首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rotifer Brachionus plicatilis was cultured using the microalga Isochrysis aff. galbana clone T-ISO as feed. T-ISO was cultured semi-continuously with daily renewal rates of 10%, 20%, 30%, 40%, and 50% of the volume of cultures. The increase of renewal rate led to increasing nutrient and light availability in microalgal cultures, which caused differences in the biochemical composition of microalgal biomass. Growth rate, individual dry weight, organic content, and biomass productivity of rotifer cultures increased in response to higher growth rate in T-ISO cultures. Rotifer growth rate showed a strong negative correlation (R 2 = 0.90) with the C/N ratio of microalgal biomass. Rotifer dry weight was also affected by nutrient availability of T-ISO cultures, increasing up to 50% from nutrient-limited to nutrient-sufficient conditions. Consequently, biomass productivity of rotifer cultures increased more than twofold with the increase of renewal rate of T-ISO cultures. Rotifer organic content underwent the same trend of total dry weight. Maximum content of polyunsaturated fatty acids was reached in rotifers fed T-ISO from the renewal rate of 40%, with percentages of docosahexaenoic acid (22:6ω-3, DHA) and eicosapentaenoic acid (20:5ω-3, EPA) of 11% and 5% of total fatty acids, respectively. Selecting the most appropriate conditions for microalgal culture can therefore enhance the nutritive quality of microalgal biomass, resulting in a better performance of filter feeders and their nutrient content, and may constitute a useful tool to improve the rearing of fish larvae and other aquaculture organisms that require live feed in some or all the stages of their life cycle.  相似文献   

2.
The nutritive quality of Nannochloropsis gaditana cultured semicontinuously with different daily renewal rates was tested as a diet for short-term enrichment of the rotifer Brachionus plicatilis. After 24 h, dramatic differences in the survival, dry weight, and biochemical composition of the rotifers depending on the renewal rate of microalgal cultures were observed. Survival after the feeding period increased with increasing renewal rates. Rotifers fed microalgae from low renewal rate, nutrient-deficient cultures showed low dry weight and organic contents very similar to those of the initial rotifers that were starved for 12 h before the start of the feeding period. On the contrary, rotifers fed nutrient-sufficient microalgal cells underwent up to twofold increases of dry weight and protein, lipid, and carbohydrate contents with regard to rotifers fed nutrient-depleted N. gaditana. Consequently, feed conversion rate decreased in these conditions, indicating a better assimilation of the microalgal biomass obtained at high renewal rates. No single microalgal biochemical parameter among those studied can explain the response of the filter feeder. Similarly to gross composition, EPA and n-3 contents in rotifers fed microalgae from nutrient-sufficient cultures were double than the contents found in rotifers fed nutrient-limited microalgae. In addition, very high positive correlations between the contents of EPA and n-3 in N. gaditana and B. plicatilis were observed. These results demonstrate that selecting the appropriate conditions of semicontinuous culture can strongly enhance the nutritional value of microalgae that is reflected in the growth and biochemical composition of the filter-feeder even in short exposure periods.  相似文献   

3.
J. FÁBREGAS, A. CID, E. MORALES, B. CORDERO AND A. OTERO. 1996. Changes in average cell volume, measured by flow cytometry, and cell organic content were studied in light/dark synchronized semi-continuous cultures of the marine microalga Phaeodactylum tricornutum . Cell volume and organic content both increased with nutrient concentration at all the renewal rates tested. Cell volume against renewal rate, at each nutrient concentration, followed a U-shaped curve with smallest cells at intermediate renewal rates. In contrast, cell organic content decreased continuously with increasing renewal rate. The variation in cell volume and organic content, related to culture conditions, should be taken into account if biochemical composition and productivity of microalgal cultures are assessed on the basis of cell counts.  相似文献   

