首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To assess their effects on the conidiation rhythm in Neurospora, 14 saturated fatty acids from 6 to 24 carbons long were used to supplement the bd csp and bd csp cel strains. Both strains express a circadian spore-forming rhythm when grown on solid media; the cel mutation confers a partial fatty acid requirement. Fatty acid supplements from 8 to 13 carbons long lengthened the free-running period of bd csp cel compared with the control value of 21 h; the maximal effect (33 h) was obtained with nonanoic acid (9:0) at a concentration of 5 x 10(-4) M. In contrast, the period of bd csp remained unchanged under all experimental conditions. The short-chain fatty acids (<14 carbons) reduced the rate of advance of the growth front in both strains, compared with unsupplemented controls. However, this inhibition did not appear to be responsible for the lengthened periods in bd csp cel. Nor was direct incorporation of the short-chain (period-lengthening) fatty acids into mycelial total lipids responsible, since such incorporation was not observed. In fact, extensive metabolic conversion of these supplements by both strains was indicated by the disappearance of short-chain fatty acids from the agar media coupled with their absence in mycelial lipids, and by the liberation of (14)CO(2) from cultures supplemented with [1-(14)C]lauric acid (12:0).  相似文献   

2.
Employing a fatty acid-requiring strain (bd csp cel) of Neurospora crassa, the 21.5-h period of the circadian spore-forming rhythm was manipulated by fatty acid supplementation. The addition to the medium of an unsaturated fatty acid (oleic, linoleic, or linolenic acid) lengthened the period to 26, 40, or 33 h, respectively. Ther period-lengthening effect of linoleic acid was proportional to its concentration up to 1.3 X 10(-4) M, and also was reversed by the addition to the medium of a saturated fatty acid, palmitic acid. None of these period-lengthening effects was observed in the prototrophic strain (bd csp cel+).  相似文献   

3.
The fatty acids oleic, linoleic, and linolenic, each of which has a cis double bond at the delta 9 position, are known to lengthen the circadian period of conidiation (spore formation) of strains of Neurospora crassa carrying the cel mutation. cel confers a partial fatty acid requirement on the organism and has been used to promote incorporation of exogenous fatty acids. To test whether a physical effect imparted by the cis double bonds, such as increased membrane fluidity, is critical for the perturbation of the rhythm, various isomers of these fatty acids were supplemented to the bd csp cel strain. Positional isomers of oleic acid, such as petroselinic (delta 6) and vaccenic (delta 11) acids, and longer-chain isomers, such as eicosenoic (delta 11) and erucic (delta 13) acids, did not lengthen the rhythm. The shorter-chain palmitoleic (delta 9) acid did not give a consistent lengthening of the rhythm; it may be elongated to vaccenic acid. In contrast, gamma-linolenic acid (delta 6,9,12) dramatically lengthened the period. Linoelaidic acid (the trans,trans isomer of linoleic acid) lengthened the period at 22 degrees C, but elaidic acid (the trans isomer of oleic acid) did not. Elaidic acid was shown to exert a lengthening effect, but only at lower temperatures. The data do not support a direct physical action as the source of the fatty acids' "chronobiotic" ability.  相似文献   

4.
Saturated Fatty Acid Requirer of Neurospora crassa   总被引:11,自引:6,他引:5       下载免费PDF全文
Dietary saturated fatty acids containing 12- to 18-carbon atoms satisfy growth requirements of Neurospora crassa mutant cel (previously named ol; Perkins et al., reference 11); unsaturated fatty acids are synthesized by direct desaturation when an appropriate saturate is available. Odd-chain saturates, 15 carbons and 17 carbons long, satisfy the requirement, and elaidic acid (18:1 Delta(9)trans) results in slow growth. Oleic acid and other cis-unsaturated fatty acids do not satisfy growth requirements; however, oleic acid plus elaidic acid result in growth at a faster rate than elaidate alone. The use of a spin-label fatty acid reveals that hyphae produced by cel during a slow basal level of growth have lipids that reflect a relatively rigid state of viscosity compared to wild type. cel Supplemented with fatty acids and wild type supplemented in the same way have lipids of the same viscosities as reflected by electron spin resonance.  相似文献   

