首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Application of environmentally friendly agents to reduce the use of chemicals and to enhance growth of plants is an ultimate goal of sustainable agriculture. The use of plant growth-promoting endophytes has become of great interest as a way to enhance plant growth and additionally protect plants from phytopathogens. In this study, 135 isolates of endophytic bacteria including actinomycetes were isolated from roots of commercial sugarcane plants cultivated in Thailand and were characterized for plant growth-promoting (PGP) traits. Based on morphological and 16S rRNA sequence analysis, the endophytes were distributed into 14 genera of which the most dominant species belong to Bacillus, Enterobacter, Microbispora, and Streptomyces. Two strains of endophytic diazotrophs, Bacillus sp. EN-24 and Enterobacter sp. EN-21; and two strains of actinomycetes, Microbispora sp. GKU 823 and Streptomyces sp. GKU 895, were selected based on their PGP traits including 1-aminocyclopropane-1-decarboxylate deaminase, indole-3-acetic acid, nitrogen fixation, phosphate solubilization, and siderophore production for evaluation of sugarcane growth enhancement by individual and co-inoculation. Sixty days after co-inoculation by endophytic diazotrophs and actinomycetes, the growth parameters of sugarcane plants were significantly greater than that of individual and un-inoculated plants. The results indicated that these endophytes have high potential as PGP agents that could be applied to promote sugarcane growth and could be developed as active added value biofertilizers in the future.  相似文献   

2.
Piper nigrum is an interesting plant to study the endophytic microbial factors affecting plant growth because of its unique features. Endophytic bacterial isolation from the plant resulted in the isolation of twelve bacterial isolates which were screened for various plant growth promoting properties like phosphate solubilization, ACC deaminase production, siderophore production etc. Interestingly, seven isolates were found to have IAA biosynthetic potential. Bacterial isolates with multiple plant growth promoting properties were studied for their growth promoting effect on Vigna radiata seedlings. This resulted in the identification of Klebsiella sp. (PnB 10) and Enterobacter sp. (PnB 11) as the isolates with excellent growth promoting properties. The results confirm promising applications of the endophytic bacterial isolates obtained in the study and also their possible growth promoting effect in P. nigrum.  相似文献   

3.
Endophytic actinomycetes have shown unique plant growth promoting as well as antagonistic activity against fungal phytopathogens. In the present study forty-two endophytic actinomycetes recovered from medicinal plants were evaluated for their antagonistic potential and plant growth-promoting abilities. Twenty-two isolates which showed the inhibitory activity against at least one pathogen were subsequently tested for their plant-growth promoting activities and were compared genotypically using DNA based fingerprinting, including enterobacterial repetitive intergenic consensus (ERIC) and BOX repetitive elements. Genetic relatedness based on both ERIC and BOX-PCR generates specific patterns corresponding to particular genotypes. Exponentially grown antagonistic isolates were used to evaluate phosphate solubilization, siderophores, HCN, ammonia, chitinase, indole-3-acetic acid production, as well as antifungal activities. Out of 22 isolates, the amount of indole-3-acetic acid (IAA) ranging between 10–32 μg/ml was produced by 20 isolates and all isolates were positive for ammonia production ranging between 5.2 to 54 mg/ml. Among 22 isolates tested, the amount of hydroxamate-type siderophores were produced by 16 isolates ranging between 5.2 to 36.4 μg/ml, while catechols-type siderophores produced by 5 isolates ranging from 3.2 to 5.4 μg/ml. Fourteen isolates showed the solubilisation of inorganic phosphorous ranging from 3.2 to 32.6 mg/100ml. Chitinase and HCN production was shown by 19 and 15 different isolates, respectively. In addition, genes of indole acetic acid (iaaM) and chitinase (chiC) were successively amplified from 20 and 19 isolates respectively. The two potential strains Streptomyces sp. (BPSAC34) and Leifsonia xyli (BPSAC24) were tested in vivo and improved a range of growth parameters in chilli (Capsicum annuum L.) under greenhouse conditions. This study is the first published report that actinomycetes can be isolated as endophytes from within these plants and were shown to have antagonistic and plant growth promoting abilities. These results clearly suggest the possibility of using endophytic actinomycetes as bioinoculant for plant growth promotion, nutrient mobilization or as biocontrol agent against fungal phytopathogens for sustainable agriculture.  相似文献   