4.
A factorial experimental design with two nutrient concentrations (2 and 4 mmol Nl–1 in the form of NaNO3) and five rates of daily renewal of the cultures (10%, 20%, 30%, 40% and 50%) was carried out in cyclostat, light/dark-synchronized cultures of the marine microalga Dunaliella tertiolecta Butcher. Steady-state cellular density was a linear function inversely proportional to renewal rate. Maximal cellular productivity, 3 × 109 cells1–1 day–1, equivalent to 0.24 g1–1 day–1 dry weight and 0.17 g1–1 day–1 organic weight, was found with renewal rates of 20%–30% and 4mmol N1–1, but maximal protein productivity, 0.066 g1–1 day–1, was obtained with a renewal rate of 40% for both nutrient concentrations. The protein content ranged between 30% and 70% of the organic fraction depending on the culture conditions. Carbohydrates were the only fraction accumulating in response to nutrient stress, ranging from 57% to 10% of the organic fraction, meanwhile the lipid content was increased by increase of nutrient availability. Under non-nitrogen-limited conditions the C:N ratio stabilized around 5.2–5.3 and the protein content of the organic fraction around 70%, but the cell nitrogen quota decreased under these conditions with increasing renewal rates, owing to the lower organic content of cells obtained with high growth rates. The high capacity for changing the biochemical composition, demonstrated for D. tertiolecta in the cyclostat system, has interesting implications for the management of continuous cultures of microalgae and its applications in biotechnological processes.  相似文献   

5.
Juvenile or adult Artemia sp. are often used as live prey for the rearing of early life stages of some crustacean, fish and cephalopod species. The improvements of both Artemia growth and its biochemical composition are key issues for the suitable use of Artemia biomass in these rearing processes. In this study we evaluated the growth and survival rates of Artemia fed with the cryptophyte Rhodomonas lens in comparison with different microalgal species commonly used in aquaculture: the prasinophyte Tetraselmis suecica, the prymnesiophyte Isochrysis galbana Parke, and the eustigmatophyte Nannochloropsis gaditana. Microalgae were cultured semi-continuously in nutrient saturated conditions and with a daily renewal rate of 30% of the volume of cultures, to obtain biomass of controlled and optimized composition. Considerable differences in Artemia growth were observed, as well as in the survival rate. At day 8 of rearing, Artemia fed R. lens had the highest length (4.9 ±0.6 mm, P < 0.001), followed by individuals fed T. suecica (4.2 ± 0.7 mm), I. galbana (3.6 ± 0.7 mm) and finally those fed N. gaditana (1.5 ± 0.2 mm). The survival rate of Artemia fed N. gaditana (18 ± 3%) was much lower (P < 0.001) than values found for the remaining groups (69 to 88%). The growth rate of Artemia obtained with R. lens was in general much higher than with other microalgal diets previously reported in the literature. The higher protein content of R. lens could explain the higher growth obtained with this species, but differences of Artemia growth with the different diets could not be explained solely on the basis of the gross composition of microalgae. Factors such as cell size and digestibility all seem to contribute to the results observed. Another trial was carried out to investigate differences in Artemia growth and on its biochemical composition when fed the best two diets: R. lens or T. suecica. The fatty acid (FA) and total amino acid (AA) composition of both microalgal species and the composition of Artemia were assessed as well. As found in the first experiment individuals fed R. lens (group ARHO) grew faster than those fed T. suecica (group ATET), attaining 3.6 ± 0.3 mm and 3.2 ± 0.4 mm (P < 0.001), respectively, after 5 days of rearing. The much higher AA content obtained in R. lens may be on the basis of the higher growth obtained with this species. Protein and carbohydrate levels in Artemia juveniles were very similar in both groups (64-68% of dry weight, and 8-10%, respectively). Lipid was slightly lower in ARHO (12%) than in ATET (15%, P < 0.01). Regarding the FA composition, juveniles from group ARHO contained higher levels of eicosapentaenoic acid (EPA, 6.2%) than juveniles from ATET (4.1%, P < 0.01), whereas docosahexaenoic acid (DHA) was only found in juveniles from ARHO (1.1%). Taking into account that the daily productivity of R. lens culture was higher than, or at least equal, the remaining microalgal species this cryptophyte is confirmed as an excellent diet to optimize the growth of Artemia, as well as to improve its biochemical composition.  相似文献   

