首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
An Acinetobacter species identified as A. haemolyticus A19 produces an antibiotic and the enzyme chitinase. The antibiotic produced by A. haemolyticus A19 was extracellular and inducible by co-cultivation with Klebsiella pneumoniae in the optimum ratio 2:1, respectively. pH 7, temperature 28 °C, and addition of 2 % (w/v) NaCl are the most suitable environmental conditions for production and activity of the antibiotic. The antibiotic was produced in the early stationary growth phase (48 h) of A. haemolyticus A19. It has a very broad spectrum of antimicrobial activity against plant and human pathogenic bacteria and fungi. The antibiotic was extracted with ethyl acetate and purified by column chromatography with further purification by preparative thin-layer chromatography. Yield of the antibiotic was 15 mg/l. The antibiotic was active at very low concentrations, for example 50 μg/ml, and was water-soluble. It was stable at room temperature for up to 7 days. 1H NMR analysis revealed the antibiotic was a pyrrolnitrin. It was found that pyrrolnitrin production by A. haemolyticus A19 was encoded by plasmid pUPI126 of molecular weight 25.7 kb. Plasmid pUPI126 was transferred to E. coli HB101 at a frequency of 5 × 10?5 per μg DNA. It was also conjugally transformed to E. coli HB101 rif r mutants at a frequency of 5.9 × 10?8 per recipient cell. Plasmid pUPI126 was 100 % stable in Acinetobacter and 95 % stable in E. coli HB101. Transconjugants and transformants both produced the antibiotic. This is the first report of plasmid-mediated pyrrolnitrin production by A. haemolyticus A19 isolated from wheat rhizosphere.  相似文献   

2.
With the growing microbial resistance to conventional antimicrobial agents, the development of novel and alternative therapeutic strategies are vital. During recent years novel peptide antibiotics with broad spectrum activity against many Gram-positive and Gram-negative bacteria have been developed. In this study, antibacterial activity of CM11 peptide (WKLFKKILKVL-NH2), a short cecropin–melittin hybrid peptide, is evaluated against antibiotic-resistant strains of Klebsiella pneumoniae and Salmonella typhimurium as two important pathogenic bacteria. To appraise the antibacterial activity, minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and bactericidal killing assay were utilized with different concentrations (2–128 mg/L) of peptide. To evaluate cytotoxic effect of peptide, viability of RAJI, Hela, SP2/0, CHO, LNCAP cell lines and primary murine macrophage cells were also investigated with MTT assay in different concentrations (3–24 and 0.5–16 mg/L, respectively). MICs of K. pneumoniae and S. typhimurium isolates were in range of 8–16 and 4–16 mg/L, respectively. In bactericidal killing assay no colonies were observed at 2X MIC for K. pneumoniae and S. typhimurium isolates after 80–90 min, respectively. Despite the fact that CM11 reveals no significant cytotoxicity on RAJI, Hela, SP2/0, and CHO cell lines beneath 6 mg/L at first 24 and 48 h, the viability of LNCAP cells are about 50 % at 3 mg/L, which indicates strong cytotoxicity of the peptide. In addition, macrophage toxicity by MTT assay showed that LD50 of CM11 peptide is 12 μM (16 mg/L) after 48 h while in this concentration after 24 h macrophage viability was about 70 %.  相似文献   

3.
In order to investigate the lesions and proteins with differential expression in cells infected with the 2009 A (H1N1) virus and to determine the specific proteins involved in cell damage, the present study has been performed. BEAS-2B cells were infected with the 2009 A (H1N1) influenza virus or the seasonal H1N1 influenza virus for 12, 24, 48, and 72 h, and cell cycle and apoptosis were analyzed with flow cytometry. Total cellular proteins were extracted and underwent two-dimensional gel electrophoresis. The differentially expressed proteins underwent mass spectrometry for identification. The results showed that after 12 h, cells infected with the virus strain sourced from severe cases had the highest apoptosis rate (P?P?P?Galectin-1 was specifically observed in BEAS-2B infected with 2009 A (H1N1) influenza viruses, and cofilin-1 was specifically observed in BEAS-2B cells in the late stage of 2009 A (H1N1) influenza virus infection. In conclusion, differential effects of the 2009 A (H1N1) influenza virus and seasonal H1N1 influenza virus were identified on the cell cycle and apoptosis, and galectin-1 may play a role in cell apoptosis induced by 2009 A (H1N1) influenza virus.  相似文献   

