首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The influence of both polar group and acyl chain of lysophospholipids on the lysophosphatidylcholine: lysophosphatidylcholine acyltransferase from rabbit lung was studied. Both, transacylase and hydrolase activities of this enzyme, utilize selectively 1-[1-14C]palmitoyl-sn-glycero-3-phosphocholine when compared with 1-[9,10-3H2]palmitoyl-sn-glycero-3-phosphoethanolamine. Transacylase activity is more selective for lysophosphatidylcholine as acyl acceptor than as acyl donor. The amount of dipalmitoylphosphatidylcholine/min/mg protein synthesized from mixed lysophosphatidylcholine/lysophosphatidylethanolamine micelles does not change with increasing molar percentages of lysophosphatidylethanolamine in the mixture and is similar to that formed with pure lysophosphatidylcholine micelles. Transacylation reaction takes place preferentially with long and saturated acyl chains whereas hydrolysis reaction does more efficiently with longer acyl chains, independently of their insaturation degree.  相似文献   

2.
Acyl-CoA:lysolecithin acyltransferase is a key enzyme in the deacylation-reacylation pathway of biosynthesis of molecular species of lecithin. However, the mechanism of the reaction has been little studied. In this paper, the kinetic mechanism of acyl-CoA:lysolecithin acyltransferase, partially purified from rabbit lung, is studied. The double-reciprocal plots of initial velocity vs substrate concentration gave two sets of parallel lines which fitted to a ping-pong equation with the following parameters: Km (palmitoyl-CoA) = 8.5 +/- 2 microM, Km (lysolecithin) = 61 +/- 16 microM, and V = 18 +/- 4 nmol/min/mg protein. Inhibition studies by substrates, alternate substrates, and products supported the ping-pong mechanism, although some nonclassical behavior was observed. Palmitoyl-CoA did not inhibit even at concentrations of 100 Km. In contrast, lysolecithin was a dead-end inhibitor with a dissociation constant of Ki = 930 +/- 40 microM. Alternate substrates and CoA showed alternate pathways for the reaction due to the formation of ternary complexes. Dipalmitoylphosphatidylcholine inhibition pointed to an isomerization of the free enzyme prior to the start of the reaction. From these results, an iso-ping-pong kinetic mechanism for lysolecithin acyltransferase is proposed. The kinetic steps of the reaction are correlated with previous chemical studies of the enzyme.  相似文献   

3.
M Gómez  P Isorna  M Rojo  P Estrada 《Biochimie》2001,83(10):961-967
The variation of kinetic parameters of beta-xylosidase from Trichoderma reesei QM 9414 with pH was used to elucidate the chemical mechanism of the p-nitrophenyl beta-D-xylopyranoside hydrolysis. The pH-dependence of V and V/K(m) showed that a group on the enzyme with a pK value of 3.20 must be unprotonated and a group with a pK value of 5.20 must be protonated for activity and both are involved in catalysis. Solvent-perturbation studies indicated that these groups are neutral acid type. Temperature dependence of kinetic parameters suggested the stickiness of the substrate at lower temperatures than the optimum and the calculated ionization enthalpies pointed to carboxyl groups as responsible for both pKs. Chemical modification with triethyloxonium tetrafluoroborate and protection with the substrate studies demonstrated essential carboxyl groups on the enzyme. Profiles of pK(i) for D-gluconic acid lactone indicated that a group with a pK value of 3.45 must be protonated for binding and it has been assigned to the carboxyl group of D-gluconic acid formed by lactone ring breakdown in solution.  相似文献   

4.
The specific activity of lysophosphatidylcholine acyltransferase in sonicated fetal rat lung type II cells was found to be an order of magnitude greater than that of lysophosphatidylcholine:lysophosphatidylcholine acyltransferase. The specific activity of lysophosphatidylcholine acyltransferase in sonicated fetal rat lung type II cells increases towards the end of gestation, whereas that of lysophosphatidylcholine:lysophosphatidylcholine acyltransferase does not show a change. While lysophosphatidylcholine acyltransferase in whole fetal lung homogenate is more active towards oleoyl-CoA than towards palmitoyl-CoA, the enzyme in sonicated fetal type II cells is more active towards palmitoyl-CoA. If measured with palmitoyl-CoA as acyl donor, the specific activity of lysophosphatidylcholine acyltransferase in type II cells is higher than that in whole lung during late gestation. In contrast, the specific activity of lysophosphatidylcholine:lysophosphatidylcholine acyltransferase in type II cells is lower than that in whole lung. These observations indicate that in fetal rat type II cells the deacylation-reacylation cycle is more important for the formation of dipalmitoylphosphatidylcholine than the deacylation-transacylation process.  相似文献   

