首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The prototypic long pentraxin PTX3 is a unique fluid-phase pattern recognition receptor that plays a nonredundant role in innate immunity and female fertility. The PTX3 C-terminal domain is required for C1q recognition and complement activation and contains a single N-glycosylation site on Asn 220. In the present study, we characterized the structure of the human PTX3 glycosidic moiety and investigated its relevance in C1q interaction and activation of the complement classical pathway. By specific endo and exoglycosidases digestion and direct mass spectrometric analysis, we found that both recombinant and naturally occurring PTX3 were N-linked to fucosylated and sialylated complex-type sugars. Interestingly, glycans showed heterogeneity mainly in the relative amount of bi, tri, and tetrantennary structures depending on the cell type and inflammatory stimulus. Enzymatic removal of sialic acid or the entire glycosidic moiety equally enhanced PTX3 binding to C1q compared to that in the native protein, thus indicating that glycosylation substantially contributes to modulate PTX3/C1q interaction and that sialic acid is the main determinant of this contribution. BIAcore kinetic measurements returned decreasing K(off) values as sugars were removed, pointing to a stabilization of the PTX3/C1q complex. No major rearrangement of PTX3 quaternary structure was observed after desialylation or deglycosylation as established by size exclusion chromatography. Consistent with C1q binding, PTX3 desialylation enhanced the activation of the classical complement pathway, as assessed by C4 and C3 deposition. In conclusion, our results provided evidence of an involvement of the PTX3 sugar moiety in C1q recognition and complement activation.  相似文献   

2.
The long pentraxin 3 (PTX3) is a soluble recognition molecule with multiple functions including innate immune defense against certain microbes and the clearance of apoptotic cells. PTX3 interacts with recognition molecules of the classical and lectin complement pathways and thus initiates complement activation. In addition, binding of PTX3 to the alternative complement pathway regulator factor H was shown. Here, we show that PTX3 binds to the classical and lectin pathway regulator C4b-binding protein (C4BP). A PTX3-binding site was identified within short consensus repeats 1-3 of the C4BP α-chain. PTX3 did not interfere with the cofactor activity of C4BP in the fluid phase and C4BP maintained its complement regulatory activity when bound to PTX3 on surfaces. While C4BP and factor H did not compete for PTX3 binding, the interaction of C4BP with PTX3 was inhibited by C1q and by L-ficolin. PTX3 bound to human fibroblast- and endothelial cell-derived extracellular matrices and recruited functionally active C4BP to these surfaces. Whereas PTX3 enhanced the activation of the classical/lectin pathway and caused enhanced C3 deposition on extracellular matrix, deposition of terminal pathway components and the generation of the inflammatory mediator C5a were not increased. Furthermore, PTX3 enhanced the binding of C4BP to late apoptotic cells, which resulted in an increased rate of inactivation of cell surface bound C4b and a reduction in the deposition of C5b-9. Thus, in addition to complement activators, PTX3 interacts with complement inhibitors including C4BP. This balanced interaction on extracellular matrix and on apoptotic cells may prevent excessive local complement activation that would otherwise lead to inflammation and host tissue damage.  相似文献   

3.
Atypical hemolytic uremic syndrome (aHUS) is a renal disease associated with complement alternative pathway dysregulation and is characterized by endothelial injury. Pentraxin 3 (PTX3) is a soluble pattern recognition molecule expressed by endothelial cells and upregulated under inflammatory conditions. PTX3 activates complement, but it also binds the complement inhibitor factor H. In this study, we show that native factor H, factor H-like protein 1, and factor H-related protein 1 (CFHR1) bind to PTX3 and that PTX3-bound factor H and factor H-like protein 1 maintain their complement regulatory activities. PTX3, when bound to extracellular matrix, recruited functionally active factor H. Residues within short consensus repeat 20 of factor H that are relevant for PTX3 binding were identified using a peptide array. aHUS-associated factor H mutations within this binding site caused a reduced factor H binding to PTX3. Similarly, seven of nine analyzed anti-factor H autoantibodies isolated from aHUS patients inhibited the interaction between factor H and PTX3, and five autoantibodies also inhibited PTX3 binding to CFHR1. Moreover, the aHUS-associated CFHR1*B variant showed reduced binding to PTX3 in comparison with CFHR1*A. Thus, the interactions of PTX3 with complement regulators are impaired by certain mutations and autoantibodies affecting factor H and CFHR1, which could result in an enhanced local complement-mediated inflammation, endothelial cell activation, and damage in aHUS.  相似文献   