5.
Cellular transport and metabolism of fatty acids are integral components of lipid metabolism, but the mechanisms and regulation involved are poorly understood. A variety of commercially available fluorescent analogs of fatty acids, are potentially useful probes for the study of lipid metabolism by such techniques as cell sorting and fluorescence microscopy. We have screened a series of fluorescent fatty acids to identify analogs that would reliably simulate the metabolic behavior of natural fatty acids; i.e., similar kinetics of transport, of intracellular movement, and of metabolic fate. The metabolic behavior of these analogs was compared with those of some naturally occurring fatty acids in HepG2 cells, which are a good model of some aspects of hepatic function. Fluorescent analogs containing polar fluorophores yielded the lowest rates of cellular uptake and conversion to acylated lipid products. Similarly, fluorescent analogs with the fluorophore located near the carboxylic acid group were poorly metabolized. Fatty acid analogs containing anthracene or pyrene at the n-terminus of the acyl chain were the most extensively incorporated into cellular lipids. The types and amounts of labeled lipid products formed from these analogs and from natural fatty acids were similar. Pyrene-labeled analogs have spectral properties that can be measured fluorometrically at very low concentrations. Therefore, we compared the cellular metabolism of 12-(1-pyrenyl)dodecanoic acid with those of palmitic and oleic acids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We have cultivated the cel mutant of Neurospora crassa defective in cytosolic fatty acid synthesis with [2-14C]malonate and found radioactivity covalently attached to the mitochondrial acyl-carrier protein (ACP), a subunit of the respiratory chain NADH:ubiquinone oxidoreductase. We purified the ACP by reverse-phase HPLC: the bound acyl groups were trans-esterified to methylesters and analyzed by gas chromatography. The saturated C6 to C18 fatty acids and oleic acid were detected. De novo synthesis and desaturation of fatty acids at the ACP subunit of NADH:ubiquinone oxidoreductase and use of the products of this mitochondrial synthetic pathway for cardiolipin synthesis is discussed.  相似文献   

7.
The cel mutant of Neurospora, partially blocked in fatty acid synthesis and lacking temperature compensation of its circadian rhythm below 22 degrees C, had a phospholipid fatty acid composition in liquid shaker culture distinctly different from that of a cel+ control strain. During growth, cel+ exhibited a reproducible increase in its linoleic acid level from about 32 to a plateau at 63 mol%, and a corresponding decrease in its linolenic acid level from about 40 to a plateau at 10 mol%. The level of palmitic acid was constant at 19 mol%. In the cel strain, the linoleic acid level was constant at 54 mol% while the palmitic acid level increased from about 12 to about 23 mol%. Supplementation with palmitic or linoleic acids altered the patterns of fatty acid composition of cel, but did not affect the pattern of cel+. Altered fatty acid composition cosegregated with the cel marker. The mitochondrial phospholipids of cel in liquid culture also had abnormal fatty acid composition, as did the whole mycelial phospholipids on solid medium. These results are consistent with the involvement of membrane homeostasis in the temperature compensation of circadian rhythms.  相似文献   

8.
Stimulated neutrophils produce hypochlorous acid (HOCl) via the myeloperoxidase-catalyzed reaction of hydrogen peroxide with chloride. The reactions of HOCl with oleic, linoleic, and arachidonic acids both as free fatty acids or bound in phosphatidylcholine have been studied. The products were identified by gas chromatography-mass spectrometry of the methylated and trimethylsilylated derivatives. Oleic acid was converted to the two 9,10-chlorohydrin isomers in near stoichiometric yield. Linoleic acid, at low HOCl:fatty acid ratios, yielded predominantly a mixture of the four possible monochlorohydrin isomers. Bischlorohydrins were also formed, in increasing amounts at higher HOCl concentrations. Arachidonic acid gave a complex mixture of mono- and bischlorohydrins, the relative proportions depending on the amount of HOCl added. Linoleic acid appears to be slightly more reactive than oleic acid with HOCl. Reactions of oleic and linoleic acids with myeloperoxidase, hydrogen peroxide, and chloride gave chlorohydrin products identical to those with HOCl. Lipid chlorohydrins have received little attention as products of reactions of neutrophil oxidants. They are more polar than the parent fatty acids, and if formed in cell membranes could cause disruption to membrane structure. Since cellular targets for HOCl appear to be membrane constituents, chlorohydrin formation from unsaturated lipids could be significant in neutrophil-mediated cytotoxicity.  相似文献   

