the isolates of E. coli, Kluyvera spp. and Salm. enterica ssp. arizonae. During fermentation, all the strains utilized citric acid and produced significant quantities of putrescine followed by histamine, spermine and spermidine as well as acetic and lactic acid. Moreover, the major volatile compounds produced were ethanol, 2,3-butanedione, 3-hydroxy-2-butanone, 2-heptanone and acetone. CONCLUSIONS: The Enterobacteriaceae of dairy origin possess many metabolic activities that could affect the sensory quality of the cheese in which they grow during ripening. SIGNIFICANCE AND IMPACT OF THE STUDY: The important physiological characteristics possessed by Enterobacteriaceae confirm the complexity of the microbiota of Pecorino Abruzzese cheese, which influences the typical sensory properties of this product.  相似文献   

9.
Summary Evidence for the presence of extrachromosomal elements inLactobacillus helveticus ATCC 15009 and the absence of plasmid DNA in two other strains ofL. helveticus is reported. These three strains did not show any difference in regard to lactose metabolism, proteolytic activity, and antibiotic resistance or in N-acetyl-D-glucosamine fermentation. The only difference found is a higher resistance to arsenate forL. helveticus ATCC 15009, suggesting linkage of this resistance to plasmids present in this strain.  相似文献   

10.
To assess the extent of genotypic and phenotypic diversity within species of purple nonsulfur bacteria found in aquatic sediments, a total of 128 strains were directly isolated from agar plates that had been inoculated with sediment samples from Haren and De Biesbosch in The Netherlands. All isolates were initially characterized by BOX-PCR genomic DNA fingerprinting, and 60 distinct genotypes were identified. Analyses of 16S rRNA gene sequences of representatives of each genotype showed that five and eight different phylotypes of purple nonsulfur bacteria were obtained from the Haren and De Biesbosch sites, respectively. At the Haren site, 80.5% of the clones were Rhodopseudomonas palustris, whereas Rhodoferax fermentans and Rhodopseudomonas palustris were numerically dominant at the De Biesbosch site and constituted 45.9 and 34.4% of the isolates obtained, respectively. BOX-PCR genomic fingerprints showed that there was a high level of genotypic diversity within each of these species. The genomic fingerprints of Rhodopseudomonas palustris isolates were significantly different for isolates from the two sampling sites, suggesting that certain strains may be endemic to each sampling site. Not all Rhodopseudomonas palustris isolates could degrade benzoate, a feature that has previously been thought to be characteristic of the species. There were differences in the BOX-PCR genomic fingerprints and restriction fragment length polymorphisms of benzoate-coenzyme A ligase genes and form I and form II ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) genes between benzoate-degrading and non-benzoate-degrading genotypes. The ability to distinguish these two Rhodopseudomonas palustris groups based on multiple genetic differences may reflect an incipient speciation event resulting from adaptive evolution to local environmental conditions.  相似文献   

11.
Production of 2,4-diacetylphloroglucinol (2,4-DAPG) in the rhizosphere by strains of fluorescent Pseudomonas spp. results in the suppression of root diseases caused by certain fungal plant pathogens. In this study, fluorescent Pseudomonas strains containing phlD, which is directly involved in the biosynthesis of 2,4-DAPG, were isolated from the rhizosphere of wheat grown in soils from wheat-growing regions of the United States and The Netherlands. To assess the genotypic and phenotypic diversity present in this collection, 138 isolates were compared to 4 previously described 2, 4-DAPG producers. Thirteen distinct genotypes, one of which represented over 30% of the isolates, were differentiated by whole-cell BOX-PCR. Representatives of this group were isolated from eight different soils taken from four different geographic locations. ERIC-PCR gave similar results overall, differentiating 15 distinct genotypes among all of the isolates. In most cases, a single genotype predominated among isolates obtained from each soil. Thirty isolates, representing all of the distinct genotypes and geographic locations, were further characterized. Restriction analysis of amplified 16S rRNA gene sequences revealed only three distinct phylogenetic groups, one of which accounted for 87% of the isolates. Phenotypic analyses based on carbon source utilization profiles revealed that all of the strains utilized 49 substrates and were unable to grow on 12 others. Individually, strains could utilize about two-thirds of the 95 substrates present in Biolog SF-N plates. Multivariate analyses of utilization profiles revealed phenotypic groupings consistent with those defined by the genotypic analyses.  相似文献   

12.
Twenty-one strains of Burkholderia cepacia isolated from the environment, and 21 clinical strains isolated principally from sputum of cystic fibrosis (CF) patients, were characterized genotypically by macrorestriction analysis (genome fingerprinting) and PCR ribotyping, and phenotypically by susceptibility to antibiotics and the ability to macerate onion tissue. The plasmid content of the strains was also investigated. Environmental isolates showed a high degree of genetic variability, all strains differing from both one another and the CF isolates. The CF isolates were less variable, with common strains found in patients attending three geographically distinct CF centres. Phenotypic variation was found both within and between CF and environmental strains. Generally, CF isolates displayed higher levels of antibiotic resistance, while the ability to macerate onion tissue was more prevalent amongst environmental isolates. Plasmids were more frequently found in CF isolates, but were of similar size in both groups of strains. Such variability is not surprising in view of the existence of multiple genomovars within the B. cepacia complex.  相似文献   

