首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In September 2002, Hurricane Isidore devastated the Yucatán Peninsula, Mexico. To understand its effects on the parasites of aquatic organisms, we analyzed long-term monthly population data of the horn snail Cerithidea pliculosa and its trematode communities in Celestún, Yucatán, Mexico before and after the hurricane (February 2001 to December 2009). Five trematode species occurred in the snail population: Mesostephanus appendiculatoides, Euhaplorchis californiensis, two species of the genus Renicola and one Heterophyidae gen. sp. Because these parasites use snails as first intermediate hosts, fishes as second intermediate hosts and birds as final hosts, their presence in snails depends on food webs. No snails were present at the sampled sites for 6 months after the hurricane. After snails recolonised the site, no trematodes were found in snails until 14 months after the hurricane. It took several years for snail and trematode populations to recover. Our results suggest that the increase in the occurrence of hurricanes predicted due to climate change can impact upon parasites with complex life cycles. However, both the snail populations and their parasite communities eventually reached numbers of individuals and species similar to those before the hurricane. Thus, the trematode parasites of snails can be useful indicators of coastal lagoon ecosystem degradation and recovery.  相似文献   

2.
The infro- and component community dynamics of digenetic trematodes in a freshwater gastropod community were examined over a 33-month period. The gastropod and trematode communities were composed of 17 and 10 species respectively. A total of 9,831 snails was collected; among them, 192 belonging to 14 species were infected by larval trematodes. The size of infected snails was significantly greater than that of healthy ones, and the increase of prevalence with size/age was interpreted as related to the increased probability of ultimately becoming parasitized. The trematode community was rich in allogenic species, but the most frequent trematode (cercariaeum) was autogenic and generalist (a range of 12 snail host species). There was a significantly positive relationship between the frequency of trematode species in the community and the number of first intermediate host species. A great temporal heterogeneity occurred in the prevalence of the snails, mainly attributed to the great temporal fluctuations of snail host populations and the variability of freshwater ecological conditions. The data on the occurrence of larval trematodes in 14 host species over the 33-month study allowed indicate a significant negative correlation between the abundance of gastropods and the prevalence of trematodes.  相似文献   

3.
The impact of a drought on freshwater snail and trematode communities was investigated in a lake. Before the drought, 15 gastropod species (Valvatidae, Planorbidae, Lymnaeidae, Ancylidae, Physidae) and 10 trematode species (cercariaeum, xiphidiocercariae, echinostome, furcocercariae, notocotyle, lophocercous) were recorded. The rate of parasitism was 5.13% and there were 11 host species. The 2 major consequences of desiccation were the disappearance of snails, except Valvata piscinalis and Lymnaea peregra, and the absence of trematodes infecting the surviving snails. As soon as favourable conditions were restored, the littoral area was recolonized, first by hygrophilic and amphibious species, second by aquatic species. Nine months after the drought, the gastropod community was restored. Recolonization by the trematodes was delayed compared with that of gastropods. During the study, the overall prevalence was equal to 0.36% and only 4 trematode species and 5 host species were recorded. Because of the great variability of freshwater ecosystems, long-term studies are necessary to understand the dynamics of snail and trematode populations and determine the regulatory effect of parasitism in the field.  相似文献   

4.
Charlie's Pond (North Carolina) harbors a diverse community of trematodes that infect the planorbid snail Helisoma anceps. Research at the Pond began in 1984 and serves as a foundation on which to investigate long-term changes in trematode communities. In 2002, 2005, and 2006 average size and fecundity of H. anceps were calculated each month, and seasonal trends analyzed with randomization tests. Concomitantly, trematode infections were recorded, and the community composition compared to those from previous studies. Helisoma anceps in 2002, 2005, and 2006 were smaller and less fecund than snails in 1984. The trematode community was consistently diverse, with 11 species recovered in 2006 versus 7 in 1984. However, the prevalence of Halipegus occidualis was much lower than previously observed (60% in 1984) and never exceeded 20% during the latter years. The decline of emergent vegetation is likely contributing to these changes. Aquatic macrophytes increase the surface area for growth of periphyton, the food source of these snails. Limited food supplies result in lower snail growth rates and fecundity. Similarly, emergent vegetation creates foci of transmission for H. occidualis between the frog definitive host and the snail intermediate host. When these areas are lost from the Pond, probability of transmission is reduced, and prevalence in the snail declines.  相似文献   