4.
Endophytic microorganisms have been reported from various plants. In the current study, somatic embryogenic cultures of banana (Musa accuminata AAA cv. Grand Naine) were found to have association with endophytic bacteria which were present initially in a covert state. The presence of bacteria was detected only in suspension cultures derived from the somatic embryogenic cultures. The bacteria isolated from embryogenic cell suspension culture were identified as Ralstonia sp. and Bacillus sp. The Ralstonia sp. interestingly showed the presence of various plant growth promoting properties including indole acetic acid and siderophore production. Also the strain was found to have the potential to solubilize phosphate and produce ammonia. Growth enhancement effect of Ralstonia sp. on Vigna radiata seedlings showed promising results and the growth parameters were found to be statistically significant when compared to control. Identification and confirmation of the plant growth promoting properties of Ralstonia sp. makes the study significant with promising applications.  相似文献   

5.
Plant-associated actinobacteria are rich sources of bioactive compounds including indole-derived molecules such as phytohormone indole-3-acetic acid (IAA). In view of few investigations concerning the biosynthesis of IAA by endophytic actinobacteria, this study evaluated the potential of IAA production in endophytic streptomycete isolates sourced from medicinal plant species Taxus chinensis and Artemisia annua. By HPLC analysis of IAA combined with molecular screening approach of iaaM, a genetic determinant of streptomycete IAA synthesis via indole-3-acetamide (IAM), our data showed the putative operation of IAM-mediated IAA biosynthesis in Streptomyces sp. En-1 endophytic to Taxus chinensis. Furthermore, using the co-cultivation system of model plant Arabidopsis thaliana and streptomycete, En-1 was found to be colonized intercellularly in the tissues of Arabidopsis, an alternative host, and the effects of endophytic En-1 inoculation on the model plant were also assayed. The phytostimulatory effects of En-1 inoculation suggest that IAA-producing Streptomyces sp. En-1 of endophytic origin could be a promising candidate for utilization in growth improvement of plants of economic and agricultural value.  相似文献   

6.
The inside of Pinus thunbergii could be a reliable screening source for a useful agent in controlling plant disease. Isolation of endophytic actinomycetes from P. thunbergii and their potential as biocontrol agents against the plant pathogen Cylindrocladium sp. were investigated. Two endophytic actinomycetes, Streptomyces sp. and Microbispora sp., were isolated from surface-sterilised root tissues of P. thunbergii seedlings. The recovery test of these two endophytic actinomycetes from pine seedling showed that Streptomyces sp. was isolated from only roots, but Microbispora sp. was isolated from both roots and leaves. Thus, Microbispora sp. is able to move to leaves from roots. Moreover, we evaluated the potential of both strains as biocontrol agents against Cylindrocladium sp. Two weeks after inoculation of Cylindrocladium sp. alone, pine seedlings showed a 50% mortality rate. Co-inoculation of Cylindrocladium sp. and Microbispora sp. did not affect seedling mortality rate. However, inoculation with both Cylindrocladium sp. and Streptomyces sp. reduced seedling mortality to 12%. Streptomyces sp. could be a useful agent in controlling pine disease caused by Cylindrocladium sp. Thus, it seems that Streptomyces sp. may induce a local host defence reaction and Microbispora sp. systemically spreads to aerial parts through the transpiration stream.  相似文献   