13.
Sixty-one rhizobial strains from Lathyrus japonicus nodules growing on the seashore in Japan were characterized and compared to two strains from Canada. The PCR-based method was used to identify test strains with novel taxonomic markers that were designed to discriminate between all known Lathyrus rhizobia. Three genomic groups (I, II, and III) were finally identified using RAPD, RFLP, and phylogenetic analyses. Strains in genomic group I (related to Rhizobium leguminosarum) were divided into two subgroups (Ia and Ib) and subgroup Ia was related to biovar viciae. Strains in subgroup Ib, which were all isolated from Japanese sea pea, belonged to a distinct group from other rhizobial groups in the recA phylogeny and PCR-based grouping, and were more tolerant to salt than the isolate from an inland legume. Test strains in genomic groups II and III belonged to a single clade with the reference strains of R. pisi, R. etli, and R. phaseoli in the 16S rRNA phylogeny. The PCR-based method and phylogenetic analysis of recA revealed that genomic group II was related to R. pisi. The analyses also showed that genomic group III harbored a mixed chromosomal sequence of different genomic groups, suggesting a recent horizontal gene transfer between diverse rhizobia. Although two Canadian strains belonged to subgroup Ia, molecular and physiological analyses showed the divergence between Canadian and Japanese strains. Phylogenetic analysis of nod genes divided the rhizobial strains into several groups that reflected the host range of rhizobia. Symbiosis between dispersing legumes and rhizobia at seashore is discussed.  相似文献   

14.
The study of wild strains from natural habitats is a useful means of understanding better the heterogeneity within a species of biotechnological importance, and of obtaining atypical isolates with unknown capabilities. In the present research carried out on different Lactobacillus helveticus strains isolated from natural cheese starters, it was observed that several biotechnologically important characteristics can differ greatly between strains. Biotypes were found which differ in terms of fructose, maltose and trehalose fermentation, acidifying activity, proteolytic and peptidase activity, and antibiotic and lysozyme resistance. The possibility of choosing Lact. heleveticus strains with specific biotechnological profiles will influence the quality and the variety of dairy products.  相似文献   

15.
The study of wild strains from natural habitats is a useful means of understanding better the heterogeneity within a species of biotechnological importance, and of obtaining atypical isolates with unknown capabilities. In the present research carried out on different Lactobacillus helveticus strains isolated from natural cheese starters, it was observed that several biotechnologically important characteristics can differ greatly between strains. Biotypes were found which differ in terms of fructose, maltose and trehalose fermentation, acidifying activity, proteolytic and peptidase activity, and antibiotic and lysozyme resistance. The possibility of choosing Lact. heleveticus strains with specific biotechnological profiles will influence the quality and the variety of dairy products.  相似文献   

16.
Lactic acid bacteria (LAB) are widely used in the food industry. Pediococcus spp. belong to the LAB group and include several species that are essential for the quality of fermented food. Pediococcus pentosaceus is the species that is most frequently isolated from fermented food and beverages but its uncontrolled growth during food fermentation processes can contribute to undesired flavours. Hence, the characterisation of these bacteria at the strain level is of great importance for the quality of fermented products. Despite their importance, misidentification at the species level is common for members of the genus Pediococcus. To clarify the taxonomic relationships among strains, a multilocus sequencing approach was developed for the characterisation of a collection of 29 field strains, 1 type strain and 1 reference strain of P. pentosaceus isolated from food. These strains were also tested for several phenotypic properties of technological interest and for the production of bacteriocins. The chromosomal operon involved in the synthesis of the bacteriocin penocin was also investigated. The present study enabled a good genomic characterisation, identifying 17 sequence types, with an overview of phenotypic characteristics related to different technological abilities, and also provides a thorough characterisation of the operon involved in penocin production.  相似文献   

17.
The genetic variability among 32 Chinese Acidithiobacillus spp. environmental isolates and four reference strains representing three recognized species of the genus Acidithiobacillus was characterized by using a combination of molecular methods, namely restriction fragment length polymorphisms of PCR-amplified 16S rRNA genes and 16S-23S rRNA gene intergenic spacers, repetitive element PCR, arbitrarily primed PCR and 16S rRNA gene sequence analyses. 16S rRNA gene sequences revealed that all Acidithiobacillus spp. strains could be assigned to seven groups, three of which encompassed the Acidithiobacillus ferrooxidans strains from various parts of the world. A comparative analysis of the phylogenetic Group 1 and 2 was undertaken. Restriction fragment length polymorphism results allowed us to separate the 35 Acidithiobacillus strains into 15 different genotypes. An integrated phenotypic and genotypic analysis indicated that the distribution of A. ferrooxidans strains among the physiological groups were in agreement with their distribution among the genomic groups, and that no clear correlation was found between the genetic polymorphism of the Acidithiobacillus spp. strains and either the geographic location or type of habitats from which the strains were isolated. In addition, five unidentified sulfur-oxidizing isolates may represent one or two novel species of the genus Acidithiobacillus. The results showed that the Chinese Acidithiobacillus spp. isolates exhibited a high degree of genomic and phenotypic heterogeneity.  相似文献   