5.
A kinetic model is proposed for catalysis by an enzyme that has several special characteristics: (i) it catalyses an acyl-transfer bi-substrate reaction between two identical molecules of substrate, (ii) the substrate is an amphiphilic molecule that can be present in two physical forms, namely monomers and micelles, and (iii) the reaction progresses through an acyl-enzyme-based mechanism and the covalent intermediate can react also with water to yield a secondary hydrolytic reaction. The theoretical kinetic equations for both reactions were deduced according to steady-state assumptions and the theoretical plots were predicted. The experimental kinetics of lysophosphatidylcholine:lysophosphatidylcholine acyltransferase from rabbit lung fitted the proposed equations with great accuracy. Also, kinetics of inhibition by products behaved as expected. It was concluded that the competition between two nucleophiles for the covalent acyl-enzyme intermediate, and not a different enzyme action depending on the physical state of the substrate, is responsible for the differences in kinetic pattern for the two activities of the enzyme. This conclusion, together with the fact that the kinetic equation for the transacylation is quadratic, generates a 'hysteretic' pattern that can provide the basis of self-regulatory properties for enzymes to which this model could be applied.  相似文献   

6.
The enzyme acyl-CoA:1-acyl-sn-glycero-3-phosphoinositol acyltransferase (LPI acyltransferase, EC 2.3.1.23) was purified approximately 11,000-fold to near homogeneity from bovine heart muscle microsomes. The purification was effected by extraction with the detergent 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate, followed by chromatography on Cibacron blue agarose, DEAE-cellulose, and Matrex gel green A. The isolated enzyme was a single protein of 58,000 Da as measured by polyacrylamide gel electrophoresis in the presence of dodecyl sulfate. This purification procedure also allows isolation of the related enzyme lysophosphatidylcholine (LPC) acyltransferase, which was separated from LPI acyltransferase at the final chromatographic step. The purified LPI acyltransferase exhibits an absolute specificity for LPI as the acyl acceptor. Broader specificity was found for acyl-CoA derivatives as substrates, although the preferred substrates are long-chain, unsaturated derivatives: measured reactivities were in the order arachidonoyl-CoA greater than oleoyl-CoA greater than eicosadienoyl-CoA greater than linoleoyl-CoA. Little activity was found with palmitoyl-CoA or stearoyl-CoA as potential substrates. These properties are consistent with a role of the enzyme in controlling the acyl group composition of phosphoinositides. Comparison of LPC acyltransferase and LPI acyltransferase shows that these two enzymes have distinct kinetic and physical properties and are affected differently by local anesthetics, which are potent inhibitors.  相似文献   

7.
The enzyme lysolecithin:lysolecithin acyltransferase from rabbit lung has been found to have a relatively disordered conformation in solutions of high ionic strength. The protein exhibited an ordering of structure when salt was suppressed. This conformational change was concomitant with the loss of transacylase activity, the hydrolytic reaction remaining unchanged. Addition of NaCl caused a progressive disordering of structure with a parallel increase of transacylase activity. The acid denaturation of the protein, at low and high ionic strengths, showed that the ionization of groups with pK in the range 5.9-6.4 was essential for denaturation. The structure was stable at basic pH. The addition of lipids resulted in a non-specific stabilization of the disordered conformation, in the same manner as the addition of NaCl. From these results, it is suggested that there are two conformations for this protein which differ in their ability to bind lysolecithin molecules in the enzyme deacylation step of the reaction. This hypothesis agrees with previously published properties of the enzyme, concerning aggregation with other proteins and kinetic data. From the amino acid composition and conformational properties, the authors suggest that this enzyme could be a peripheral membrane protein.  相似文献   

