首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
We have cloned a chick homologue of Drosophila dachshund (dac), termed Dach1. Dach1 is the orthologue of mouse and human Dac/Dach (hereafter referred to as Dach1). We show that chick Dach1 is expressed in a variety of sites during embryonic development, including the eye and ear. Previous work has demonstrated the existence of a functional network and genetic regulatory hierarchy in Drosophila in which eyeless (ey, the Pax6 orthologue), eyes absent (eya), and dac operate together to regulate Drosophila eye development, and that ey regulates the expression of eya and dac. We find that in the developing eye of both chick and mouse, expression domains of Dach1 overlap with those of Pax6, a gene required for normal eye development. Similarly, in the developing ear of both mouse and chick, Dach1 expression overlaps with the expression of another Pax gene, Pax2. In the mouse, Dach1 expression in the developing ear also overlaps with the expression of Eya1 (an eya homologue). Both Pax2 and Eya1 are required for normal ear development. Our expression studies suggest that the Drosophila Pax-eya-dac regulatory network may be evolutionarily conserved such that Pax genes, Eya1, and Dach1 may function together in vertebrates to regulate neural development. To address the further possibility that a regulatory hierarchy exists between Pax, Eya, and Dach genes, we have examined the expression of mouse Dach1 in Pax6, Pax2 and Eya1 mutant backgrounds. Our results indicate that Pax6, Pax2, and Eya1 do not regulate Dach1 expression through a simple linear hierarchy.  相似文献   

5.
Cell fate specification during inner ear development is dependent upon regional gene expression within the otic vesicle. One of the earliest cell fate determination steps in this system is the specification of neural precursors, and regulators of this process include the Atonal-related basic helix-loop-helix genes, Ngn1 and NeuroD and the T-box gene, Tbx1. In this study we demonstrate that Eya1 signaling is critical to the normal expression patterns of Tbx1, Ngn1, and NeuroD in the developing mouse otocyst. We discuss a potential mechanism for the absence of neural precursors in the Eya1-/- inner ears and the primary and secondary mechanisms for the loss of cochleovestibular ganglion cells in the Eya1bor/bor hypomorphic mutant.  相似文献   

6.
7.
Unconventional myosins have been associated with hearing loss in humans, mice, and zebrafish. Mutations in myosin VI cause both recessive and dominant forms of nonsyndromic deafness in humans and deafness in Snell's waltzer mice associated with abnormal fusion of hair cell stereocilia. Although myosin VI has been implicated in diverse cellular processes such as vesicle trafficking and epithelial morphogenesis, the role of this protein in the sensory hair cells remains unclear. To investigate the function of myosin VI in zebrafish, we cloned and examined the expression pattern of myosin VI, which is duplicated in the zebrafish genome. One duplicate, myo6a, is expressed in a ubiquitous pattern during early development and at later stages, and is highly expressed in the brain, gut, and kidney. myo6b, on the other hand, is predominantly expressed in the sensory epithelium of the ear and lateral line at all developmental stages examined. Both molecules have different splice variants expressed in these tissues. Using a candidate gene approach, we show that myo6b is satellite, a gene responsible for auditory/vestibular defects in zebrafish larvae. Examination of hair cells in satellite mutants revealed that stereociliary bundles are irregular and disorganized. At the ultrastructural level, we observed that the apical surface of satellite mutant hair cells abnormally protrudes above the epithelium and the membrane near the base of the stereocilia is raised. At later stages, stereocilia fused together. We conclude that zebrafish myo6b is required for maintaining the integrity of the apical surface of hair cells, suggesting a conserved role for myosin VI in regulation of actin-based interactions with the plasma membrane.  相似文献   

8.
Bui QT  Zimmerman JE  Liu H  Bonini NM 《Genetics》2000,155(2):709-720
The eyes absent (eya) gene is critical to eye formation in Drosophila; upon loss of eya function, eye progenitor cells die by programmed cell death. Moreover, ectopic eya expression directs eye formation, and eya functionally synergizes in vivo and physically interacts in vitro with two other genes of eye development, sine oculis and dachshund. The Eya protein sequence, while highly conserved to vertebrates, is novel. To define amino acids critical to the function of the Eya protein, we have sequenced eya alleles. These mutations have revealed that loss of the entire Eya Domain is null for eya activity, but that alleles with truncations within the Eya Domain display partial function. We then extended the molecular genetic analysis to interactions within the Eya Domain. This analysis has revealed regions of special importance to interaction with Sine Oculis or Dachshund. Select eya missense mutations within the Eya Domain diminished the interactions with Sine Oculis or Dachshund. Taken together, these data suggest that the conserved Eya Domain is critical for eya activity and may have functional subregions within it.  相似文献   