4.
Alternative pathway amplification plays a major role for the final effect of initial specific activation of the classical and lectin complement pathways, but the quantitative role of the amplification is insufficiently investigated. In experimental models of human diseases in which a direct activation of alternative pathway has been assumed, this interpretation needs revision placing a greater role on alternative amplification. We recently documented that the alternative amplification contributed to 80-90% of C5 activation when the initial activation was highly specific for the classical pathway. The recent identification of properdin as a recognition factor directly initiating alternative pathway activation, like C1q in the classical and mannose-binding lectin in the lectin pathway initiates a renewed interest in the reaction mechanisms of complement. Complement and Toll-like receptors, including the CD14 molecule, are two main upstream recognition systems of innate immunity, contributing to the inflammatory reaction in a number of conditions including ischemia-reperfusion injury and sepsis. These systems act as "double-edged swords", being protective against microbial invasion, but harmful to the host when activated improperly or uncontrolled. Combined inhibition of complement and Toll-like receptors/CD14 should be explored as a treatment regimen to reduce the overwhelming damaging inflammatory response during sepsis. The alternative pathway should be particularly considered in this regard, due to its uncontrolled amplification in sepsis. The alternative pathway should be regarded as a dual system, namely a recognition pathway principally similar to the classical and lectin pathways, and an amplification mechanism, well known, but quantitatively probably more important than generally recognized.  相似文献   

5.
Long-pentraxin 3 (PTX3) is a soluble pattern recognition receptor with non-redundant functions in inflammation and innate immunity. PTX3 comprises a pentraxin-like C-terminal domain involved in complement activation via C1q interaction and an N-terminal extension with unknown functions. PTX3 binds fibroblast growth factor-2 (FGF2), inhibiting its pro-angiogenic and pro-restenotic activity. Here, retroviral transduced endothelial cells (ECs) overexpressing the N-terminal fragment PTX3-(1-178) showed reduced mitogenic activity in response to FGF2. Accordingly, purified recombinant PTX3-(1-178) binds FGF2, prevents PTX3/FGF2 interaction, and inhibits FGF2 mitogenic activity in ECs. Also, the monoclonal antibody mAb-MNB4, which recognizes the PTX3-(87-99) epitope, prevents FGF2/PTX3 interaction and abolishes the FGF2 antagonist activity of PTX3. Consistently, the synthetic peptides PTX3-(82-110) and PTX3-(97-110) bind FGF2 and inhibit the interaction of FGF2 with PTX3 immobilized to a BIAcore sensor chip, FGF2-dependent EC proliferation, and angiogenesis in vivo. Thus, the data identify a FGF2-binding domain in the N-terminal extension of PTX3 spanning the PTX3-(97-110) region, pointing to a novel function for the N-terminal extension of PTX3 and underlining the complexity of the PTX3 molecule for modular humoral pattern recognition.  相似文献   

6.
Systemic infections with Gram-negative bacteria are?characterized by high mortality rates due to the "sepsis syndrome," a widespread and uncontrolled inflammatory response. Though it is well recognized that the immune response during Gram-negative bacterial infection is initiated after the recognition of endotoxin by Toll-like receptor 4, the molecular mechanisms underlying the detrimental inflammatory response during Gram-negative bacteremia remain poorly defined. Here, we identify a TRIF pathway that licenses NLRP3 inflammasome activation by all Gram-negative bacteria. By engaging TRIF, Gram-negative bacteria activate caspase-11. TRIF activates caspase-11 via type I IFN signaling, an event that is both necessary and sufficient for caspase-11 induction and autoactivation. Caspase-11 subsequently synergizes with the assembled NLRP3 inflammasome to regulate caspase-1 activation and leads to caspase-1-independent cell death. These events occur specifically during infection with Gram-negative, but not Gram-positive, bacteria. The identification of TRIF as a regulator of caspase-11 underscores the importance of TLRs as master regulators of inflammasomes during Gram-negative bacterial infection.  相似文献   