18.
AIMS: Screening for lactic acid bacteria (LAB) producing bacteriocins and other antimicrobial compounds is of a great significance for the dairy industry to improve food safety. METHODS AND RESULTS: Six-hundred strains of LAB isolated from 'rigouta', a Tunisian fermented cheese, were tested for antilisterial activity. Eight bacteriocinogenic strains were selected and analysed. Seven of these strains were identified as Lactococcus lactis and produced nisin Z as demonstrated by mass spectrometry analysis of the purified antibacterial compound. Polymerase chain reaction experiments using nisin gene-specific primers confirmed the presence of nisin operon. Plasmid profiles analysis suggests the presence of, at least, three different strains in this group. MMT05, the eighth strain of this antilisterial collection was identified, at molecular level, as Enterococcus faecalis. The purified bacteriocin produced by this strain showed a molecular mass of 10 201.33 +/- 0.85 Da. This new member of class III bacteriocins was termed enterocin MMT05. CONCLUSIONS: Seven lactococcal strains producing nisin Z were selected and could be useful as bio-preservative starter cultures. Additional experiments are needed to evaluate the promising strain MMT05 as bio-preservative as Enterococci could exert detrimental or beneficial role in foods. SIGNIFICANCE AND IMPACT OF THE STUDY: Only a few antibacterial strains isolated from traditional African dairy products were described. The new eight strains described herein contribute to the knowledge of this poorly studied environment and constitute promising strains for fermented food safety.  相似文献   

19.
Aim: To identify and compare lactic acid bacteria (LAB) isolated from alkaline fermentations of cassava (Manihot esculenta Crantz) leaves, roselle (Hibiscus sabdariffa) and African locust bean (Parkia biglobosa) seeds for production of, respectively, Ntoba Mbodi, Bikalga and Soumbala. Methods and Results: A total of 121 LAB were isolated, identified and compared by phenotyping and genotyping using PCR amplification of 16S–23S rDNA intergenic transcribed spacer (ITS‐PCR), repetitive sequence‐based PCR (rep‐PCR) and DNA sequencing. The results revealed a diversity of genera, species and subspecies of LAB in African alkaline fermentations. The isolates were characterized as nonmotile (in most cases) Gram‐positive rods, cocci or coccobacilli, catalase and oxidase negative. ITS‐PCR allowed typing mainly at species level, with differentiation of a few bacteria at subspecies level. Rep‐PCR permitted typing at subspecies level and revealed significant genotypic differences between the same species of bacteria from different raw materials. DNA sequencing combined with use of API 50CHL and API 20Strep systems allowed identification of bacteria as Weissella confusa, Weissella cibaria, Lactobacillus plantarum, Pediococcus pentosaceus, Enterococcus casseliflavus, Enterococcus faecium, Enterococcus faecalis, Enterococcus avium and Enterococcus hirae from Ntoba Mbodi; Ent. faecium, Ent. hirae and Pediococcus acidilactici from Bikalga and Soumbala. Conclusion: LAB found in African alkaline‐fermented foods belong to a range of genera, species and subspecies of bacteria and vary considerably according to raw material. Significance and Impact of the Study: Our study confirms that LAB survive in alkaline fermentations, a first crucial stage in determining their significance and possible value as probiotic bacteria.  相似文献   

20.
The genetic diversity of plant growth-promoting rhizobacterial (PGPR) fluorescent pseudomonads associated with the sugarcane (Saccharum officinarum L.) rhizosphere was analyzed. Selected isolates were screened for plant growthpromoting properties including production of indole acetic acid, phosphate solubilization, denitrification ability, and production of antifungal metabolites. Furthermore, 16S rDNA sequence analysis was performed to identify and differentiate these isolates. Based on 16S rDNA sequence similarity, the isolates were designated as Pseudomonas plecoglossicida, P. fluorescens, P. libaniensis, and P. aeruginosa. Differentiation of isolates belonging to the same group was achieved through different genomic DNA fingerprinting techniques, including randomly amplified polymorphic DNA (RAPD), amplified ribosomal DNA restriction analysis (ARDRA), repetitive extragenic palindromic (REP), enterobacterial repetitive intergenic consensus (ERIC), and bacterial repetitive BOX elements (BOX) analyses. The genetic diversity observed among the isolates and rep-PCR-generated fingerprinting patterns revealed that PGPR fluorescent pseudomonads are associated with the rhizosphere of sugarcane and that P. plecoglossicida is a dominant species. The knowledge obtained herein regarding the genetic and functional diversity of fluorescent pseudomonads associated with the sugarcane rhizosphere is useful for understanding their ecological role and potential utilization in sustainable agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号