9.
The Drosophila eyeless gene plays a central role in fly eye development and controls a subordinate regulatory network consisting of the so, eya and dac genes. All three genes have highly conserved mammalian homologs, suggesting possible conservation of this eye forming regulatory network. sine oculis (so) belongs to the so/Six gene family, and Six3 is prominently expressed in the developing mammalian eye. Eya1 and Dach1 are mammalian homologs of eya and dac, respectively, and although neither Eya1 nor Dach1 knockout mice express prenatal eye defects, possibilities exist for postnatal ocular phenotypes or for functional redundancy between related family members. To examine whether expression relationships analogous to those between ey, so, eya and dac exist in early mammalian oculogenesis, we investigated Pax6, Six3, Eya1 and Dach1 protein expression in murine lens and nasal placode development. Six3 expression in the pre-placode lens ectoderm is initially Pax6-independent, but subsequently both its expression and nuclear localization become Pax6-dependent. Six3, Dach1 and Eya1 nasal expression in pre-placode ectoderm are also initially Pax6-independent, but thereafter become Pax6-dependent. Pax6, Six3, Dach1 and Eya1 are all co-expressed in the developing ciliary marginal zone, a source of retinal stem cells in some vertebrates. An in vitro protein-protein interaction is detected between Six3 and Eya1. Collectively, these findings suggest that the Pax-Eya-Six-Dach network is at best only partly conserved during lens and nasal placode development. However, the findings do not rule out the possibility that such a regulatory network acts at later stages of oculogenesis.  相似文献   

10.
Eyes absent is essential for compound eye formation in Drosophila. Its mammalian homologues of Eya are involved in the development of sensory organs, skeletal muscles and kidneys. Mutations of EYA1 in human cause branchio-oto-renal syndrome, with abnormalities in branchial derivatives, ear and kidney. For an insight into the function of Eya1 and Eya2 in early development, we performed whole-mount in situ hybridization and compared the expression patterns of these two genes in the developing chick embryos. Eya1 was first expressed in the primitive streak at Hamburger and Hamilton stage 4 (HH4) and appeared in the ectoderm and head mesenchyme distinct from migrating neural crest cells at HH6-HH11. At HH15 and HH17, the olfactory, otic and vagal/nodose placodes and cranial ganglia were positive for Eya1. In contrast, Eya2 was already expressed in the endoderm at HH4, and appeared in the endoderm and prospective placodal region at HH6-HH11. Eya2 expression was observed in pharyngeal clefts and pouches as well as cranial placodes at HH15 and HH17. These results indicate differential expression of Eya1 and Eya2, both spatially and temporally, in chick during early development. The expression patterns are somewhat different from those of other species such as Xenopus, zebrafish and mouse. The results suggest distinct and unique functions for Eya1 and Eya2 in early chick development.  相似文献   

11.
Drosophila dachshund (dac) interacts with sine oculis (so), eyes absent (eya) and eyeless (ey) to control compound eye development. We have cloned three zebrafish dac homologues, dachA, dachB and dachC, which are expressed widely, in distinct but overlapping patterns. Expression of all three is found in sensory organs, the central nervous system and pectoral fin buds. dachA is also expressed strongly in the somites and dachC in the neural crest and pronephros. These expression domains overlap extensively with those of zebrafish pax, eya and six family members, the homologues of Drosophila ey, eya and so, respectively. This is consistent with the proposal that Dach, Eya, Six and Pax family members may form networks, similar to that found in the fly eye, in the development of many vertebrate organs.  相似文献   

12.
13.
14.
In this paper we describe the mRNA expression patterns of members of the bone morphogenetic protein (BMP) signalling pathway in the developing zebrafish ear. bmp2b, 4, and 7 are expressed in discrete areas of otic epithelium, some of which correspond to sensory patches. bmp2b and 4 mark the developing cristae before and during the appearance of differentiated hair cells. bmp4 is also expressed in a dorsal, non-sensory region of the ear. Expression of bmps in cristae is conserved between zebrafish, chick, and mouse, but there are also notable differences in ear expression patterns between these species. Of five zebrafish BMP antagonists, only one (follistatin) shows significant expression in the otic epithelium. The type I receptor bmpr-IB shows localised expression in the ear epithelium. Mediators of BMP signalling, smad1 and smad5, are expressed in statoacoustic and lateral line ganglia; smad5 is also expressed at low levels throughout the ear epithelium. An inhibitory smad, smad6, is expressed laterally in the ear epithelium. Lateral line primordia and neuromasts also express bmp2b, 4, follistatin, smad1, and smad5. The conservation of bmp expression in cristae among different species adds weight to the growing evidence that BMPs are required for the development of the vertebrate ear.  相似文献   

15.
Chemokine signaling regulates sensory cell migration in zebrafish   总被引:3,自引:0,他引:3  
Chemokines play an important role in the migration of a variety of cells during development. Recent investigations have begun to elucidate the importance of chemokine signaling within the developing nervous system. To better appreciate the neural function of chemokines in vivo, the role of signaling by SDF-1 through its CXCR4 receptor was analyzed in zebrafish. The SDF-1-CXCR4 expression pattern suggested that SDF-1-CXCR4 signaling was important for guiding migration by sensory cells known as the migrating primordium of the posterior lateral line. Ubiquitous induction of the ligand in transgenic embryos, antisense knockdown of the ligand or receptor, and a genetic receptor mutation all disrupted migration by the primordium. Furthermore, in embryos in which endogenous SDF-1 was knocked down, the primordium migrated towards exogenous sources of SDF-1. These data demonstrate that SDF-1 signaling mediated via CXCR4 functions as a chemoattractant for the migrating primordium and that chemokine signaling is both necessary and sufficient for directing primordium migration.  相似文献   