4.
The development of methods for the rapid identification of pathogenic bacteria is a major step towards accelerated clinical diagnosis of infectious diseases and efficient food and water safety control. Methods for identification of bacterial colonies on gelified nutrient broth have the potential to bring an attractive solution, combining simple optical instrumentation, no need for sample preparation or labelling, in a non-destructive process. Here, we studied the possibility of discriminating different bacterial species at a very early stage of growth (6 h of incubation at 37 °C), on thin layers of agar media (1 mm of Tryptic Soy Agar), using light forward-scattering and learning algorithms (Bayes Network, Continuous Naive Bayes, Sequential Minimal Optimisation). A first database of more than 1,000 scatterograms acquired on 7 gram-negative strains yielded a recognition rate of nearly 80 %, after only 6 h of incubation. We investigated also the prospect of identifying different strains from a same species through forward scattering. We discriminated, thus, four strains of Escherichia coli with a recognition rate reaching 82 %. Finally, we show the discrimination of two species of coagulase-negative Staphylococci (S. haemolyticus and S. cohnii), on a commercial selective pre-poured medium used in clinical diagnosis (ChromID MRSA, bioMérieux), without opening lids during the scatterogram acquisition. This shows the potential of this method—non-invasive, preventing cross-contaminations and requiring minimal dish handling—to provide early clinically-relevant information in the context of fully automated microbiology labs.  相似文献   

5.
The International Space Station (ISS) and the Antarctic Research Station Concordia are confined and isolated habitats in extreme and hostile environments. The human and habitat microflora can alter due to the special environmental conditions resulting in microbial contamination and health risk for the crew. In this study, 29 isolates from the ISS and 55 from the Antarctic Research Station Concordia belonging to the genera Staphylococcus and Enterococcus were investigated. Resistance to one or more antibiotics was detected in 75.8 % of the ISS and in 43.6 % of the Concordia strains. The corresponding resistance genes were identified by polymerase chain reaction in 86 % of the resistant ISS strains and in 18.2 % of the resistant Concordia strains. Plasmids are present in 86.2 % of the ISS and in 78.2 % of the Concordia strains. Eight Enterococcus faecalis strains (ISS) harbor plasmids of about 130 kb. Relaxase and/or transfer genes encoded on plasmids from gram-positive bacteria like pIP501, pRE25, pSK41, pGO1 and pT181 were detected in 86.2 % of the ISS and in 52.7 % of the Concordia strains. Most pSK41-homologous transfer genes were detected in ISS isolates belonging to coagulase-negative staphylococci. We demonstrated through mating experiments that Staphylococcus haemolyticus F2 (ISS) and the Concordia strain Staphylococcus hominis subsp. hominis G2 can transfer resistance genes to E. faecalis and Staphylococcus aureus, respectively. Biofilm formation was observed in 83 % of the ISS and in 92.7 % of the Concordia strains. In conclusion, the ISS isolates were shown to encode more resistance genes and possess a higher gene transfer capacity due to the presence of three vir signature genes, virB1, virB4 and virD4 than the Concordia isolates.  相似文献   