7.
In this study, bacteria were isolated from the rhizosphere and inside the roots and nodules of berseem clover plants grown in the field in Iran. Two hundred isolates were obtained from the rhizosphere (120 isolates), interior roots (57 isolates), and nodules (23 isolates) of clover plants grown in rotation with rice plants. Production of chitinase, pectinase, cellulase, siderophore, salicylic acid, hydrogen cyanide, indole acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase, solubilization of phosphate, antifungal activity against various rice plant pathogen fungi, N2 fixation, and colonization assay on rice seedlings by these strains was evaluated and compared (endophytic isolates vs. rhizosphere bacteria). The results showed both the number and the ability of plant growth-promoting (PGP) traits were different between endophytic and rhizosphere isolates. A higher percentage of endophytic isolates were positive for production of IAA, ACC deaminase, and siderophore than rhizosphere isolates. Therefore, it is suggested that clover plant may shape its own associated microbial community and act as filters for endophyte communities, and rhizosphere isolates with different (PGP) traits. We also studied the PGP effect of the most promising endophytic and rhizosphere isolates on rice seedlings. A significant relationship among IAA and ACC deaminase production, the size of root colonization, and plant growth (root elongation) in comparison with siderophore production and phosphate solubilization for the isolates was observed. The best bacterial isolates (one endophytic isolate and one rhizosphere isolate), based on their ability to promote rice growth and colonize rice roots, were identified. Based on 16S rDNA sequence analysis, the endophytic isolate CEN7 and the rhizosphere isolate CEN8 were closely related to Pseudomonas putida and Pseudomonas fluorescens, respectively. It seems that PGP trait production (such as IAA, ACC deaminase) may be required for endophytic and rhizosphere competence as compared to other PGP traits in rice seedlings under constant flooded conditions. The study also shows that the presence of diverse rhizobacteria with effective growth-promoting traits associated with clover plants may be used for sustainable crop management under field conditions.  相似文献   

8.
Nostoc, a nitrogen-fixing cyanobacterium, has great potential to make symbiotic associations with a wide range of plants and benefit its hosts with nitrogen in the form of nitrates. It may also use phytohormones as a tool to promote plant growth. Phytohormones [cytokinin (Ck) and IAA] were determined in the culture of an endophytic Nostoc isolated from rice roots. The strain was able to accumulate as well as release phytohormones to the culture media. Optimum growth conditions for the production of zeatin and IAA were a temperature of 25 °C and a pH of 8.0. Time-dependent increase in the accumulation and release of phytohormones was recorded. To evaluate the impact of cytokinins, an ipt knockout mutant in the background of Nostoc was generated by homologous recombination method. A sharp decline (up to 80 %) in the zeatin content was observed in the culture of mutant strain Nostoc AHM-12. Association of the mutant and wild type strain with rice and wheat roots was studied under axenic conditions. The efficacy of Nostoc to colonize plant root was significantly reduced (P < 0.05) as a result of ipt inactivation as evident by low chlorophyll a concentration in the roots. In contrast to the mutant strain, wild type strain showed good association with the roots and enhanced several growth parameters, such as fresh weight, dry weight, shoot length, and root length of the crop plants. The study clearly demonstrated that Ck is a tool of endophytic Nostoc to colonize plant root and promote its growth.  相似文献   

9.
《Genomics》2019,111(4):913-920
Enterobacter sp. J49 is a plant growth promoting endophytic strain that promotes the growth of peanut and maize crops. This strain promotes plant growth by different mechanisms with the supply of soluble phosphorus being one of the most important. Enterobacter sp. J49 not only increases the phosphorus content in the plant but also in the soil favoring the nutrition of other plants usually used in rotation with these crops. The aims of this study were to analyze the genome sequence of Enterobacter sp. J49 in order to deepen our knowledge regarding its plant growth promoting traits and to establish its phylogenetic relationship with other species of Enterobacter genus. Genome sequence of Enterobacter sp. J49 is a valuable source of information to continuing the research of its potential industrial production as a biofertilizer of peanut, maize and other economically important crops.  相似文献   