6.
The marine microalga Chroomonas sp. isolated from Venezuela was grown in semicontinuous culture in order to study the effect of renewal rate and nutrient concentration on alloxanthin, chlorophyll a, carotenoid, carbohydrate, exopolysaccharide, protein and cell productivity. Maximal cell productivity of 8.43 ± 1.8 and 8.81 ± 2.3 × 109 cell l–1 day–1 were achieved with renewal rates of 30 and 40%. Maximal protein and chlorophyll productivity of 64.64 ± 2.3 and 2.72 ± 0.3 mg l–1 day–1 were obtained with renewal rate of 20 and 30%. Biochemical composition of Chroomonas sp. was influenced by renewal rate. Nutrient concentration seems not to affect cell, protein, chlorophyll and carotenoid productivity. However, carbohydrate and exopolysaccharide productivity of 7.56 ± 0.4 and 9.57 ± 1.2 mg l–1 day–1 were increased at 12 mM NaNO3(P < 0.05). Also, alloxanthin and chlorophyll a production analysed by HPLC, were higher between 8 and 12 mM NaNO3 at a renewal rate of 30%. Results demonstrated that a renewal rate of 30% and nutrient concentration at 8 mM NaNO3 optimize the cell, protein, carbohydrate, chlorophyll a, and exopolysaccharide productivity in semicontinuous cultures of Chroomonas. This microalga, as biological source of commercially valuable compounds, shows high capacity for changing its productivity and biochemical composition in semicontinuous system on the basis of nutrient concentration and the renewal rate.  相似文献   

7.
Three marine microalgal species with a high content of eicosapentaenoic acid (EPA), Phaeodactylum tricornutum, Isochrysis galbana and Porphyridium cruentum, were cultured semicontinuously in order to study the effect of renewal rate on EPA productivity. The percentage of EPA in total fatty acids increased with increasing renewal rates in nitrogen limited cultures, but while for Phaeodactylum tricornutum and Isochrysis galbana a plateau around 20–25% of total fatty acids was reached with renewal rates that were not nitrogen-limiting, in Porphyridium cruentum EPA percentage increased continuously with increasing renewal rate even for those cultures that were nitrogen sufficient. Maximal EPA productivities of4.6 mg L-1 day-1 for Isochrysis galbana and 5.2 mg L-1 day-1 for Phaeodactylum tricornutum were achieved with renewal rates of 20% and 30% respectively. On the other hand for Porphyridium cruentum maximal EPA productivity, 5.3 mg L-1 day-1, was obtained with the maximal renewal rate tested. Results indicate that different culture strategies should be adopted for the production of a particular polyunsaturated fatty acid depending on the microalgal species being used. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
In aquaculture, particularly in bivalve hatcheries, the biochemical composition of algal diets has a strong influence on larval and post-larval development. Biochemical composition is known to be related to culture conditions, among which light represents a major source of variation. The effects of blue light on biochemical composition and photosynthetic rate of Isochrysis sp. (T-iso) CCAP 927/14 were assessed in chemostat at a single irradiance (300 μmol photons m?2 s?1) and compared with white light. Two different dilution (renewal) rates were also tested: 0.7 and 0.2 d?1. Relative carbohydrate content was lower under blue light than under white light at both dilution rates, whereas chlorophyll a and photosynthesis activity were higher. In contrast, carbon quota was lower and protein content higher under blue light than under white light, but only at 0.7 d?1. Despite these metabolic differences, cell productivity was not significantly affected by the spectrum. However, the nitrogen to carbon ratio and photosynthetic activity were higher at 0.7 d?1 than at 0.2 d?1, while carbon quota and carbohydrate content were lower. Our results show that blue light may influence microalgal metabolism without reducing productivity for a given growth rate, a result that should be of great interest for microalgal production in aquaculture.  相似文献   