8.
The influence of both polar head and acyl chain of lysophospholipid on the activity of partially purified acyl-CoA:lysolecithin acyltransferase from rabbit lung was studied. It was concluded that the presence of methyl groups on the nitrogen of the base was essential for recognition of lysophospholipid as substrate by the enzyme. With respect to the acyl chain length and saturation, the activity followed the order: 16:0 approximately equal to 18:1 greater than 14:0 greater than greater than greater than 18:0 approximately equal to 12:0. Also, the effect on the activity of the acyl chain on acyl-CoA was studied. The activity showed great selectivity for saturated acyl-CoAs. The activity with polyunsaturated fatty acids was very low and in the case of arachidonoyl-CoA was almost negligible. The comparison between crude microsomal preparations and partially purified preparations allowed to suggest that it could exist two different acyl-CoA:lysolecithin acyltransferases differing in their selectivity towards saturated and unsaturated fatty acids.  相似文献   

9.
The effect of pH on the main kinetic parameters of pyruvate kinase function was studied. The maximal rate of the reaction as well as the values of Km for ADP and Ki for phenylalanine depend on pH and show a well-defined extremum at pH 6.8-7.0. Spectrofluorimetric titration of pyruvate kinase results in pH dependencies of changes in the fluorescence spectra parameters (e.g., quantum yield, half-width and position of the maximum). This enabled to determine the pH regions corresponding to changes in the state of tryptophan residues. Data from the enzyme inhibition by phenylalanine suggest that acidification of the medium leads to the decrease of the catalytic activity due to the protonation of the ionogenic group of the enzyme. Within the pH range of 7.0-8.0, the decrease of the pyruvate kinase activity is due to structural shifts in the enzyme molecule, as a result of which the steric complementariness of the enzyme active center with respect to the substrate (Mg.ADP) is impaired.  相似文献   

10.
The authors studies pH-dependencies of the kinetic parameters (Vm, KM, Vm/KM) and constants of competitive inhibition by phenylacetic acid of penicillinamidase-catalyzed hydrolysis of benzylpenicillin. The experimental data are in agreement with the assumption according to which there are 3 equilibrium ionogenic forms of the enzyme and enzyme-substrate (or enzyme-inhibitor) complexes, i.e. acidic, neutral and alkaline, the neutral form being the only active form of the Michaelis complex. Values of pK in the ionogenic groups controlling interconversions of both the free enzyme (pK1 6.1 and pK2 7.6) and of the enzyme-substrate complex (pKa 6.1 and pK2 10.2 or the enzyzme-inhibitor complex (pK'1 6.1 and pK'2 9.5) were determined. From this and the previously published results it was concluded that the group with pK 6.1 was involved in the catalysis and the group with pK 10.2 in the maintenance of the active conformation of the active centre of penicillinamidase. The ionogenic group with pK 7.6 was apparently involved in the enzyme-substrate binding.  相似文献   

11.
Acyl-CoA : lysolecithin and lysolecithin : lysolecithin acyltransferases, as well as acyl-CoA hydrolase are important enzymes in lung lipid metabolism. They use amphiphylic lipids as substrates and differ in subcellular localization. In this sense, lipid-protein interactions can be an essential factor in their activity. We have studied the effect of albumin, as lipid-binding protein model, in the activities of these enzymes. Acyl-CoA hydrolase was inhibited in the presence of albumin, whereas acyl-CoA : lysolecithin acyltransferase showed a complex effect of activation depending on both albumin concentration and palmitoyl-CoA/lysolecithin molar ratio. Lysolecithin : lysolecithin acyltransferase was affected differentially on its two activities. Hydrolysis remained unaffected and transacylation was inhibited by albumin. These results are consequence of the interaction of albumin with both lipidic substrates that changes their critical micellar concentration.Abbreviations TNS 6-(p-toluidino)-2-naphthalene-sulfonic acid - CMC Critical Micellar Concentration - LP Lysolecithin (1-acyl-sn-glycero-3-phosphocholine) - PalmCoA palmitoyl-CoA  相似文献   

12.
A photoreactive substrate analog of lysophosphatidylcholine (LPC), 1-([(4-azidosalicyl)-12-amino)]dodecanoyl-sn-glycerol-3-phospho cholin e (azido-LPC) was synthesized. Fast atom bombardment mass spectrometry was employed to confirm the structures of azido-LPC and its intermediates. Azido-LPC was used to label putative acyl-CoA:LPC acyltransferase from microsomal membranes of developing soybean cotyledons. The synthesized substrate analog acts as a substrate for the target acyltransferases and phospholipases in the dark. When the microsomal membranes were incubated with the acyl acceptor analog and immediately photolyzed, LPC acyltransferase was irreversibly inhibited. Photoinactivation of the enzyme by the photoprobe decreased in the presence of LPC. Microsomal membranes were photolyzed with 125I-labeled azido-LPC and analyzed by SDS-PAGE followed by autoradiography. These revealed that the analog preferentially labeled 54- and 114-kDa polypeptides. Substrate protected the labeling of both the polypeptides. In our earlier report, the same polypeptides were also labeled with photoreactive acyl-CoA analogs, suggesting that these polypeptides could be putative LPC acyltransferase(s). These results demonstrated that the photoreactive phospholipid analog could be a powerful tool to label acyltransferases involved in lipid biosynthesis.  相似文献   