6.
This study aimed to test whether induction of apoptosis following ex vivo X-irradiation of unstimulated blood lymphocytes correlated with clinical radiosensitivity and DNA double-strand break (DSB) repair in breast radiotherapy patients and healthy volunteers. Using small molecule inhibitors, the relationship between DSB repair and radiation-induced apoptosis was examined. Sixteen breast cancer patients with minimal (controls, n = 8) or extremely marked late radiation-induced change (cases, n = 8) and eight healthy volunteers were selected. DSBs were quantified by γH2AX/53BP1 immunofluorescence, and apoptosis was measured using a fluorogenic inhibitor of caspases assay. Mean γH2AX/53BP1 focus levels 24 h after exposure to 4 Gy were higher in cases (12.7 foci per cell) than in controls (10.3 foci per cell, p = 0.002). In contrast, the mean apoptotic fraction 48 h after 8 Gy was comparable, 37.2 % in cases and 34.7 % in controls (p = 0.442). Residual focus and apoptosis levels were not correlated within individuals (Spearman’s R = ?0.0059, p = 0.785). However, cells treated with DNA-PK inhibitor Nu7441 had higher focus and apoptosis levels 48 h after 1 Gy compared to mock-treated cells, suggesting that apoptosis induction following irradiation is modulated by DSB repair. This effect required functional ATM since cells treated simultaneously with Nu7441 and the ATM inhibitor Ku55933 were resistant to apoptosis despite high levels of residual foci. One clinical case displayed an impaired DNA-PK-dependent end-joining cellular phenotype. In summary, clinical radiosensitivity may be associated with impaired DSB repair in some patients. Although pharmaceutical inhibition of ATM and DNA-PK affected apoptosis induction and DSB repair, no association was observed between apoptosis and residual focus levels in patients and volunteers.  相似文献   

7.
Based on the nested case–control study cohort and gene expression profile, we have picked up a subset of six genes to distinguish the leukemia group and control group stably. ATG3 is the only down regulated gene. This research is to investigate the effect of ATG3 gene over expression by lentivirus on SKM-1 cell line and myelodysplastic syndrome to leukemic transformation. Human SKM-1 cells were transfected with ATG3–GFP recombinant lentiviral vectors and compared with cells transfected with GFP lentiviral vectors. Western blot was performed to detect the ATG3 protein. Cell proliferation was assessed by cell counting kit-8. Cell vitality was tested by Trypan Blue. Cell apoptosis was determined by Annexin V Apoptosis Detection Kit APC. Observe and compare the changes on growth curve, cell vitality and cell apoptosis. After 72 h of transfection, satisfactory transfection efficiency (> 90 %) was observed. SKM-1 cell line showed a statistically significant (P < 0.05) overexpression of ATG3, parallel to significantly (P < 0.05) inhibited cell proliferation. The cell vitality of ATG3 overexpression was significantly (P < 0.05) lower than negative control. Cell apoptosis analysis by flow cytometer demonstrated decreased proportion of early apoptosis and increased that of late apoptosis and death (P < 0.05). Over expressed ATG3 gene and protein, the SKM-1 cell line was inhibited in proliferation and cell vitality. It was promoted from early apoptosis to late apoptosis and death. The malignancy of SKM-1 cell line was decreased after transfection. ATG3 gene and its gene family may play an important role in transformation of myelodysplastic syndrome.  相似文献   

8.
The antimicrobial effect of OKCEL® H-D, a topical, absorbable hemostatic textile prepared from oxidized cellulose, was tested. Testing by dilution and diffusion methods was conducted on a spectrum of 27 select microorganisms, including also antibiotic-resistant strains. OKCEL® H-D showed inhibitory effects on nearly all tested bacteria. In testing using the dilution suspension method, the majority of bacteria showed decrease in cell density by 7–8 orders of magnitude after just 6 h of exposure. For clinical isolates of antibiotic-resistant strains, a reduction occurred after 24 h of exposure. In testing the antimicrobial effects of OKCEL® H-D by the dilution method was least effective on spore-forming Bacillus subtilis, for which no antimicrobial effect was detected after 48 h, and on Mycobacterium smegmatis, for which the number of cells decreased by four orders of magnitude only after 24 h. By the diffusion method, inhibition zones were recorded for nearly all test microorganisms except for Staphylococcus aureus, M. smegmatis, and Listeria monocytogenes. No growth beneath the tested OKCEL® H-D material was recorded, however, even for the latter-named bacteria strains, which attests to its good inhibitory effect.  相似文献   

9.

Objective

To explore the relationship between tumor necrosis factor receptor-associated factor 6 (TRAF6) and the clinicopathological features in HCC as well as its biological function.