9.
Three species of microalga, the freshwater Euglena gracilis and the marine Dunaliella salina and Tetraselmis suecica, were compared in terms of vitamin E enrichment and survival and growth of the brine shrimp Artemia salina. The tocopherol content was investigated using HPLC for the post-larval and pre-adult stages of Artemia fed the microalgae and the results compared to the initial content of unfed newly hatched nauplii. There was a markedly higher content of tocopherols (about two-fold) in Artemia fed Euglena. Since this microalga contains other antioxidants such as -carotene, vitamin C and glutathione, bioactive molecules such as PUFA, and the immunostimulant polysaccharide -glucan, it represents a valuable alternative for enriching the diets of Artemia and increase its nutritional value as a food item.  相似文献   

10.
Laboratory cultures of Artemia franciscana grown under batch regimes at constant temperatures (28 °C) and salinity (35 g l–1), three initial food concentrations (0.1, 0.4 and 1 M cells ml–1), various daily food rations (0.1–9M Dunaliella tertiolecta cells Artemia –1), and different population densities (1–16 ind ml–1) were used to develop a model of population growth. Growth rates and gross growth efficiencies (K 1) were largely independent of population densities and initial food concentrations but determined by age and daily amount of food ingested. While maximum growth rates were found with the highest rations, K 1 max peaked at rations of 0.5 million cells d–1 and decreased at feeding levels above this. A contour plot showing the trend relating K 1 to Artemia size and ingestion rate in combination and was used to model growth in analogous controlled feeding conditions. Computer simulations using this model paralleled published results of final 15-day average individual sizes of Artemia. Optimal results for near constant food utilization are predicted for high initial population densities (100 Artemia nauplii ml –1) and daily culls of enough animals to equilibrate food demand with food availability. This strategy could permit a range of Artemia sizes harvested, maximize final individual sizes and retain high total yields (> 1.2 kg dry wt 1–1). Effects of different culture strategies are discussed.  相似文献   

11.
A sequential carbohydrate, protein, and lipid method of analysis has been used to determine the biochemical composition of freshly hatched and 48-h old larvae of two strains of the brine shrimp Artemia salina (L.). During a 48-h starvation period the percentage of carbohydrates and lipids of freshly hatched larvae decreases whereas the ash content increases by 40–100%. When fed with dried Scenedesmus or dried Spirulina for 2 days after hatching the protein level of the larvae increases significantly and the relative increase in ash content is lower than in the case of starvation.Amino acid analyses of the algal food and the unfed and fed larvae did not show any change except for the absence (below detection) of methionine in the starved nauplii.The fatty acid pattern of 48-h old Artemia larvae is different from that of freshly hatched nauplii both in unfed and fed larvae; in the latter case it seems to be determined to a large extent by the fatty acid composition of the food.  相似文献   

12.
Autochthonous parthenogentic Artemia populations have been reported from Indian hypersaline habitats since 1950s. Exotic Artemia franciscana was imported and introduced into India as live food for aquaculture since the early eighties. To assess the present status of the Artemia populations and the possibility of invasion by the introduced A. franciscana in Indian Salinas, an extensive study was conducted using conventional and molecular approaches. Morphological and biometric observations, crossbreeding experiments and molecular and phylogenetic analysis using Internally Transcribed Spacer-1 sequence revealed the extensive presence of alien, sexual A. franciscana populations in various hypersaline areas. Individual culture experiments and crossbreeding studies further confirmed the absence of autochthonous parthenogentic Artemia populations. Lack of regional endemism in populations of distant origins was evident, indicating that the invaded populations have naturalized and are in the process of evolution. This forms the first report of invasion by A. franciscana in hypersaline habitats of Indian subcontinent and further studies are required to assess the biological implications of this invasion.  相似文献   

13.
14.
Aim: To study the accumulation and retention of recombinant proteins in Artemia gut for optimizing paratransgenic disease control in shrimp aquaculture. Methods and Results: Transgenic Escherichia coli expressing fluorescent marker proteins and the transgenic cyanobacterium Synechococcus bacillarus expressing a functional murine single chain antibody, DB3, were fed to Artemia franciscana. Stable expression and retention of several marker molecules (e.g. GFP, DS Red and DB3) up to 10 h after of feeding with E. coli were evident within the gut of Artemia. Engineered strains of S. bacillarus expressing DB3 accumulated within the gut of Artemia with detectable antibody activity for 8–10 h of feeding via ELISA, coincident with the time period of the highest density of transgenic S. bacillarus in the Artemia gut. Conclusions: Artemia fed transgenic bacteria or algae accumulated recombinant proteins for up to 10 h that retained biological activity. Co‐delivery of multiple recombinant proteins simultaneously in the gut of Artemia was also demonstrated. Significance and Impact of the Study: Expression of molecules that target infectious agents of mariculture in shrimp via commonly deployed feed organisms such as Artemia could potentially offer powerful new tools in the ongoing global effort to increase food supply.  相似文献   