9.
The permeability properties of liposomes prepared at pH 8.7 from a fatty acid and either methyl oleate or methyl elaidate, with or without cholesterol, were investigated. The fatty acids used were oleic acid, elaidic acid, and the selenium-containing fatty acids 9-selenaheptadecanoic acid and 13-selenaheneicosanoic acid. The liposomes trapped sucrose and carboxyfluorescein. Their volume change resulting from osmotic shock was directly proportional to the change in absorbance (light scattering). Liposomes prepared from oleic acid and either methyl oleate or methyl elaidate underwent osmotic swelling much more slowly than liposomes prepared from elaidic acid and either methyl oleate or methyl elaidate. Incorporation of cholesterol decreased the initial rate of erythritol permeation, especially in liposomes containing methyl oleate. The swelling rates of liposomes prepared with the selenium-containing fatty acids indicated that incorporation of methyl elaidate gave more tightly packed bilayers than did incorporation of methyl oleate. The effect of cholesterol on the initial rate of erythritol influx was greater in oleic acid and elaidic acid liposomes than in selenium-containing fatty acid liposomes, indicating that the large bulk of the selenium heteroatom suppresses the ability of cholesterol to interact with the hydrocarbon chain.  相似文献   

10.
The surface pressures of α-tocopherol analogs, fatty acids, and their mixtures were measured in their spread monolayers at an air—water interface. The surface pressure—area isotherms for the mixed monolayers of α-tocopherol and either stearic acid, oleic acid or linoleic acid deviated positively from those calculated on the basis of the additivity rule, and the magnitude depended on the length of the phytyl side chain in α-tocopherol and on the degree of unsaturation of the fatty acid chains. Lysosome membranes of mouse liver were stabilized by addition of α-tocopherol. A decrease in the length of the phytyl side chain in α-tocopherol reduced its ability to stabilize lysosome membranes. A good correlation was obtained between the extent of stabilizing activity of α-tocopherol analogs on lysosome membranes and the degree of positive deviation of the surface pressure for their mixtures with fatty acids.  相似文献   

11.
The fatty acid composition of the total lipids, phospholipids and neutral lipids of log-phase shaker cultures of the bd (band) strain of Neurospora crassa, were measured every 2 h for an 8-h period following a temperature increase from 22 to 40 degrees C. For purposes of comparison, the fatty acid composition was also measured when cultures were grown from inoculation at temperatures between 22 and 40 degrees C. In the phospholipids, the temperature jump produced, over a 4-6 hour span, a linear decrease in the linolenic acid (18:3) content from 31 to 10 mol% and an increase in the linoleic acid (18:2) content from 41 to 45 mol% for a few hours, followed by a decrease to 38 mol%. The oleic acid (18:1) content increased, after a 2 h lag, from 5 to 26 mol%. The temperature increase caused a decrease in the double bond index from 180 to 135 but produced no changes in the mol% of the saturated fatty acids, the ratio of saturated to unsaturated fatty acids, the total amount of fatty acids per gram dry weight, or the growth rate of the cultures. After the switch to 40 degrees C the total amount of 18:3 per flask increased only slightly over the 8 h period, indicating that there was little loss of 18:3 from the mycelia by beta-oxidation, or by conversion to other fatty acids. Since the mass of the culture increased some 4-fold in this time, it suggests that the decrease in the mole percent of 18:3 is probably due to a decrease in the rate of synthesis of 18:3.  相似文献   