Methods

Totally, 412 liver tissues were collected, including 171 hepatocellular carcinoma (HCC) and their corresponding non-tumor tissues, 37 cirrhosis and 33 normal liver tissues. The expression of TRAF6 was assessed by immunohistochemistry. Then, analysis of the correlations between TRAF6 expression and clinicopathological parameters in HCC was conducted. Furtherer, in vitro experiments on HepG2 and Hep3B cells were performed to validate the biological function of TRAF6 on HCC cells. TRAF6 siRNA was transfected into HepG2 and Hep3B cell lines and TRAF6 expression was evaluated with RT-qPCR and western blot. The assays of cell viability, proliferation, apoptosis and caspase-3/7 activity were carried out to investigate the effects of TRAF6 on HCC cells with RNA interference. Cell viability was assessed with Cell Titer-Blue kit. Cell proliferation was tested with MTS kit. Cell apoptosis was checked through morphologic detection with fluorescence microscope, as well as caspase-3/7 activity was measured with fluorogenic substrate detection.

Results

The positive expression rate of TRAF6 protein was 49.7 % in HCC, significantly higher than that of normal liver (12.1 %), cirrhosis (21.6 %) and adjacent non-cancerous tissues (36.3 %, all P < 0.05). Upregulated TRAF6 was detected in groups with metastasis (Z = ?2.058, P = 0.04) and with low micro-vessel density (MVD) expression (Z = ?2.813, P = 0.005). Spearman correlation analysis further showed that the expression of TRAF6 was positively correlated with distant metastasis (r = 0.158, P = 0.039) and negatively associated with MVD (r = ?0.249, P = 0.004). Besides, knock-down of TRAF6 mRNA in HCC cell lines HepG2 and Hep3B both resulted in cell viability and proliferation inhibition, also cell apoptosis induction and caspase-3/7 activity activation.

Conclusions

TRAF6 may contribute to metastasis and deterioration of the HCC via influencing cell growth and apoptosis. Thus, TRAF6 might become a predictive and therapeutic biomarker for HCC.
  相似文献   

10.
We explored Group B Streptococcus (GBS)-induced apoptosis in human umbilical vein endothelial cells (HUVEC) and the role of phosphoramidon, a zinc metalloprotease inhibitor, in this process. GBS 90186 strain (serotype V, a blood isolate) and concentrated supernatant (CS) were used to investigate the viability and morphological alterations in HUVEC by Trypan blue uptake, electrophoresis in 2 % agarose gel and scanning electron microscopy assays. Apoptosis before and after phosphoramidon-treatment were verified by flow cytometry using annexin V-FITC labeling. Differences were considered significant when P < 0.05 using unpaired Student’s t test. GBS and CS induced HUVEC death by apoptosis (76.5 and 32 %, respectively) with an increasing pro-apoptotic Bax expression and decreasing anti-apoptotic Bcl-2 expression. Caspase-3 was activated during GBS-induced endothelial apoptosis. Phosphoramidon reduced 89.3 and 100 % of GBS and CS cell death by apoptosis, respectively. Some GBS strains may induce cell death by apoptosis with involvement of metalloproteases and signaling through the intrinsic pathway of apoptosis, which may contribute to GBS survival during sepsis of adults and neonates.  相似文献   

11.
A novel specifically targeted antimicrobial peptide (STAMP) that was especially effective against methicillin-resistant Staphylococcus aureus (MRSA) was designed by fusing the AgrD1 pheromone to the N-terminal end of plectasin. This STAMP was named Agplectasin, and its gene was synthesized and expressed in Pichia pastoris X-33 via pPICZαA. The highest amount of total secreted protein reached 1,285.5 mg/l at 108 h during the 120-h induction. The recombinant Agplectasin (rAgP) was purified by cation exchange chromatography and hydrophobic exchange chromatography; its yield reached 150 mg/l with 94 % purity. The rAgP exhibited strong bactericidal activity against S. aureus but not Staphylococcus epidermidis or other types of tested bacteria. A bactericidal kinetics assay showed that the rAgP killed over 99.9 % of tested S. aureus (ATCC 25923 and ATCC 43300) in both Mueller–Hinton medium and human blood within 10 h when treated with 4× minimal inhibitory concentration. The rAgP caused only approximately 1 % hemolysis of human blood cells, even when the concentration reached 512 μg/ml, making it potentially feasible as a clinical injection agent. In addition, it maintained a high activity over a wide range of pH values (2.0–10.0) and demonstrated a high thermal stability at 100 °C for 1 h. These results suggested that this STAMP has the potential to eliminate MRSA strains without disrupting the normal flora.  相似文献   