10.
Tian  X.L.  Cao  L.X.  Tan  H.M.  Zeng  Q.G.  Jia  Y.Y.  Han  W.Q.  Zhou  S.N. 《World journal of microbiology & biotechnology》2004,20(3):303-309
The populations of endophytic fungi and actinomycetes from four rice cultivars in the Panyu district (Site 1) and Wushan district (Site 2) in Guangdong province, South China, were studied. The preponderant endophytic fungi and actinomycetes isolated belonged to Fusarium and Streptomyces respectively. The incidence of Streptomycetes griseofuscus ranged from 36.1 to 69% out of all the different rice cultivars from the two sites. It is the commonest population of endophytic actinomycetes, and constituted the greatest part of all the antagonistic communities. The distributions of endophytic fungi and actinomycetes in roots and leaves were different, endophytic fungi from leaves were diverse, some were organ-specific. More diverse endophytic actinomycetes were isolated from roots than from leaves. The endophytic fungi isolated from rice in Site 2 were more diverse than that in Site 1. The diversity of the endophytic actinomycetes, however, was less than that in Site 1. Acid soil in Site 2 is ideal for the growth and colonization of fungi while the alkaline soil in Site 1 is better for the growth and colonization of actinomycetes. The results suggested that differences in the chemical composition of soil could influence the endophytic microbial communities of rice plants. The endophytic fungi and actinomycetes isolated from poor-growing seedlings and susceptible rice cultivars were more abundant than that the disease-resistant counterparts. In the dual culture and activity detection of the metabolites, 41.2% of all the isolated endophytic fungi showed antagonism to rice pathogens. Fifty percent of all the isolated endophytic actinomycetes were antagonistic to those pathogens. The percentage of Streptomyces griseofuscus and hygroscopicus reached 55.4 and 21.4% of all the active actinomycetes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
The isolation of endophytic actinomycetes from surface-sterilized tissues of 36 plant species was made using humic acid–vitamin (HV) agar as a selection medium. Of the 330 isolates recovered, 212 were from roots, 97 from leaves and 21 isolates from stems with a prevalence of 3.9, 1.7 and 0.3%, respectively. Identification of endophytic actinomycetes was based on their morphology and the amino acid composition of the whole-cell extract. Most isolates were classified as Streptomyces sp. (n = 277); with the remainder belonging to Microbispora sp. (n = 14), Nocardia sp. (n = 8) and Micromonospora sp. (n = 4). Four isolates were unclassified and 23 were lost during subculture. The most prevalent group of isolates were the Streptomyces sp. occurring in 6.4% of the tissue samples of Zingiber officinale. Scanning electron microscopy investigation of this plant revealed that 7.5% of the root and 5% of the leaf samples contained endophytes. Three of the Streptomyces sp. isolates strongly inhibited Colletotrichum musae, five were very active against Fusarium oxysporum and two strongly inhibited growth of both test fungi.  相似文献   

12.
Traditional Chinese medicinal plants are sources of biologically active compounds, providing raw material for pharmaceutical, cosmetic and fragrance industries. The endophytes of medicinal plants participate in biochemical pathways and produce analogous or novel bioactive compounds. Panxi plateau in South-west Sichuan in China with its unique geographical and climatological characteristics is a habitat of a great variety of medicinal plants. In this study, 560 endophytic actinomycetes were isolated from 26 medicinal plant species in Panxi plateau. 60 isolates were selected for 16S rDNA-RFLP analysis and 14 representative strains were chosen for 16S rDNA sequencing. According to the phylogenetic analysis, seven isolates were Streptomyces sp., while the remainder belonged to genera Micromonospora, Oerskovia, Nonomuraea, Promicromonospora and Rhodococcus. Antimicrobial activity analysis combined with the results of amplifying genes coding for polyketide synthetase (PKS-I, PKS-II) and nonribosomal peptide synthetase (NRPS) showed that endophytic actinomycetes isolated from medicinal plants in Panxi plateau had broad-spectrum antimicrobial activity and potential natural product diversity, which further proved that endophytic actinomycetes are valuable reservoirs of novel bioactive compounds.  相似文献   

13.
Streptomyces is a genus with known biocontrol activity, producing a broad range of biologically active substances. Our goal was to isolate local Streptomyces species, evaluate their capacity to biocontrol the selected phytopathogens, and promote the plant growth via siderophore and indole acetic acid (IAA) production and phosphate solubilization. Eleven isolates were obtained from local soil samples in Saudi Arabia via the standard serial dilution method and identified morphologically by scanning electron microscope (SEM) and 16S rRNA amplicon sequencing. The biocontrol of phytopathogens was screened against known soil-borne fungi and bacteria. Plant growth promotion capacity was evaluated based on siderophore and IAA production and phosphate solubilization capacity. From eleven isolates obtained, one showed 99.77% homology with the type strain Streptomyces tricolor AS 4.1867, and was designated S. tricolor strain HM10. It showed aerial hyphae in SEM, growth inhibition of ten known phytopathogens in in vitro experiments, and the production of plant growth promoting compounds such as siderophores, IAA, and phosphate solubilization capacity. S. tricolor strain HM10 exhibited high antagonism against the fungi tested (i.e., Colletotrichum gloeosporides with an inhibition zone exceeding 18 mm), whereas the lowest antagonistic effect was against Alternaria solani (an inhibition zone equal to 8 mm). Furthermore, the most efficient siderophore production was recorded to strain HM8, followed by strain HM10 with 64 and 22.56 h/c (halo zone area/colony area), respectively. Concerning IAA production, Streptomyces strain HM10 was the most effective producer with a value of 273.02 μg/ml. An autochthonous strain S. tricolor HM10 should be an important biological agent to control phytopathogens and promote plant growth.  相似文献   