12.
The total lipid and free fatty acid contents of Isotricha intestinalis, Entodinium simplex, and the rumen bacterial flora of the respective protozoa were determined. Warburg manometric data showed that the sodium salts of tributyrin, oleic, and acetic acids stimulated gas production in I. intestinalis, whereas tributyrin was stimulatory with E. simplex and less active with oleic and acetic acids. Rumen bacteria provided fatty acids produced lower manometric gaseous increases when compared with the protozoa. Volatile fatty acids were produced by I. intestinalis and rumen bacteria with tributyrin, but not with tripalmitin. Sodium oleate gave little volatile fatty acid response with I. intestinalis or rumen bacteria. Washed suspensions of I. intestinalis and rumen bacteria concentrated C14-labeled oleic, palmitic, stearic, and linoleic acids within the cells during short incubation periods. Autoradiographs demonstrated the conversion of C14-labeled oleic, palmitic, stearic, linoleic, and acetic acids in the rumen protozoa and bacterial cells.  相似文献   

13.
Young adult rats, either control or essential fatty acid deficient, were administered either [3-H] oleic acid or [3-H] arachidonic acid by stomach tube. In addition, a group of control rats was given [3-H] palmitic acid. The rats were killed at various times therafter, and the radioactivity of the lipids of brain and plasma was examined. In confirmation of previous work, the blood lipid label was found to rise rapidly and then fall, wheras the activity of brain lipids increased slowly and did not show a decline through the 24-h period studied. Analysis of the brain uptake data according to first-order kinetics confirmed the impressions gained from visual inspection of the data. The initial rate of uptake of arachidonic acid was about 4.5 times that of oleic acid in control animals and in deficient animals. Essential fatty acid deficiency, however, did not induce an altered rate of uptake for either oleic acid or arachidonic acid. The rate of uptake of palmitic acid by control rats was not significantly different from that of oleic acid. Even though the initial rates of incorporation of oleic and arachidonic acids were not changed during essential fatty acid deficiency, the final levels of radioactivity obtained in brain lipids were higher in deficient rats with both fatty acids. The plateau value obtained with oleic acid was 1.5 times higher in deficient animals, while the plateau value for arachidonic acid was 1.7 times higher. An experiment in which deficient animals were allowed access to a control diet for 12 or 24 h prior to the labeling experiment suggested that the higher levels of radioactivity found in brain lipids of deficient animals was not due to an isotope dilution effect. Such animals still displayed the labeling pattern of deficient animals with arachidonic acid, while the results with oleic acid varied somewhat. Our results suggest that essential fatty acid deficiency does not alter the ability of the brain to take up the fatty acids studied. However, the fatty acids, especially arachidonic, are retained in the brain to a greater extent in the deficient animals.  相似文献   

14.
Fluctuations in fatty acid composition were examined in cotton (Gossypium hirsutum L. cv Deltapine 50) leaves during light-dark cycles of 12:12 h and under continuous light and were correlated to the rhythmic changes in chilling (5[deg]C) resistance (CR) and heat (53[deg]C) resistance (HR). The chilling-resistant and chilling-sensitive phases developed in the dark or the light period, respectively, and this rhythm persisted under continuous light for three cycles. The heat-resistant phase developed in the light period and an additional peak of HR occurred in the middle of the dark period. Under continuous light, only one peak of HR developed, lasting from the middle of the subjective night to the middle of the subjective day. The amounts of palmitic and oleic acids were constant during the light-dark cycle and under continuous light, but those of linoleic and linolenic acids fluctuated, attaining a high level in the middle of the dark period or the subjective night, and a low level in the middle of the light period or the subjective day. A low temperature of 20[deg]C induced CR and affected changes in fatty acid composition similar to those that occurred during the daily CR phase. A high temperature of 40[deg]C induced HR but did not affect changes in fatty acid composition. The results in their entirety show that the CR that develops rhythmically as well as the low-temperature-induced CR coincide with increased levels of polyunsaturated fatty acids. No correlation is found between changes in fatty acid composition and the HR that develops rhythmically or the high-temperature-induced HR.  相似文献   