5.
Many biotic interactions can affect the prevalence and intensity of parasite infections in aquatic snails. Historically, these studies have centered on interactions between trematode parasites or between trematodes and other organisms. The present investigation focuses on the nematode parasite Daubaylia potomaca and its interactions with a commensal, Chaetogaster limnaei limnaei , and a variety of trematode species. It was found that the presence of C. l. limnaei indirectly increased the mean intensity of D. potomaca infections, apparently by acting as a restraint for various trematode parasites, particularly the rediae of Echinostoma sp. In turn, Echinostoma sp. rediae adversely affected the mean intensity of D. potomaca by their consumption of both juvenile and adult nematodes present in tissues of the snail. These organisms not only belong to 3 different phyla but occupy distinct trophic levels as well. The complex interactions among these 3 organisms in the snail host provide an excellent example of biotic interactions influencing the infection dynamics of parasites in aquatic snails.  相似文献   

6.
An unappreciated facet of biodiversity is that rich communities and high abundance may foster parasitism. For parasites that sequentially use different host species throughout complex life cycles, parasite diversity and abundance in 'downstream' hosts should logically increase with the diversity and abundance of 'upstream' hosts (which carry the preceding stages of parasites). Surprisingly, this logical assumption has little empirical support, especially regarding metazoan parasites. Few studies have attempted direct tests of this idea and most have lacked the appropriate scale of investigation. In two different studies, we used time-lapse videography to quantify birds at fine spatial scales, and then related bird communities to larval trematode communities in snail populations sampled at the same small spatial scales. Species richness, species heterogeneity and abundance of final host birds were positively correlated with species richness, species heterogeneity and abundance of trematodes in host snails. Such community-level interactions have rarely been demonstrated and have implications for community theory, epidemiological theory and ecosystem management.  相似文献   

7.
Metacommunity theory has advanced our understanding of how local and regional processes affect the structure of ecological communities. While parasites have largely been omitted from metacommunity research, parasite communities can provide the large sample sizes and discrete boundaries often required for evaluating metacommunity patterns. Here, we used assemblages of flatworm parasites that infect freshwater snails (Helisoma trivolvis) to evaluate three questions: 1) what factors affect individual host infections within ponds? 2) Is the parasite metacommunity structured among ponds? And 3) what is the relative role of local versus regional processes in determining metacommunity structure and species richness among ponds? We examined 10 821 snails from 96 sites in five park complexes in the San Francisco Bay area, California, and found 953 infections from six parasite groups. At the within‐pond level, infection status of host snails correlated positively with individual snail size and pond infection prevalence for all six parasite groups. Using an ordination method to test for metacommunity structure, we found that the parasite metacommunity was organized in a non‐random pattern with species responding individually along an environmental gradient. Based on a model selection approach involving local and regional predictors, parasite species richness and metacommunity structure correlated with both local abiotic (pH and total dissolved nitrogen) and biotic (non‐host mollusk density, and H. trivolvis biomass) factors, with little support for regional predictors. Overall, this trematode metacommunity most closely followed the predictions from the species sorting or mass effects metacommunity paradigm, in which community diversity is filtered by local site characteristics.  相似文献   

8.
The periwinkle, Littorina sitkana, is found throughout the intertidal zone, often in isolated subpopulations. The majority of trematode parasites use snails as intermediate hosts, and decreased survivorship is often observed in snails infected with trematodes. Sampling L. sitkana from four sites in Barkley Sound, British Columbia, Canada, we test the effects of parasitic infection on snail survival using maximum likelihood and Bayesian approaches using the software MARK and WinBUGS. We found that survival of periwinkles and trematode community composition differed among sites, but survival and trematode prevalence were uncorrelated. WinBUGS performed better than MARK in two ways: (1) by allowing the use of information on known mortality, thus preventing survival overestimation; and (2) by giving more stable estimates while testing the effect of body size on snail survival. Our results suggest that snail survival depends heavily on local environmental factors that may vary greatly within a small geographical region. These findings are important because the majority of experimental studies on survival are done on snails from a single location.  相似文献   