15.
Brine shrimp Artemia (Crustacea, Anostraca) diverge in biometry and nutritional quality. These differences in Artemia characteristics are significant not only from strain to strain but also from one harvest to another within same strain. The main objective of this study was to compare Artemia salina cysts harvested from Sabkhet El Adhibet (southeast Tunisia) on different dates between 2002 and 2007 with special regard to their use in aquaculture, using cysts and naupliar biometrics, protein, carbohydrate, and lipid content. Fatty acid profiles as well as hatching characterisation were also evaluated. Hydrated cysts measures ranged between 258.1 and 263.7 μm, while the freshly hatched nauplii of Artemia measures ranged between 458.1 and 476.1 μm. Lipid contents of the samples ranged from 16.2 to 18.3% of the dry weight. Fatty acid profiles showed that cysts from Sabkhet El Adhibet contain a high quantity of eicosapentaenoic acid (20: 5n-3) with a percentage ranging between 7.8 and 14.3% of the dry weight. The highest hatching efficiency was obtained for decapsulated cysts collected in 2007 (139500 nauplii g−1 of cysts). Cysts treated with hydrogen peroxide had a hatching percentage of 14.49 to 42.99%. The hatching synchronization time for untreated cysts varied between 23.5 to 27.4 h.  相似文献   

16.
通过对桑根达莱淖尔卤虫的养殖实验与卵囊解剖,研究了内蒙古沙漠小型盐湖投饵、施肥与自然状态3种营养模式下卤虫的生境、种群动态、生殖特征,分析了环境对卤虫资源的负载力。结果表明:1在起始种群相同的情况下,不同营养模式对种群结构与密度有显著影响;2不同营养模式对个体生长速度影响存在差异,投饵对加快个体生长速度效果最明显,但在性成熟速度方面不同营养模式没有出现统计学显著差异;3不同营养模式对卤虫的怀卵量、卵生/卵胎生比例有显著影响;与空白组相比,投饵组平均怀卵量提高了35.52%—72.71%,施肥组提高了11.34%—26.15%;4卤虫资源的环境负载力为0.3—0.4 kg/m3,加以补充肥料,可提高到0.45 kg/m3,在投喂饲料的情况下可以达到0.5 kg/m3;5卤虫蛋白可开发量按环境负载力的1/3估计,对照组、施肥组和投饵组的相应年开发量分别为2.61—2.98 kg/m3、4.5—5.4 kg/m3和7.51—8.67 kg/m3,滞育卵产量分别为0.73、1.10 g/m3和1.17 g/m3。  相似文献   

17.
The present study aimed to address the capability of the probiotic bacterium Lactobacillus rhamnosus IMC 501® to survive in seawater and the ability of Artemia metanauplii to incorporate it, as well as to analyse the potential effect of the probiotic as a control agent for potentially pathogenic Vibrionaceae bacteria in Artemia. The results demonstrate the ability of L. rhamnosus IMC 501® to survive in seawater for up to 30 h. They also advocate their capability to be efficiently incorporated into Artemia metanauplii at concentrations of 104 CFU per Artemia after 30 min of suspension in probiotic solution, thereby promoting a 1-log reduction in Vibrionaceae levels after 3 h. These low levels of Vibrio bacteria were maintained for about 30 min after transfer into clear seawater, a sufficient time for Artemia to be ingested by aquatic organisms. These results contribute to broaden the knowledge on the suitability of probiotics as sustainable alternatives for the prevention/reduction of diseases in aquaculture facilities.  相似文献   