7.
Mucosal immune response depends on the surveillance network established by dendritic cells (DC), APC localized within the epithelium. Bronchial epithelial cells (BEC) play a pivotal role both in the host defense and in the pathogenesis of inflammatory airway disorders. We previously showed that the outer membrane protein A from Klebsiella pneumoniae (KpOmpA), a pathogen-associated molecular pattern (PAMP) derived from Klebsiella pneumoniae, activates BEC. In this study, we evaluated the consequences of this activation on DC traffic and functions. KpOmpA significantly increased the production of CCL2, CCL5, CXCL10, and CCL20 by BEC. Stimulation of BEC increased their chemotactic activity for monocyte-derived DC (MDDC) precursors, through CCL5 and CXCL10 secretion. BEC/MDDC precursor coculture leads to an ICAM-1-dependent accelerated differentiation and enhanced maturation of MDDC. BEC/DC interactions did not affect the capacity of DC to induce T cell proliferation. However, DC preincubated with BEC increased significantly the IL-10 production by autologous T cells. Basolateral and intraepithelial DC differently enhance IL-4 and/or IL-10 synthesis according to the condition of stimulation. In vivo, intranasal injections of KpOmpA into BALB/c mice induced the recruitment of CD11c(+) and I-A(d+) myeloid DC associated with bronchial epithelium activation as evidenced by CCL20 expression. These data show that KpOmpA-exposed BEC participate in the homeostasis of myeloid DC network, and regulate the induction of local immune response.  相似文献   

8.
The complement system is one of the major ways by which the body detects injury to self cells, and the alternative pathway of complement is rapidly activated within the tubulointerstitium after renal ischemia/reperfusion (I/R). In the current study, we investigate the hypothesis that recognition of tubular injury by the complement system is a major mechanism by which the systemic inflammatory response is initiated. Gene array analysis of mouse kidney following I/R initially identified MIP-2 (CXCL2) and keratinocyte-derived chemokine (KC or CXCL1) as factors that are produced in a complement-dependent fashion. Using in situ hybridization, we next demonstrated that these factors are expressed in tubular epithelial cells of postischemic kidneys. Mouse proximal tubular epithelial cells (PTECs) in culture were then exposed to an intact alternative pathway and were found to rapidly produce both chemokines. Selective antagonism of the C3a receptor significantly attenuated production of MIP-2 and KC by PTECs, whereas C5a receptor antagonism and prevention of membrane attack complex (MAC) formation did not have a significant effect. Treatment of PTECs with an NF-kappaB inhibitor also prevented full expression of these factors in response to an intact alternative pathway. In summary, alternative pathway activation after renal I/R induces production of MIP-2 and KC by PTECs. This innate immune system thereby recognizes hypoxic injury and triggers a systemic inflammatory response through the generation of C3a and subsequent activation of the NF-kappaB system.  相似文献   

9.
The long pentraxin 3 (PTX3), serum amyloid P component (SAP), and C-reactive protein belong to the pentraxin family of pattern recognition molecules involved in tissue homeostasis and innate immunity. They interact with C1q from the classical complement pathway. Whether this also occurs via the analogous mannose-binding lectin (MBL) from the lectin complement pathway is unknown. Thus, we investigated the possible interaction between MBL and the pentraxins. We report that MBL bound PTX3 and SAP partly via its collagen-like domain but not C-reactive protein. MBL-PTX3 complex formation resulted in recruitment of C1q, but this was not seen for the MBL-SAP complex. However, both MBL-PTX3 and MBL-SAP complexes enhanced C4 and C3 deposition and opsonophagocytosis of Candida albicans by polymorphonuclear leukocytes. Interaction between MBL and PTX3 led to communication between the lectin and classical complement pathways via recruitment of C1q, whereas SAP-enhanced complement activation occurs via a hitherto unknown mechanism. Taken together, MBL-pentraxin heterocomplexes trigger cross-activation of the complement system.  相似文献   