16.
The secreted frizzled-related proteins (Sfrp) are a family of soluble proteins with diverse biological functions having the capacity to bind Wnt ligands, to modulate Wnt signalling, and to signal directly via the Wnt receptor, Frizzled. In an enhancer trap screen for embryonic expression in zebrafish we identified an sfrp1 gene. Previous studies suggest an important role for sfrp1 in eye development, however, no data have been reported using the zebrafish model. In this paper, we describe duplicate sfrp1 genes in zebrafish and present a detailed analysis of the expression profile of both genes. Whole mount in situ hybridisation analyses of sfrp1a during embryonic and larval development revealed a dynamic expression profile, including: the central nervous system, where sfrp1a was regionally expressed throughout the brain and developing eye; the posterior gut, from the time of endodermal cell condensation; the lateral line, where sfrp1a was expressed in the migrating primordia and interneuromast cells that give rise to the sensory organs. Other sites included the blastoderm, segmenting mesoderm, olfactory placode, developing ear, pronephros and fin-bud. We have also analysed sfrp1b expression during embryonic development. Surprisingly this gene exhibited a divergent expression profile being limited to the yolk syncytium under the elongating tail-bud, which later covered the distal yolk extension, and transiently in the tail-bud mesenchyme. Overall, our studies provide a basis for future analyses of these developmentally important factors using the zebrafish model.  相似文献   

17.
Previous studies have suggested a role of the homeodomain Six family proteins in patterning the developing vertebrate head that involves appropriate segmentation of three tissue layers, the endoderm, the paraxial mesoderm and the neural crest cells; however, the developmental programs and mechanisms by which the Six genes act in the pharyngeal endoderm remain largely unknown. Here, we examined their roles in pharyngeal pouch development. Six1-/- mice lack thymus and parathyroid and analysis of Six1-/- third pouch endoderm demonstrated that the patterning of the third pouch into thymus/parathyroid primordia is initiated. However, the endodermal cells of the thymus/parathyroid rudiments fail to maintain the expression of the parathyroid-specific gene Gcm2 and the thymus-specific gene Foxn1 and subsequently undergo abnormal apoptosis, leading to a complete disappearance of organ primordia by E12.5. This thus defines the thymus/parathyroid defects present in the Six1 mutant. Analyses of the thymus/parathyroid development in Six1-/-;Six4-/- double mutant show that both Six1 and Six4 act synergistically to control morphogenetic movements of early thymus/parathyroid tissues, and the threshold of Six1/Six4 appears to be crucial for the regulation of the organ primordia-specific gene expression. Previous studies in flies and mice suggested that Eya and Six genes may function downstream of Pax genes. Our data clearly show that Eya1 and Six1 expression in the pouches does not require Pax1/Pax9 function, suggesting that they may function independently from Pax1/Pax9. In contrast, Pax1 expression in all pharyngeal pouches requires both Eya1 and Six1 function. Moreover, we show that the expression of Tbx1, Fgf8 and Wnt5b in the pouch endoderm was normal in Six1-/- embryos and slightly reduced in Six1-/-;Six4-/- double mutant, but was largely reduced in Eya1-/- embryos. These results indicate that Eya1 appears to be upstream of very early events in the initiation of thymus/parathyroid organogenesis, while Six genes appear to act in an early differentiation step during thymus/parathyroid morphogenesis. Together, these analyses establish an essential role for Eya1 and Six genes in patterning the third pouch into organ-specific primordia.  相似文献   

18.
19.
20.
Although it is well established that the Gdnf-Ret signal transduction pathway initiates metanephric induction, no single regulator has yet been identified to specify the metanephric mesenchyme or blastema within the intermediate mesoderm, the earliest step of metanephric kidney development and the molecular mechanisms controlling Gdnf expression are essentially unknown. Previous studies have shown that a loss of Eya 1 function leads to renal agenesis that is a likely result of failure of metanephric induction. The studies presented here demonstrate that Eya 1 specifies the metanephric blastema within the intermediate mesoderm at the caudal end of the nephrogenic cord. In contrast to its specific roles in metanephric development, Eya 1 appears dispensable for the formation of nephric duct and mesonephric tubules. Using a combination of null and hypomorphic Eya 1 mutants, we now demonstrated that approximately 20% of normal Eya 1 protein level is sufficient for establishing the metanephric blastema and inducing the ureteric bud formation but not for its normal branching. Using Eya 1, Gdnf, Six 1 and Pax 2 mutant mice, we show that Eya 1 probably functions at the top of the genetic hierarchy controlling kidney organogenesis and it acts in combination with Six 1 and Pax 2 to regulate Gdnf expression during UB outgrowth and branching. These findings uncover an essential function for Eya 1 as a critical determination factor in acquiring metanephric fate within the intermediate mesoderm and as a key regulator of Gdnf expression during ureteric induction and branching morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号