9.
Shell damage and parasitic infections are frequent in gastropods, influencing key snail host life‐history traits such as survival, growth, and reproduction. However, their interactions and potential effects on hosts and parasites have never been tested. Host–parasite interactions are particularly interesting in the context of the recently discovered division of labor in trematodes infecting marine snails. Some species have colonies consisting of two different castes present at varying ratios; reproductive members and nonreproductive soldiers specialized in defending the colony. We assessed snail host survival, growth, and shell regeneration in interaction with infections by two trematode species, Philophthalmus sp. and Maritrema novaezealandense, following damage to the shell in the New Zealand mud snail Zeacumantus subcarinatus. We concomitantly assessed caste‐ratio adjustment between nonreproductive soldiers and reproductive members in colonies of the trematode Philophthalmus sp. in response to interspecific competition and shell damage to its snail host. Shell damage, but not parasitic infection, significantly increased snail mortality, likely due to secondary infections by pathogens. However, trematode infection and shell damage did not negatively affect shell regeneration or growth in Z. subcarinatus; infected snails actually produced more new shell than their uninfected counterparts. Both interspecific competition and shell damage to the snail host induced caste‐ratio adjustment in Philophthalmus sp. colonies. The proportion of nonreproductive soldiers increased in response to interspecific competition and host shell damage, likely to defend the parasite colony and potentially the snail host against increasing threats. These results indicate that secondary infections by pathogens following shell damage to snails both significantly increased snail mortality and induced caste‐ratio adjustments in parasites. This is the first evidence that parasites with a division of labor may be able to produce nonreproductive soldiers according to environmental factors other than interspecific competition with other parasites.  相似文献   

10.
By modifying the behaviour and morphology of hosts, parasites may strongly impact host individuals, populations and communities. We examined the effects of a common trematode parasite on its snail host, Batillaria cumingi (Batillariidae). This widespread snail is usually the most abundant invertebrate in salt marshes and mudflats of the northeastern coast of Asia. More than half (52.6%, n=1360) of the snails in our study were infected. We found that snails living in the lower intertidal zone were markedly larger and exhibited different shell morphology than those in the upper intertidal zone. The large morphotypes in the lower tidal zone were all infected by the trematode, Cercaria batillariae (Heterophyidae). We used a transplant experiment, a mark-and-recapture experiment and stable carbon isotope ratios to reveal that snails infected by the trematode move to the lower intertidal zone, resume growth after maturation and consume different resources. By simultaneously changing the morphology and behaviour of individual hosts, this parasite alters the demographics and potentially modifies resource use of the snail population. Since trematodes are common and often abundant in marine and freshwater habitats throughout the world, their effects potentially alter food webs in many systems.  相似文献   

11.
Aim We used published inventories of trematodes in Littorina littorea (L.) and Hydrobia ulvae (Pennant) in European seas to search for two basic biogeographical patterns in the spatial occurrence of various trematode species: (1) do parasite distribution and richness patterns in the two host snails overlap with known ecoregions of free‐living organisms; and (2) does trematode species richness in the snails follow latitudinal or longitudinal gradients? Location North East Atlantic. Methods We used multidimensional scaling (MDS), analysis of similarity (ANOSIM) and analysis of variance (ANOVA) to test whether there were overlaps of parasite distribution and richness with known ecoregions of free‐living organisms. In addition, we used linear regression analyses to test whether trematode richness in snails (corrected for sampling effort) was correlated with the latitude or longitude of the sampling sites. Results When corrected for sampling effort, mean trematode species richness per site did not differ among the different ecoregions in L. littorea. In contrast, in H. ulvae, mean species richness was much lower for sites from the Celtic Sea compared with sites from the Baltic Sea and the North Sea. Based on the results of MDS analyses, trematode species composition was distinct among ecoregions; in particular, communities from the Baltic Sea differed markedly from communities in the Celtic Sea, for both snail species. Latitude and longitude were not significantly correlated with parasite species richness in either snail species. Most trematode species had restricted distributions, and only three species in L. littorea and five species in H. ulvae occurred at more than 50% of the sites. Main conclusions There is more structure in the large‐scale distribution of trematodes in gastropods than one would expect from the large‐scale dispersal capabilities of their bird and fish final hosts. We propose mechanisms based both on limited dispersal via fish and bird final hosts and on gradients in environmental factors to explain the observed patterns.  相似文献   