14.
The present study demonstrates the metal toxicity ameliorating and growth promoting abilities of three different bacterial isolates when applied to rice as host plant. The three bacterial strains included a cadmium resistant Ochrobactrum sp., a lead resistant Bacillus sp. and an arsenic resistant Bacillus sp. designated as CdSP9, PbSP6, and AsSP9, respectively. When these isolates were used as inocula applied to metal-treated rice plants of variety Satabdi, the germination percentage, relative root elongation (RRE), amylase and protease activities were increased. The toxic effect of metal was reduced in presence of these bacteria. The overall biomass and root/shoot ratio were also enhanced by bacterial inoculation. Hydroponic studies showed that the superoxide dismutase (SOD) activity and malondialdehyde (MDA) level, which had been increased in the presence of metal stress in rice roots, were lowered by the bacterial inoculation. In addition, all three strains were 1-aminocyclopropane-1-carboxylate (ACC) deaminase and catalase positive, whereas siderophore producing ability was lacking in PbSP6. However, both PbSP6 and AsSP9 were protease positive and could hydrolyse starch. The data indicate that these bacteria have promise for bioremediation as well as for plant growth promotion.  相似文献   

15.
We have isolated 576 endophytic bacteria from the leaves, stems, and roots of 10 rice cultivars and identified 12 of them as diazotrophic bacteria using a specific primer set of nif gene. Through 16S rDNA sequence analysis, nifH genes were confirmed in the two species of Penibacillus, three species of Microbacterium, three Bacillus species, and four species of Klebsiella. Rice seeds treated with these plant growth-promoting bacteria (PGPB) showed improved plant growth, increased height and dry weight and antagonistic effects against fungal pathogens. In addition, auxin and siderophore producing ability, and phosphate solubilizing activity were studied for the possible mechanisms of plant growth promotion. Among 12 isolates tested, 10 strains have shown higher auxin producing activity, 6 isolates were confirmed as strains with high siderophore producing activity while 4 isolates turned out to have high phosphate-solubilizing activity. These results strongly suggest that the endophytic diazotrophic bacteria characterized in this study could be successfully used to promote plant growth and inducing fungal resistance in plants.  相似文献   

16.
Chinese medicinal plants and their surrounding rhizospheric soil serve as promising sources of actinobacteria. A total of 180 actinobacteria strains were isolated from the rhizosphere soil, leaves, stems, and roots of nine selected plants and have been identified as potential biocontrol agents against Fusarium oxysporum f. sp. cucumerinum. An endophytic strain CNS-42 isolated from Alisma orientale showed the largest zone of inhibition demonstrating a potent effect against F. oxysporum f. sp. cucumerinum and a broad antimicrobial activity against bacteria, yeasts, and other pathogenic fungi. The in vivo biocontrol assays showed that the disease severity index was significantly reduced (P < 0.05), and plant shoot fresh weight and height increased greatly (P < 0.05) in plantlets treated with strain CNS-42 compared to the negative control. This isolate was identified as Streptomyces sp. based on cultural, physiological, morphological characteristics, and 16S rRNA gene analysis. Further bioassay-guided isolation and purification revealed that staurosporine was responsible for its antifungal and plant growth promoting activities and the latter property of staurosporine is reported for the first time. The in vivo assay was further performed and indicated that staurosporine showed good growth promoting effect on the plant shoot biomass of cucumber. This is the first critical evidence identifying CNS-42 as a biocontrol agent for the soil borne pathogen, F. oxysporum f. sp. cucumerinum.  相似文献   