10.
Tec family kinases are intracellular non-receptor tyrosine kinases implicated in numerous functions, including T cell and B cell regulation. However, a role in microbial pathogenesis has not been described. Here, we identified Tec kinase as a novel key mediator of the inflammatory immune response in macrophages invaded by the human fungal pathogen C. albicans. Tec is required for both activation and assembly of the noncanonical caspase-8, but not of the caspase-1 inflammasome, during infections with fungal but not bacterial pathogens, triggering the antifungal response through IL-1β. Furthermore, we identify dectin-1 as the pathogen recognition receptor being required for Syk-dependent Tec activation. Hence, Tec is a novel innate-specific inflammatory kinase, whose genetic ablation or inhibition by small molecule drugs strongly protects mice from fungal sepsis. These data demonstrate a therapeutic potential for Tec kinase inhibition to combat invasive microbial infections by attenuating the host inflammatory response.  相似文献   

11.
Pentraxin 3 (PTX3), a long pentraxin subfamily member in the pentraxin family, plays an important role in innate immunity as a soluble pattern recognition receptor. Plasma PTX3 is elevated in sepsis (~200 ng/ml) and correlates with mortality. The roles of PTX3 in sepsis, however, are not well understood. To investigate the ligands of PTX3 in sepsis, we performed a targeted proteomic study of circulating PTX3 complexes using magnetic bead-based immunopurification and shotgun proteomics for label-free relative quantitation via spectral counting. From septic patient fluids, we successfully identified 104 candidate proteins, including the known PTX3-interacting proteins involved in complement activation, pathogen opsonization, inflammation regulation, and extracellular matrix deposition. Notably, the proteomic profile additionally showed that PTX3 formed a complex with some of the components of neutrophil extracellular traps. Subsequent biochemical analyses revealed a direct interaction of bactericidal proteins azurocidin 1 (AZU1) and myeloperoxidase with PTX3. AZU1 exhibited high affinity binding (K(D) = 22 ± 7.6 nm) to full-length PTX3 in a calcium ion-dependent manner and bound specifically to an oligomer of the PTX3 N-terminal domain. Immunohistochemistry with a specific monoclonal antibody generated against AZU1 revealed a partial co-localization of AZU1 with PTX3 in neutrophil extracellular traps. The association of circulating PTX3 with components of the neutrophil extracellular traps in sepsis suggests a role for PTX3 in host defense and as a potential diagnostic target.  相似文献   

12.
We have re-investigated the role of the complement system and the non-opsonic pattern recognition receptors dectin-1 and dectin-2 in the recognition of fungal particles by inflammatory neutrophils, monocytes and macrophages. We have used in vivo and ex vivo models to study the recognition and response of these cells: i) We confirm previous observations regarding the importance of complement to neutrophil but not monocytic responses; ii) We show that dectin-1 is important for driving inflammatory cell recruitment to fungal stimuli and that it biases the immediate inflammatory response to one that favors neutrophil over monocyte recruitment; iii) We show that dectin-2 contributes to the physical recognition of fungal particles by inflammatory monocytes/macrophages, but is also expressed on neutrophils, where we show it has the potential to contribute to cellular activation; iv) Additionally, we show that serum-opsonization has the potential to interfere with non-opsonic recognition of fungal particles by dectin-1 and dectin-2, presumably through masking of ligands. Collectively these roles are consistent with previously described roles of dectin-1 and dectin-2 in driving inflammatory and adaptive immune responses and complement in containing fungal burdens. This study emphasizes the importance of heterogeneity of receptor expression across myeloid cell subsets in protective immune responses.  相似文献   