12.
The study was aimed to investigate the effect of baicalein, a flavonoid molecule isolated from the plant Oroxylum indicum on bladder cancer cell viability. The results revealed that baicalein treatment of T24 and 253J bladder cancer cells targeted the expression of mRNA and proteins corresponding to the anti-apoptotic genes. RT-PCR assay showed that anti-apoptotic genes were markedly over-expressed in the bladder cancer cells. Exposure of the bladder cancer cells to baicalein at 5 mg/mL doses for 72 h led to reduction in the expression of mRNA levels of antiapoptotic genes. In T24 cells, the levels of BCL2, Bcl-xL, XIAP and surviving was reduced by 65, 69, 58 and 72%, respectively. In T24 and 253J cells exposure to baicalein for 72 h resulted respectively in 39 and 46% reduction in cell viability. Baicalein treatment also induced apoptosis in the bladder cancer cells. In T24 and 253J cells baicalein treatment at 5 mg/mL for 72 h induced apoptosis in 79 and 86% cells respectively. Thus, baicalein mediated reduction in antiapoptotic gene expression inhibits viability and induces apoptosis in bladder cancer cells. Therefore, baicalein is of therapeutic importance for the development of bladder cancer treatment strategy.  相似文献   

13.
We characterized the culturable, heterotrophic bacterial community in soil collected from a former alpine military site contaminated with petroleum hydrocarbons. The physiologically active eubacterial community, as revealed by fluorescence-in situ-hybridization, accounted for 14.9 % of the total (DAPI-stained) bacterial community. 4.0 and 1.2 % of the DAPI-stained cells could be attributed to culturable, heterotrophic bacteria able to grow at 20 and 10 °C, respectively. The majority of culturable bacterial isolates (23/28 strains) belonged to the Proteobacteria with a predominance of Alphaproteobacteria. The remaining isolates were affiliated with the Firmicutes, Actinobacteria and Bacteroidetes. Five strains could be identified as representatives of novel species. Characterization of the 28 strains demonstrated their adaptation to the temperature and nutrient conditions prevailing in the studied soil. One-third of the strains was able to grow at subzero temperatures (?5 °C). Studies on the effect of temperature on growth and lipase production with two selected strains demonstrated their low-temperature adaptation.  相似文献   

14.
We exploited the unique ecological niche of oil fly larval guts to isolate a strain of Staphylococcus haemolyticus which may be the most solvent-tolerant gram-positive bacterium yet described. This organism is able to tolerate 100% toluene, benzene, and p-xylene on plate overlays and saturating levels of these solvents in monophasic liquid cultures. A comparison of membrane fatty acids by gas chromatography after growth in liquid media with and without toluene showed that in cells continuously exposed to solvent the proportion of anteiso fatty acids increased from 25.8 to 33.7% while the proportion of 20:0 straight-chain fatty acids decreased from 19.3 to 10.1%. No changes in the membrane phospholipid composition were noted. Thus, S. haemolyticus alters its membrane fluidity via fatty acid composition to become more fluid when it is exposed to solvent. This response is opposite that commonly found in gram-negative bacteria, which change their fatty acids so that the cytoplasmic membrane is less fluid. Extreme solvent tolerance in S. haemolyticus is not accompanied by abnormal resistance to anionic or cationic detergents. Finally, six strains of Staphylococcus aureus and five strains of Staphylococcus epidermidis, which were not obtained by solvent selection, also exhibited exceptional solvent tolerance.  相似文献   