17.
Root-knot nematodes are serious pathogens that severe damage to major crops. They damage plant root system that caused significant yield losses. Moreover, the predisposition of nematode-infected plants is secondary infection from fungal plant pathogen that additional adverse effects on plant growth. Our target is to find the antagonist for control nematode, and secondary infection agents and stimulate plant growth. Twenty-three plant-parasitic nematode infested soils were taken from some provinces in the northern and center of Thailand and actinomycetes and fungi were isolated. Eighty-three isolates belong to actinomycete and 67 isolates were fungi. The predominant actinomycete taxa was Streptomyces (97.6%). The predominant fungal taxa were Penicillium (37.3%) and Fusarium (32.8%). All actinomycete and fungal isolates were subjected for primary screening in vitro for their effects on egg hatching and juvenile mortality of Meloidogyne incognita. Secondary screening was evaluated for antagonist effect on plant pathogenic fungi collected from nematode-infected plant, plant growth hormone (indole-3-acetic acid; IAA) and siderophore production. From primary screening, 7 actinomycete and 10 fungal isolates reduced egg hatching and kill juveniles of M. incognita after 7 days incubation. In secondary screening, 10 nematophagous microbes produced IAA and 9 isolates produced hydroxamate siderophore. Streptomyces sp. CMU-MH021 was selected as a potential biocontrol agent. It reduced egg hatching rate to 33.1% and increased juvenile mortality rate to 82% as contrasted to the control of 79.6 and 3.6%, respectively. This strain had high activity to against tested fungi and high ability on IAA (28.5 μg ml−1) and siderophore (26.0 μg ml−1) production.  相似文献   

18.
19.
We investigated the presence of endophytic rhizobia within the roots of the wetland wild rice Oryza breviligulata, which is the ancestor of the African cultivated rice Oryza glaberrima. This primitive rice species grows in the same wetland sites as Aeschynomene sensitiva, an aquatic stem-nodulated legume associated with photosynthetic strains of Bradyrhizobium. Twenty endophytic and aquatic isolates were obtained at three different sites in West Africa (Senegal and Guinea) from nodal roots of O. breviligulata and surrounding water by using A. sensitiva as a trap legume. Most endophytic and aquatic isolates were photosynthetic and belonged to the same phylogenetic Bradyrhizobium/Blastobacter subgroup as the typical photosynthetic Bradyrhizobium strains previously isolated from Aeschynomene stem nodules. Nitrogen-fixing activity, measured by acetylene reduction, was detected in rice plants inoculated with endophytic isolates. A 20% increase in the shoot growth and grain yield of O. breviligulata grown in a greenhouse was also observed upon inoculation with one endophytic strain and one Aeschynomene photosynthetic strain. The photosynthetic Bradyrhizobium sp. strain ORS278 extensively colonized the root surface, followed by intercellular, and rarely intracellular, bacterial invasion of the rice roots, which was determined with a lacZ-tagged mutant of ORS278. The discovery that photosynthetic Bradyrhizobium strains, which are usually known to induce nitrogen-fixing nodules on stems of the legume Aeschynomene, are also natural true endophytes of the primitive rice O. breviligulata could significantly enhance cultivated rice production.  相似文献   

20.
PCR-denaturing gradient gel electrophoresis (DGGE) was used to determine diversity and community of endophytic actinomycetes distributed within the roots of Aquilaria crassna Pierre ex Lec (eaglewood). DNA was extracted from plant roots collected from one plantation in Nakhonnayok province and three plantations in Phetchabun province of Thailand. A nested-PCR was used to specifically amplify all actinobacterial groups. PCR-DGGE analysis of a variable region 3 (V3) of 16S rDNA confirmed the presence of endophytic actinomycetes in genera Nocardia, Pseudonocardia, Streptomyces and Actinomadura within the roots of eaglewood from Phetchabun province. Actinomycetes in genera Nocardia, Nonomuraea, Pseudonocardia and Actinomadura were found to inhabit abundantly in the roots of eaglewood from Nakhonnayok province. Actinobacterial community structures within the roots of this plant grown in two provinces were different from each other based on the generated dendrogram and Sorensen’s index. These results suggest that different locations resulted in different endophytic actinomycetes communities within the plant. Besides actinobacterial community structure, genetic diversity was analyzed based on species diversity and simple index. DGGE exhibited many species of actinomycetes inhabited as endophytes. The highest diversity of endophytic actinomycetes was found in the roots from a plantation in Nakhonnayok province and one of the plantations in Phetchabun province. This is the first report of the ecology and the community of endophytic actinomycetes colonized and imbedded within the roots of eaglewood plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号