12.
A. D. Rosemond 《Oecologia》1993,94(4):585-594
Using stream-side, flow-through channels, I tested for the effects of nutrients (NU) (nitrogen plus phosphorus), irradiance (L), and snail grazing (G) on a benthic algal community in a small, forested stream. Grazed communities were-dominated by a chlorophyte (basal cells ofStigeoclonium) and a cyanophyte (Chamaesiphon investiens), whereas ungrazed communities were comprised almost entirely of diatoms, regardless of nutrient and light levels. Snails maintained low algal biomass in all grazed treatments, presumably by consuming increased algal production in treatments to which L and NU were increased. When nutrients were increased, cellular nutrient content increased under ambient conditions (shaded, grazed) and biomass and productivity increased when snails were removed and light was increased. Together, nutrients and light had positive effects and grazing had negative effects on biomass (chlorophylla, AFDM, algal biovolume) and chlorophyll-and areal-specific productivity in ANOVAs. However, in most cases, only means from treatments in which all three factors were manipulated (ungrazed, +NU&L treatments) were significantly different from controls; effects of single factors were generally undetectable. These results indicate that all three factors simultaneously limited algal biomass and productivity in this stream during the summer months. Additionally, the effects of these factors in combination were in some cases different from the effects of single factors. For example, light had slight negative effects on some biomass parameters when added at ambient snail densities and nutrient concentrations, but had strong positive effects in conjunction with nutrient addition and snail removal. This study demonstrates that algal biomass and productivity can be under multiple constraints by irradiance, nutrients, and herbivores and indicates the need to employ multifactor experiments to test for such interactive effects.  相似文献   

13.
1. Variation in life-history strategies among conspecific populations indicates the action of local selective pressures; recently, parasitism has been suggested as one of these local forces. 2. Effects of trematode infections on reproductive effort, juvenile growth, size at maturity and susceptibility were investigated among different natural populations of the marine gastropod Zeacumantus subcarinatus, Sowerby 1855. 3. Reproductive effort was not higher in uninfected snails from populations experiencing a high trematode prevalence, but females from high prevalence populations produced significantly larger offspring compared with their conspecifics from other populations. 4. Juvenile growth rate was significantly higher in laboratory-raised snails originating from females in a high prevalence population compared with other populations. 5. Size at maturity, determined by the appearance of functional gonads, was significantly and negatively related to trematode prevalence, and positively related to mean snail size, across 10 populations in the study area. 6. There was no evidence of different host resistance against trematodes in sentinel snails from high and low prevalence populations exposed to the same infection pressure in the field. 7. Our results strongly indicate that Z. subcarinatus adapt to trematodes by reaching maturity early, thereby maximizing their chance of reproducing in populations experiencing a high prevalence of infection by castrating trematodes.  相似文献   

14.
Species face multiple selective pressures that may require opposing responses to mitigate. On rocky shorelines, fitness of the intertidal snail Littorina littorea is determined by both parasitism and predation. We experimentally demonstrated that L. littorea was at greatest risk of infection from trematode parasites high in the intertidal zone where it was in closest proximity to abundant gull feces (the vector for the snail's parasites). However, because of extreme, size‐selective predation pressure at low tidal elevations, small snails often live high in the intertidal until they have grown sufficiently large. By prolonging their exposure to infection higher on the shore, ontogenetic responses to predation risk accentuate parasite risk. Counterintuitively, snails exhibited the highest trematode prevalence at the lowest tidal elevations where they had almost no risk of contracting infection. By carrying contracted infections into the lowest tidal zones, the larger, predation‐resistant snails invert hotspots of infection risk and prevalence, underscoring that size‐dependent selection pressures can decouple infection process and pattern even over small scales.  相似文献   