15.
Biological Control of Phytopathogenic Fungi by Fatty Acids   总被引:1,自引:0,他引:1  
Liu S  Ruan W  Li J  Xu H  Wang J  Gao Y  Wang J 《Mycopathologia》2008,166(2):93-102
The aim of the present study was to evaluate the antifungal activity of fatty acids against phytopathogenic fungi. Two pot experiments were conducted by mixing palmitic and oleic acids in the soil in which poor plant growth was observed. In addition, the antifungal activities of nine fatty acids (butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, oleic acid, and linoleic acid) against four phytopathogenic fungi: Alternaria solani, Colletotrichum lagenarium, Fusarium oxysporum f. sp. Cucumerinum, and Fusarium oxysporum f. sp. lycopersici, were assessed by measuring mycelial growth and spore germination via Petri dish assay. The results of the pot experiments showed that the mixture of palmitic and oleic acids enhanced the growth of the seedlings of continuous-tomato and continuous-cucumber. Except for oleic acid, in the Petri dish assay, the fatty acids tested were observed to inhibit the mycelial growth of one or more tested fungi. In addition to the suppression of mycelial growth, butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, and palmitic acid showed an inhibitory effect against spore germination and the extent of inhibition varied with both the type of fatty acids, and the fungi. In particular, capric acid displayed strong inhibitory effect against C. lagenarium on the mycelial growth and spore germination. The saturated fatty acids, i.e. palmitic acids, showed stronger antifungal activity than the unsaturated fatty acids, i.e. oleic acid. It suggests that fatty acids might be applicable to exploring for alternative approaches to integrated control of phytopathogens.  相似文献   

16.
Non-enzymatic heme formation from equimolar amounts of porphyrin and iron was investigated. When mesoporphyrin IX and iron citrate were incubated with oleic acid and dithiothreitol at 37 degrees C in vacuo, mesoheme was formed in a high yield. When protoporphyrin IX and deuteroporphyrin IX were used, protoheme and deuteroheme were formed, respectively. Cysteine or 2-mercaptoethanol instead of dithiothreitol also resulted in the formation of heme. Linoleic acid was as effective as oleic acid, but at 37 degrees C, saturated fatty acids and phospholipids gave low yields. When incubation was at 70 degrees C saturated fatty acids as well as unsaturated fatty acids produced a large amount of heme. The optimum pH was 8.8. By increasing the concentration of Triton X-100 to 0.1%, heme formation decreased, and at concentrations above this level, completely disappeared. The conditions of non-enzymatic heme reaction presented here seem to be useful in elucidation of the mechanism of metalloporphyrin formation.  相似文献   

17.
The effects of eicosapentaenoic acid and oleic acid on lipid synthesis and secretion by HepG2 cells were examined to identify fatty acid specific changes in lipid metabolism that might indicate a basis for the hypolipidemic effect attributed to eicosapentaenoic acid and related n-3 fatty acids. Cellular glycerolipid synthesis, as determined by [3H]glycerol incorporation, increased in a concentration-dependent manner in cells incubated 4 h with either eicosapentaenoic acid or oleic acid at concentrations between 10 and 300 microM. [3H]Glycerol-labeled triglyceride was the principal lipid formed and increased approximately fourfold with the addition of 300 microM oleic acid or eicosapentaenoic acid. Both fatty acids also produced a 20-40% increase in the total cellular triglyceride mass. Although both fatty acids increased triglyceride synthesis to similar extents, eicosapentaenoic acid-treated cells secreted 40% less [3H]glycerol-labeled triglyceride than cells fed oleic acid. Cellular synthesis of [3H]glycerol-labeled phosphatidylethanolamine and phosphatidylcholine was also reduced by 40% and 30%, respectively, in cells given eicosapentaenoic acid versus cells given oleic acid. Similar results were obtained in determinations of radiolabeled oleic acid and eicosapentaenoic acid incorporation. At a fatty acid concentration of 300 microM, incorporation of radiolabeled eicosapentaenoic acid into cellular triglycerides was greater than the incorporation obtained with radiolabeled oleic acid, while the reverse relationship was observed for the formation of phosphatidylcholine from the same fatty acids. Eicosapentaenoic acid is as potent as oleic acid in inducing triglyceride synthesis but eicosapentaenoic acid is a poorer substrate than oleic acid for phospholipid synthesis. The intracellular rise in de novo-synthesized triglyceride in eicosapentaenoic acid-treated cells without corresponding increases in triglyceride secretion suggests that eicosapentaenoic acid is less effective than oleic acid in promoting the transfer of de novo-synthesized triglyceride to nascent very low density lipoproteins.  相似文献   