13.
14.
The inhibition of lysolecithin:lysolecithin acyltransferase by several specific reagents was studied. Diisopropyl fluorophosphate (DFP) completely inhibited both activities at a concentration of 4 mM. Activity was not protected by substrate and the enzyme showed a change in circular dichroism spectrum upon treatment with inhibitor. Phenylmethanesulfonyl fluoride, another serine-specific reagent, did not inhibit either hydrolysis or transacylation. Therefore, we suggest that DFP does not modify an active serine in the catalytic site. p-Hydroxymercury benzoate and N-ethylmaleimide (NEM) abolished both activities of the enzyme. The presence of substrate partially protected against inactivation. Far-uv CD spectrum of NEM-modified enzyme revealed no changes in protein structure. The existence of two classes of essential cysteine residues was deduced from kinetics of NEM inactivation. Both classes differ in NEM reactivity and also in their participation in the catalytic mechanism. A tyrosine-specific reagent, tetranitromethane, also inhibited hydrolysis and transacylation, following first-order kinetics. The partial protection by substrate suggested the possible existence of essential tyrosines near the active site. At pH 5.0 N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline inactivated hydrolysis but not transacylation. However, both of them remained unchanged at pH 6.5. The substrate prevented the loss of hydrolytic ability. Therefore, a carboxyl residue participating just in the catalytic mechanism of hydrolysis is proposed.  相似文献   

15.
Summary Lysolecithin:lysolecithin acyltranferase is an enzyme which in several previous studies has shown a dual behavior catalyzing two types of reaction, transacylation or hydrolysis, with the same substrate. Both activities have shown to be dependent on several environmental conditions and among them, the presence of lipids.The addition of several classes of lipids activated in all the cases the enzyme, decreasing the hydrolysis/transacylation molar ratio. This effect was higher for PC/PE/Chol mixture than for other lipids assayed. Circular dichroism spectra of the enzyme did not show any change with the addition of lipids, concluding that the effect of lipids was not due to any structural change in the protein. The hypothesis has been made of an influence of lipids on the physical state of the substrate as well as, possibly, on the enzyme-substrate interaction.The significance of these effects on the physiological role of lysolecithin:lysolecithin acyltransferase from soluble fraction of rabbit lung is discussed.Abbreviations Chol cholesterol - CMC critical micellar concentration - DPPC dipalmitoylphosphatidylcholine - FA fatty acid - H/T hydrolysis/transacylation molar ratio - LPC lysophosphatidylcholine - PC phosphatidylcholine - PE phosphatidylethanolamine - TG triglyceride - UV ultraviolet  相似文献   

16.
Pulmonary surfactant is a complex of phospholipids and proteins lining the alveolar walls of the lung. It reduces surface tension in the alveoli, and is critical for normal respiration. Pulmonary surfactant phospholipids consist mainly of phosphatidylcholine (PC) and phosphatidylglycerol (PG). Although the phospholipid composition of pulmonary surfactant is well known, the enzyme(s) involved in its biosynthesis have remained obscure. We previously reported the cloning of murine lysophosphatidylcholine acyltransferase 1 (mLPCAT1) as a potential biosynthetic enzyme of pulmonary surfactant phospholipids. mLPCAT1 exhibits lysophosphatidylcholine acyltransferase (LPCAT) and lysophosphatidylglycerol acyltransferase (LPGAT) activities, generating PC and PG, respectively. However, the enzymatic activity of human LPCAT1 (hLPCAT1) remains controversial. We report here that hLPCAT1 possesses LPCAT and LPGAT activities. The activity of hLPCAT1 was inhibited by N-ethylmaleimide, indicating the importance of some cysteine residue(s) for the catalysis. We found a conserved cysteine (Cys211) in hLPCAT1 that is crucial for its activity. Evolutionary analyses of the close homologs of LPCAT1 suggest that it appeared before the evolution of teleosts and indicate that LPCAT1 may have evolved along with the lung to facilitate respiration. hLPCAT1 mRNA is highly expressed in the human lung. We propose that hLPCAT1 is the biosynthetic enzyme of pulmonary surfactant phospholipids.  相似文献   