15.
Various bacteria have been found in raw cow’s milk, and identifying milk microflora and its functions is critical for maintaining cow health and farm hygiene. Although studies on pathogens and spoilage bacteria in milk have been widely reported, the relationship between milk bacteria, including nonpathogenic bacteria, and the bovine udder is poorly understood. We investigated milk microflora over 1 year using a culture-dependent method and culture-independent analysis by denaturing gradient gel electrophoresis. Among 240 isolates, Lactococcus lactis (81/240) was predominant. The predominant genera were Lactococcus, Stenotrophomonas, Microbacterium, Chryseobacterium, Serratia and Pseudomonas. Among seven strains belonging to these predominant genera, two strains of L. lactis (ssp. lactis and ssp. cremoris) exhibited the highest adherence to bovine mammary gland epithelial cells (BMECs) derived from the bovine udder; 3.4 % of the inoculated bacteria adhered to BMECs. This was followed by Serratia sp. (1.6 %), Microbacterium sp. (0.8 %), Stenotrophomonas maltophilia (0.5 %), Pseudomonas sp. (0.3 %) and Chryseobacterium sp. (0.1 %). The two L. lactis isolates exhibited higher adherence to BMECs than type strains and isolates of various origins.  相似文献   

16.

Background

An important mechanism of Mycobacterium tuberculosis pathogenesis is the ability to control cell death pathways in infected macrophages: apoptotic cell death is bactericidal, whereas necrotic cell death may facilitate bacterial dissemination and transmission.

Methods

We examine M.tuberculosis control of spontaneous and chemically induced macrophage cell death using automated confocal fluorescence microscopy, image analysis, flow cytometry, plate-reader based vitality assays, and M.tuberculosis strains including H37Rv, and isogenic virulent and avirulent strains of the Beijing lineage isolate GC1237.

Results

We show that bacterial virulence influences the dynamics of caspase activation and the total level of cytotoxicity. We show that the powerful ability of M.tuberculosis to inhibit exogenously stimulated apoptosis is abrogated by loss of virulence. However, loss of virulence did not influence the balance of macrophage apoptosis and necrosis – both virulent and avirulent isogenic strains of GC1237 induced predominantly necrotic cell death compared to H37Rv which induced a higher relative level of apoptosis.

Conclusions

This reveals that macrophage necrosis and apoptosis are independently regulated during M. tuberculosis infection of macrophages. Virulence affects the level of host cell death and ability to inhibit apoptosis but other strain-specific characteristics influence the ultimate mode of host cell death and alter the balance of apoptosis and necrosis.  相似文献   

17.
This article presents the abilities and efficiencies of five different strains of Agrobacterium rhizogenes (strain ATCC 31798, ATCC 43057, AR12, A4 and A13) to induce hairy roots on Solanum mammosum through genetic transformation. There is significant difference in the transformation efficiency (average number of days of hairy root induction) and transformation frequency for all strains of A. rhizogenes (P < 0.05). Both A. rhizogenes strain AR12 and A13 were able to induce hairy root at 6 days of co-cultivation, which were the fastest among those tested. However, the transformation frequencies of all five strains were below 30 %, with A. rhizogenes strain A4 and A13 showing the highest, which were 21.41 ± 10.60 % and 21.43 ± 8.13 % respectively. Subsequently, the cultures for five different hairy root lines generated by five different strains of bacteria were established. However, different hairy root lines showed different growth index under the same culture condition, with the hairy root lines induced by A. rhizogenes strain ATCC 31798 exhibited largest increase in fresh biomass at 45 days of culture under 16 h light/8 h dark photoperiod in half-strength MS medium. The slowest growing hairy root line, which was previously induced by A. rhizogenes strain A13, when cultured in optimized half-strength MS medium containing 1.5 times the standard amount of ammonium nitrate and potassium nitrate and 5 % (w/v) sucrose, had exhibited improvement in growth index, that is, the fresh biomass was almost double as compared to its initial growth in unmodified half-strength MS medium.  相似文献   

18.