18.
A naturally occurring fatty acid-requiring Butyrivibrio sp. (strain S2), isolated from the ovine rumen, deacylates plant galactolipids, phospholipids and sulpholipids to obtain sufficient fatty acid for growth. Growth in vitro was promoted by adding to the growth medium a single straight-chain saturated fatty acid (C13 to C18) or vaccenic acid. Palmitoleic and oleic acids also supported growth but gave lengthy lag phases probably due to their toxicity. Linolenic and linoleic acids supported good growth but they were completely hydrogenated to trans-11-octadecenoic acid which was incorporated into the bacterial complex lipids. No chain elongation, chain shortening or desaturation of the added fatty acids occurred and all were substantially incorporated into bacterial lipids of the plasmalogen type, partially as a new type of hydrophobic grouping derived from two molecules of fatty acid. The absence of fatty acid unsaturation poses the question of the maintenance of membrane fluidity within this bacterium.  相似文献   

19.
Phosphatidylglycerol and oleic acid had differential effects on cytidylyltransferase activity in cytosol and microsomes. The low-molecular-weight cytidylyltransferase in cytosol was stimulated more by phosphatidylglycerol than by oleic acid, whereas microsomal activity was stimulated more by oleic acid than by phosphatidylglycerol. Microsomal activity was stimulated by several unsaturated fatty acids but was not stimulated by saturated fatty acids. Bovine serum albumin decreased cytidylyltransferase activity in microsomes in the presence or absence of oleic acid but did not alter the activity measured in the presence of phosphatidylglycerol. The addition of oleic acid to albumin/microsome mixtures in amounts exceeding the binding capacity of albumin lead to complete recovery of the oleic acid stimulation. The addition of oleic acid to postmitochondrial supernatants resulted in a translocation of cytidylyltransferase activity from cytosol to microsome. The magnitude of the shift was severalfold greater with fetal preparations than adult. The free fatty acid content of microsomes increased coincident with the translocation. Bovine serum albumin, added to postmitochondrial supernatants, caused a release of cytidylyltransferase from microsomes to cytosol and a corresponding decrease in microsomal free fatty acid content. The amount of cytidylyltransferase activity in microsomes increased shortly after birth. The increase was accompanied by an increase in free fatty acid content of the microsomes. The increase in cytidylyltransferase activity and free fatty acids which occurred in vivo following birth was nearly identical to that obtained by adding oleic acid to postmitochondrial supernatants from fetal lung. We conclude that free fatty acids may affect the intracellular activity of cytidylyltransferase by promoting the translocation of inactive cytosolic forms to microsomes as well as by stimulating microsomal bound activity.  相似文献   

20.
During feeding experiments with [omega-14C]oleic acid and [omega-14c]nervonic acid to adult rats, 14C-labelled C26, C28 and C30 fatty acids were recovered from the intestinal mucosa, liver, plasma, kidney and stools. The structures of these fatty acids were determined by g.l.c., radio-g.l.c. and mass spectrometry. The Schmidt and Ginger degradation methods indicated that most of the 14C found in these extra-long fatty acids remained in the omega position. These radioactive extra-long fatty acids were found mainly in the polar lipids of rats killed 3 or 15 h after being fed on labelled oleic acid or nervonic acid. Rats killed 63 h later yielded only traces of these extra-long fatty acids. When the rats were given antibiotics or received the same radioactive fatty acids by intravenous injection, the labelled extra-long fatty acids could not be detected in any of the tissues. We conclude that they were probably synthesized by elongation of oleic acid and nervonic acid by intestinal micro-organisms (probably yeasts) and then absorbed by the intestinal mucosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号