13.
The complement system in teleosts   总被引:14,自引:0,他引:14  
Complement, an important component of the innate immune system, is comprised of about 35 individual proteins. In mammals, activation of complement results in the generation of activated protein fragments that play a role in microbial killing, phagocytosis, inflammatory reactions, immune complex clearance, and antibody production. Fish appear to possess activation pathways similar to those in mammals, and the fish complement proteins identified thus far show many homologies to their mammalian counterparts. Because information about complement proteins, regulatory proteins, and complement receptors in fish is far from complete, it is unclear whether all the complement functions that have been identified in mammals also occur in fish. However, it has been clearly demonstrated that fish complement can lyse foreign cells and opsonise foreign organisms for destruction by phagocytes. There are also indications that complement fragments participate in inflammatory reactions. Fish possess multiple isoforms of several complement proteins, such as C3 and factor B. It has been hypothesised that the function of this diversity in complement proteins serves to expand their innate immune recognition capacity and response. Understanding the functions of complement in fish and the roles the individual proteins, including the various isoforms, play in host defence, is important not only for understanding the evolution of this system but also for the development of new strategies in fish health management.  相似文献   

14.
In granulocytes, platelet-activating factor (PAF) shares many of its biological effects with other chemotactic factors, such as FMLP, complement fragments, and lipid mediators. Two unique effects are that PAF is relatively resistant to pertussis toxin (PTX) and that PAF activates the inflammatory functions of eosinophils more strongly than it activates those of neutrophils. To investigate the molecular mechanisms of the responses of eosinophils to PAF, we analyzed superoxide anion production by a chemiluminescence method that provides real-time kinetic data for the cellular responses. We found that PAF induced bimodal superoxide anion production in human eosinophils, consisting of an intense, but transient, first phase and a larger and sustained second phase. In contrast, PAF induced essentially a transient unimodal response in human neutrophils. The two phases of eosinophil response were mediated by distinct cellular mechanisms: the second phase was highly dependent on cellular adhesion and beta(2) integrins, but the first phase was independent of both adhesion and beta(2) integrins. The upstream signaling mechanisms were also different: the second phase was mediated by PTX-resistant G-protein(s) and through activation of phosphatidylinositol 3-kinase, while the first phase was mediated by PTX-sensitive G-protein(s). Furthermore, the second-phase response was approximately 100-fold more resistant to inhibition by a competitive PAF receptor antagonist than the first phase. Thus, eosinophils and neutrophils react differently to PAF, and PAF activates two separate and distinct effector pathways in human eosinophils. These two activation pathways may explain the eosinophils' strong and diverse biological responses to PAF.  相似文献   

15.
16.
Role of the soluble pattern recognition receptor PTX3 in vascular biology   总被引:1,自引:0,他引:1  
Pentraxins act as soluble pattern recognition receptors with a wide range of functions in various pathophysiological conditions. The long-pentraxin PTX3 shares the C-terminal pentraxin-domain with short-pentraxins C-reactive protein and serum amyloid P component and possesses an unique N-terminal domain. These structural features suggest that PTX3 may have both overlapping and distinct biological/ligand recognition properties when compared to short-pentraxins. PTX3 serves as a mechanism of amplification of inflammation and innate immunity. Indeed, vessel wall elements produce high amounts of PTX3 during inflammation and the levels of circulating PTX3 increase in several pathological conditions affecting the cardiovascular system. PTX3 exists as a free or extracellular matrix-associated molecule and it binds the complement fraction C1q. PTX3 binds also apoptotic cells and selected pathogens, playing a role in innate immunity processes. In endothelial cells and macrophages, PTX3 upregulates tissue factor expression, suggesting its action as a regulator of endothelium during thrombogenesis and ischaemic vascular disease. Finally, PTX3 binds the angiogenic fibroblast growth factor-2, thus inhibiting its biological activity. Taken together, these properties point to a role for PTX3 during vascular damage, angiogenesis, atherosclerosis, and restenosis.  相似文献   