15.
Infection with larval trematodes sometimes alters the phenotypes of their snail hosts. While some trematode species have distinct effects on host phenotypes, it is still unclear how snail phenotypes are altered when they are parasitized with multiple trematode species. Here, we report that double infection with trematode species averages the effects of parasitic alteration on host phenotype. We found that snail hosts Batillaria attramentaria (Batillariidae) infected with Cercaria batillariae (Heterophyidae) have abnormally large shells and distribute in lower areas of the intertidal zone. Snails with another dominant trematode species, the renicolid cercaria I (Renicolidae), have slightly larger shells and distribute in upper areas of the intertidal zone. A number of double infections with both trematodes was observed in this study. Snails infected with both trematode species exhibited an intermediate size and inhabited a depth between those of snails solely infected with either trematode species, suggesting that the two trematodes simultaneously affected the snail phenotypes. Because altered host phenotypes are frequently beneficial to parasites, two trematode species may compete for successful transmission through alteration of host phenotypes.  相似文献   

16.
Several studies have suggested that the fitness of a parasite can be directly impacted by the quality of its host. In such cases, selective pressures could act to funnel parasites towards the highest-quality hosts in a population. The results of this study demonstrate that snail host quality is strongly correlated with spatial patterning in trematode infections and that habitat type is the underlying driver for both of these variables. Two trematodes (Himasthla quissetensis and Zoogonus rubellus) with very different life cycles assume the same spatial infection pattern in populations of the first intermediate host (Ilyanassa obsoleta) in coastal marsh habitats. Infected snails are disproportionately recovered from intertidal panne habitats, which offer more hospitable environs for snails than do adjacent habitats (intertidal creeks, coastal flats, and subtidal creeks), in terms of protection from turbulence and wave action, as well as the availability of food stuffs. Snails in intertidal panne habitats are of higher quality when assessed in terms of average size-specific mass, growth rate, and fecundity. In mark-recapture experiments, snails frequently dispersed into intertidal pannes but were never observed leaving them. In addition, field experiments demonstrate that snails confined to intertidal panne habitats are disproportionately infected by both trematode species, relative to conspecifics confined to adjacent habitats. Laboratory experiments show that infected snails suffer significant energetic losses and consume more than uninfected conspecifics, suggesting that infected snails in intertidal pannes may survive better than in adjacent habitats. We speculate that 1 possible mechanism for the observed patterns is that the life cycles of both trematode species allows them to contact the highest-quality snails in this marsh ecosystem.  相似文献   

17.
By infecting multiple host species and acting as a food resource, parasites can affect food web topography and contribute to ecosystem energy transfer. Owing to the remarkable secondary production of some taxa, parasite biomass – although cryptic – can be comparable to other invertebrate and vertebrate groups. More resolved estimates of parasite biomass are therefore needed to understand parasite interactions, their consequences for host fitness, and potential influences on ecosystem energetics. We developed an approach to quantify the masses of helminth parasites and compared our results with those of biovolume‐based approaches. Specifically, we massed larval and adult parasites representing 13 species and five life stages of trematodes and cestodes from snail and amphibian hosts. We used a replicated regression approach to quantify dry mass and compared these values with indirect biovolume estimates to test the validity of density assumptions. Our technique provided precise estimates (R2 from 0.69 to 0.98) of biomass across a wide range of parasite morphotypes and sizes. Individual parasites ranged in mass from 0.368 ± 0.041 to 320 ± 98.1 μg. Among trematodes, adult parasites tended to be the largest followed by rediae, with nonclonal larval stages (metacercariae and cercariae) as the smallest. Among similar morphotypes, direct estimates of dry mass and the traditional biovolume technique provided generally comparable estimates (although important exceptions also emerged). Finally, we present generalized length‐mass regression equations to calculate trematode mass from length measurements, and discuss the most efficient use of limited numbers of parasites. By providing a novel method of directly estimating parasite biomass while also helping to validate more traditional methods involving length‐mass conversion, our findings aim to facilitate future investigations into the ecological significance of parasites, particularly with respect to ecosystem energetics. In addition, this novel technique can be applied to a wide range of difficult‐to‐mass organisms.  相似文献   