18.
Larvae of the brine shrimp Artemia franciscana serve as important feed in fish and shellfish larviculture; however, they are subject to bacterial diseases that devastate entire populations and consequently hinder their use in aquaculture. Exposure to abiotic stress was shown previously to shield Artemia larvae against infection by pathogenic Vibrio, with the results suggesting a mechanistic role for heat shock protein 70. In the current report, combined hypothermic/hyperthermic shock followed by recovery at ambient temperature induced Hsp70 synthesis in Artemia larvae. Thermotolerance was also increased as was protection against infection by Vibrio campbellii, the latter indicated by reduced mortality and lower bacterial load in challenge tests. Resistance to Vibrio improved in the face of declining body mass as demonstrated by measurement of ash-free dry weight. Hypothermic stress only and acute osmotic insult did not promote Hsp70 expression and thermotolerance in Artemia larvae nor was resistance to Vibrio challenge augmented. The data support a causal link between Hsp70 accumulation induced by abiotic stress and enhanced resistance to infection by V. campbellii, perhaps via stimulation of the Artemia immune system. This possibility is now under investigation, and the work may reveal fundamental properties of crustacean immunity. Additionally, the findings are important in aquaculture where development of procedures to prevent bacterial infection of feed stock such as Artemia larvae is a priority.  相似文献   

19.
Land-based bivalve aquaculture depends on large-scale cultures of live microalgae for food. The intensity of large-scale microalgal production is important for cost-effectiveness. Using Walne’s medium as the control, simplified media containing nitrogen, phosphorus, silica, iron, manganese and vitamins were designed to determine the impact of nitrogen source and molar N:P ratio (sodium nitrate, NO3 9:1, ammonium chloride, NH4 9:1 and NH4 25:1) on growth, dry-weight biomass, culture longevity and lipid content of Chaetoceros muelleri, a diatom commonly used in shellfish aquaculture. During the exponential phase (day 6), dry-weight production in simplified media was similar to controls, indicating that this microalga can grow successfully on simplified media and use ammonium as the nitrogen source. The cultures grown on nitrate or ammonium differed in their time-course. Low nitrogen concentration in cultures grown with nitrate caused the collapse of these cultures within 11–13 days, after a short stationary phase. Cultures grown with ammonium had a longer stationary phase and were still alive on day 20, in spite of the low nitrogen concentrations observed after day 13 in cultures grown with NH4 9:1. During stationary phase (day 18) there was an increase in lipid content of algae under conditions of low nitrogen availability (NH4 9:1) and extended low phosphorus availability (NH4 25:1). Considering dry weight production, culture longevity, nutrient efficiency and lipid composition, simplified media containing ammonium, phosphorus, silica, iron, manganese and vitamins are a viable and profitable choice for batch culture of C. muelleri. In the exponential phase, the simplified medium NH4 9:1 was as effective as the control. Overall, both of the simplified media using ammonium are effective and suitable, depending on the purpose of the cultures and whether lipid contents (NH4 9:1), dry weight biomass (NH4 25:1) or nitrogen input and output (NH4 9:1) are desired.  相似文献   

20.
The effect of anaerobiosis and anhydrobiosis on the extent of binding of glycolytic enzymes to the particulate fraction of the cell was studied in Artemia salina embryos. During control aerobic development, trehalase, phosphofructokinase and pyruvate kinase showed an increase in the percentage associated with the particulate fraction which is consistent with the carbohydrate-based metabolism of Artemia embryos. However, anaerobiosis resulted in decreased enzyme binding for six glycolytic enzymes; hexokinase, aldolase, pyruvate kinase and lactate dehydrogenase were the exceptions. Decreased enzyme binding was also observed after exposure to dehydrating conditions. The results suggest that glycolytic rate could be regulated by changes in the distribution of glycolytic enzymes between free and bound forms in Artemia embryos. This reversible interaction of glycolytic enzymes with structural proteins may account for part of the metabolic arrest observed during anaerobic dormancy and anhydrobiosis.Abbreviation pHi intracellular concentration of H+ ions  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号