Background

Macrophage cell death following infection with Mycobacterium tuberculosis plays a central role in tuberculosis disease pathogenesis. Certain attenuated strains induce extrinsic apoptosis of infected macrophages but virulent strains of M. tuberculosis suppress this host response. We previously reported that virulent M. tuberculosis induces cell death when bacillary load exceeds ∼20 per macrophage but the precise nature of this demise has not been defined.

Methodology/Principal Findings

We analyzed the characteristics of cell death in primary murine macrophages challenged with virulent or attenuated M. tuberculosis complex strains. We report that high intracellular bacillary burden causes rapid and primarily necrotic death via lysosomal permeabilization, releasing hydrolases that promote Bax/Bak-independent mitochondrial damage and necrosis. Cell death was independent of cathepsins B or L and notable for ultrastructural evidence of damage to lipid bilayers throughout host cells with depletion of several host phospholipid species. These events require viable bacteria that can respond to intracellular cues via the PhoPR sensor kinase system but are independent of the ESX1 system.

Conclusions/Significance

Cell death caused by virulent M. tuberculosis is distinct from classical apoptosis, pyroptosis or pyronecrosis. Mycobacterial genes essential for cytotoxicity are regulated by the PhoPR two-component system. This atypical death mode provides a mechanism for viable bacilli to exit host macrophages for spreading infection and the eventual transition to extracellular persistence that characterizes advanced pulmonary tuberculosis.  相似文献   

19.

Background

Due to considerable differences in pathogenicity, Haemophilus influenzae, H. parainfluenzae and H. haemolyticus have to be reliably discriminated in routine diagnostics. Retrospective analyses suggest frequent misidentifications of commensal H. haemolyticus as H. influenzae. In a multi-center approach, we assessed the suitability of fluorescence in situ hybridization (FISH) and matrix-assisted laser-desorption-ionization time-of-flight mass-spectrometry (MALDI-TOF-MS) for the identification of H. influenzae, H. parainfluenzae and H. haemolyticus to species level.

Methodology

A strain collection of 84 Haemophilus spp. comprising 50 H. influenzae, 25 H. parainfluenzae, 7 H. haemolyticus, and 2 H. parahaemolyticus including 77 clinical isolates was analyzed by FISH with newly designed DNA probes, and two different MALDI-TOF-MS systems (Bruker, Shimadzu) with and without prior formic acid extraction.

Principal Findings

Among the 84 Haemophilus strains analyzed, FISH led to 71 correct results (85%), 13 uninterpretable results (15%), and no misidentifications. Shimadzu MALDI-TOF-MS resulted in 59 correct identifications (70%), 19 uninterpretable results (23%), and 6 misidentifications (7%), using colony material applied directly. Bruker MALDI-TOF-MS with prior formic acid extraction led to 74 correct results (88%), 4 uninterpretable results (5%) and 6 misidentifications (7%). The Bruker MALDI-TOF-MS misidentifications could be resolved by the addition of a suitable H. haemolyticus reference spectrum to the system''s database. In conclusion, no analyzed diagnostic procedure was free of errors. Diagnostic results have to be interpreted carefully and alternative tests should be applied in case of ambiguous test results on isolates from seriously ill patients.  相似文献   

20.
Cadmium (Cd) is an important industrial and environmental pollutant. In animals, the liver is the major target organ of Cd toxicity. In this study, rat hepatocytes were treated with 2.5~10 μM Cd for various durations. Studies on nuclear morphology, chromatin condensation, and apoptotic cells demonstrate that Cd concentrations ranging within 2.5~10 μM induced apoptosis. The early-stage marker of apoptosis, i.e., decreased mitochondrial membrane potential, was observed as early as 1.5 h at 5 μM Cd. Significant (P?P?2+ concentration ([Ca2+] i ) of Cd-exposed cells significantly increased (P?2+] i may play an important role in apoptosis. Overall, these results showed that oxidative stress and Ca2+ signaling were critical mediators of the Cd-induced apoptosis of rat hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号