17.
The investigation of pH-dependence of superprecipitation reaction and ATPase activity of myometrium actomyosin in the interval of pH 5.5-8.0 has detected cupola-shaped curves with maximal activity of both processes by pH 6.5. On the basis of calculating the constants of ionization it was supposed that in the case of actomyosin ATPase imidazole groups of two histidins had an essential role in reaction of ATP hydrolysis and in superprecipitation process--imidazol group of histidine and carboxyl group of asparagin acid. The investigation of [ATP]- and [Mg2+]-dependence of superprecipitation reaction by pH 6.0, 6.5 and 7.0 has demonstrated different pH-sensitiveness of Michaelis constants and maximal speeds relatively Mg2+ and ATP for both processes. It was shown that pH-optimum of ATPase activity of myometrium actomyosin coincided with maximal affinity of actomyosin with ATP and Mg2+ while as for superprecipitation reaction the correlation between value of process by certain pH and affinity with ATP and Mg2+ was not detected.  相似文献   

18.
The optimisation of enzymes for particular application or conditions remains an important target in all protein engineering endeavours. Here, we report a successful strategy for altering the pH-profile of kinetic parameters and to define in detail the molecular mechanism of maize glutathione S-transferase I (GST I). To accomplish this, selected residues from the glutathione binding site (His40, Ser11, Lys41, Asn49, Gln53 and Ser67) were mutated to Ala, and the pH-dependence of the catalytic parameters V(max), and V(max)/K(GSH)(m) of the mutated forms were analysed. The pH-dependence of V(max) for the wild-type enzyme exhibits two transitions in the acidic pH range with pK(a1) of 5.7 and pK(a2) of 6.6. Based on thermodynamic data, site-directed mutagenesis and UV deference spectroscopy, it was concluded that pK(a1) corresponds to GSH carboxylates, whereas the pK(a2) has a conformational origin of the protein. The pH-dependence of V(max)/K(GSH)(m) for the wild-type enzyme exhibits a single transition with pK(a) of 6.28 which was attributed to the thiol ionisation of bound GSH. These findings complement the conclusions about the catalytic mechanism deduced from the crystal structure of the enzyme and provide the basis for rationally designing engineered forms of GST I with valuable properties.  相似文献   

19.
This paper deals with the first attempt to elucidate the chemical mechanism of acyl-CoA: lysolecithin acyltransferase from rabbit lung, a key enzyme in the metabolism of lung surfactant. For this purpose, the pH dependence of kinetic constants as well as the chemical modification of the protein have been studied on a partially-purified preparation. From these experiments, the pKs on which the activity of the enzyme relies have been calculated, giving values of pK1 congruent to 5.5 and pK2 congruent to 10. Analysis of the effect of organic solvents on these pKs and the calculation of the enthalpies of ionization, together with the chemical modification experiments, lead to the conclusion that pK1 is due to an histidine residue, whereas pK2 arises from the amino group of the adenine ring of palmitoyl-CoA. Moreover, chemical modification demonstrated an essential cysteine. A tentative chemical mechanism, in accordance with these results, is proposed and it is hypothesized, in view of other results obtained in our laboratory and from the literature, that the chemical mechanism of acyl transfer to sn-2 position may be common to other enzymes of glycerolipid metabolism.  相似文献   

20.
Previous attempts to purify acyl-CoA:1-acyl-lysophosphatidylcholine acyltransferase (EC 2.3.1.23) have been frustrated by difficulties in solubilizing the enzyme without inactivation. Microsomal preparations, from the developing cotyledons of sunflower, in high concentrations of urea retain activity. Gel-filtration liquid chromatography followed by trypsin treatment (minus urea) resulted in the removal of many contaminating proteins without loss of enzyme activity. SDS/PAGE showed the presence of two major peptides with apparent molecular masses of 52 and 59 kDa. These polypeptides cross-reacted with the radiolabelled photoreactive substrate 1-azido-oleoyl-sn-lysophosphatidyl-[N-methyl-(3)H]choline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号