17.
Triggering receptor expressed on myeloid cells (TREM)-1 is a cell surface molecule expressed on neutrophils and monocytes implicated in the propagation of the inflammatory response. To further characterize the function of this molecule in different phases of the immune response, we examined TREM-1 in the context of host defense against microbial pathogens. In primary human monocytes TREM-1 activation did not trigger innate antimicrobial pathways directed against intracellular Mycobacterium tuberculosis, and only minimally improved phagocytosis. However, activation of TREM-1 on monocytes did drive robust production of proinflammatory chemokines such as macrophage inflammatory protein-1alpha and IL-8. Engagement of TREM-1 in combination with microbial ligands that activate Toll-like receptors also synergistically increased production of the proinflammatory cytokines TNF-alpha and GM-CSF, while inhibiting production of IL-10, an anti-inflammatory cytokine. Expression of TREM-1 was up-regulated in response to TLR activation, an effect further enhanced by GM-CSF and TNF-alpha but inhibited by IL-10. Functionally, primary monocytes differentiated into immature dendritic cells following activation through TREM-1, evidenced by higher expression of CD1a, CD86, and MHC class II molecules. These cells had an improved ability to elicit T cell proliferation and production of IFN-gamma. Our data suggest that activation of TREM-1 on monocytes participates during the early-induced and adaptive immune responses involved in host defense against microbial challenges.  相似文献   

18.
Chronic lung infections by Pseudomonas aeruginosa strains are a major cause of morbidity and mortality in cystic fibrosis (CF) patients. Although there is no clear evidence for a primary defect in the immune system of CF patients, the host is generally unable to clear P. aeruginosa from the airways. PTX3 is a soluble pattern recognition receptor that plays nonredundant roles in the innate immune response to fungi, bacteria, and viruses. In particular, PTX3 deficiency is associated with increased susceptibility to P. aeruginosa lung infection. To address the potential therapeutic effect of PTX3 in P. aeruginosa lung infection, we established persistent and progressive infections in mice with the RP73 clinical strain RP73 isolated from a CF patient and treated them with recombinant human PTX3. The results indicated that PTX3 has a potential therapeutic effect in P. aeruginosa chronic lung infection by reducing lung colonization, proinflammatory cytokine levels (CXCL1, CXCL2, CCL2, and IL-1β), and leukocyte recruitment in the airways. In models of acute infections and in in vitro assays, the prophagocytic effect of PTX3 was maintained in C1q-deficient mice and was lost in C3- and Fc common γ-chain-deficient mice, suggesting that facilitated recognition and phagocytosis of pathogens through the interplay between complement and FcγRs are involved in the therapeutic effect mediated by PTX3. These data suggested that PTX3 is a potential therapeutic tool in chronic P. aeruginosa lung infections, such as those seen in CF patients.  相似文献   

19.
20.
Microbial agents can aggravate inflammatory diseases, such as multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). An example is pertussis toxin (PTX), a bacterial virulence factor commonly used as an adjuvant to promote EAE, but whose mechanism of action is unclear. We have reported that PTX triggers an IL-6-mediated signaling cascade that increases the number of leukocytes that patrol the vasculature by crawling on its luminal surface. In the present study, we examined this response in mice lacking either TLR4 or inflammasome components and using enzymatically active and inactive forms of PTX. Our results indicate that PTX, through its ADP-ribosyltransferase activity, induces two series of events upstream of IL-6: 1) the activation of TLR4 signaling in myeloid cells, leading to pro-IL-1β synthesis; and 2) the formation of a pyrin-dependent inflammasome that cleaves pro-IL-1β into its active form. In turn, IL-1β stimulates nearby stromal cells to secrete IL-6, which is known to induce vascular changes required for leukocyte adhesion. Without pyrin, PTX does not induce neutrophil adhesion to cerebral capillaries and is less effective at inducing EAE in transgenic mice with encephalitogenic T lymphocytes. This study identifies the first microbial molecule that activates pyrin, a mechanism by which infections may influence MS and a potential therapeutic target for immune disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号