18.
With ecosystems increasingly supporting multiple invasive species, interactions among invaders could magnify or ameliorate the undesired consequences for native communities and ecosystems. We evaluated the individual and combined effects of rusty crayfish (Orconectes rusticus) and Chinese mystery snails [Bellamya (=Cipangopaludina) chinensis] on native snail communities (Physa, Helisoma and Lymnaea sp.) and ecosystem attributes (algal chlorophyll a and nutrient concentrations). Both invaders are widespread in the USA and commonly co-occur within northern temperate lakes, underscoring the importance of understanding their singular and joint effects. An outdoor mesocosm experiment revealed that while the two invaders had only weakly negative effects upon one another, both negatively affected the abundance and biomass of native snails, and their combined presence drove one native species to extinction and reduced a second by >95%. Owing to its larger size and thicker shell, adult Bellamya were protected from crayfish attack relative to native species (especially Physa and Lymnaea), suggesting the co-occurrence of these invaders in nature could have elevated consequences for native communities. The per capita impacts of Orconectes (a snail predator) on native snails were substantially greater than those of Bellamya (a snail competitor). Crayfish predation also had a cascading effect by reducing native snail biomass, leading to increased periphyton growth. Bellamya, in contrast, reduced periphyton biomass, likely causing a reduction in growth by native lymnaeid snails. Bellamya also increased water column N:P ratio, possibly because of a low P excretion rate relative to native snail species. Together, these findings highlight the importance of understanding interactions among invasive species, which can have significant community- and ecosystem-level effects.  相似文献   

19.
We assessed how spatial and temporal heterogeneity and competition structure larval trematode communities in the pulmonate snail Lymnaea stagnalis . To postulate a dominance hierarchy, mark-release-recapture was used to monitor replacements of trematode species within snails over time. In addition, we sampled the trematode community in snails in different ponds in 3 consecutive years. A total of 7,623 snails (10,382 capture events) was sampled in 7 fishponds in the Jind?ich?v Hradec and T?eboň areas in South Bohemia (Czech Republic) from August 2006 to October 2008. Overall, 39% of snails were infected by a community of 14 trematode species; 7% of snails were infected with more than 1 trematode species (constituting 16 double- and 4 triple-species combinations). Results of the null-model analyses suggested that spatial heterogeneity in recruitment among ponds isolated trematode species from each other, whereas seasonal pulses in recruitment increased species interactions in some ponds. Competitive exclusion among trematodes led to a rarity of multiple infections compared to null-model expectations. Competitive relationships among trematode species were hypothesized as a dominance hierarchy based on direct evidence of replacement and invasion and on indirect evidence. Seven top dominant species with putatively similar competitive abilities (6 rediae and 1 sporocyst species) reduced the prevalence of the other trematode species developing in sporocysts only.  相似文献   

20.
The role of parasites in a marine invasion was assessed by first examining regional patterns of trematode parasitism in the introduced Japanese mud snail, Batillaria cumingi (= B. attramentaria), in nearly all of its introduced range along the Pacific Coast of North America. Only one parasite species, which was itself a non-native species, Cercaria batillariae was recovered. Its prevalence ranged from 3 to 86%. Trematode diversity and prevalence in B. cumingi and a native sympatric mud snail, Cerithidea californica, were also compared in Bolinas Lagoon, California. Prevalence of larval trematodes infecting snails as first intermediate hosts was not significantly different (14% in B. cumingi vs 15% in C. californica). However, while the non-native snail was parasitized only by one introduced trematode species, the native snail was parasitized by 10 native trematode species. Furthermore, only the native, C. californica, was infected as a second intermediate host, by Acanthoparyphium spinulosum(78% prevalence). Given the high host specificity of trematodes for first intermediate hosts, in marshes where B. cumingi is competitively excluding C. californica, 10 or more native trematodes will also become locally extinct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号