首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
代谢异速生长理论及其在微生物生态学领域的应用   总被引:1,自引:0,他引:1  
贺纪正  曹鹏  郑袁明 《生态学报》2013,33(9):2645-2655
新陈代谢是生物的基本生理过程,影响生物在不同环境中参与物质循环和能量转化的过程.代谢速率作为生物体重要的生命过程指标,几乎影响所有的生物活性速率,且在很多研究中均表现出异速生长现象.所谓代谢异速是指生物体代谢速率与其个体大小(或质量)之间存在的幂函数关系.代谢异速生长理论的提出,从机制模型角度解释了代谢异速关系这一普遍存在的生命现象.该理论利用分形几何学及流体动力学等原理,从生物能量学角度阐释了异速生长规律的机理,证实了3/4权度指数的存在;但同时有研究表明,权度指数因环境因素等影响处于2/3-1范围之间而非定值.随着研究工作的深入,代谢异速生长理论研究从起初的宏观动植物领域拓展到了微生物领域,在研究微生物的代谢异速生长理论时,可将微生物的可操作分类单元(Operational taxonomic unit,OTU)或具有特定功能的功能群视为一个微生物个体,基于其遗传多样性和功能多样性特征进行表征,以便于将微生物群落多样性与其生态功能性联系起来,使该理论在微生物生态学领域得到有效的补充和完善.尽管细菌具有独特的生物学特性,但与宏观生物系统中观测到的现象表现出明显的一致性.有研究表明,3个农田土壤细菌基于遗传多样性的OTU数的平均周转率分别为0.71、0.80和0.84,介于2/3与1之间,可能与生物代谢异速指数有一定关联,为微生物代谢异速指数的研究提出了一个参考解决方案.鉴于微生物个体特征和生物学特性,在分析代谢速率与个体大小关系中,从微生物单位个体的定义、个体大小表征到计量单位的统一,仍需更多的理论支持.分析了代谢异速生长理论在微生物与生态系统功能关系研究中的可能应用,延伸了该理论的应用范围,并对尚待加强的研究问题进行了评述和展望.  相似文献   

4.
Co-evolution of seed size and seed predation   总被引:3,自引:0,他引:3  
Using the evolutionarily stable strategy (ESS) approach in a model for the co-evolution of seed size and seed predation, I show that seed size variation within individual plants is favoured if there is a trade-off in the predator's attack rate for different seed sizes. A single seed size is not evolutionarily stable because a predator that is optimally adapted to one particular seed size cannot prevent invasion by plants with a different seed size. The model generates the following predictions. The ESS consists of a continuous range of seed sizes. Small seeds tend to be attacked more frequently than big seeds. Plants with many resources and plants with low (frequency-independent) juvenile mortality have more variable seeds than plants with few resources and a high juvenile mortality. Seed size variation is higher in fluctuating populations regulated by seed predation alone than in stable populations (partially) regulated by seedling competition. Predator searching behaviour does not directly affect the ESS seed size range, but may have an indirect effect by affecting population stability or the significance of seedling competition as a population regulating mechanism. Moreover, seed size distributions are found to be more skewed in favour of small seeds if predation is spatially non-uniform than if predation is more even. Application of the model to systems of several co-evolving plant and predator species is discussed.  相似文献   

5.
Genome size scaling through phenotype space   总被引:2,自引:0,他引:2  
Background and Aims: Early observations that genome size was positively correlatedwith cell size formed the basis of hypothesized consequencesof genome size variation at higher phenotypic scales. This scalingwas supported by several studies showing a positive relationshipbetween genome size and seed mass, and various metrics of growthand leaf morphology. However, many of these studies were undertakenwith limited species sets, and often performed within a singlegenus. Here we seek to generalize the relationship between genomesize and the phenotype by examining eight phenotypic traitsusing large cross-species comparisons involving diverse assemblagesof angiosperm and gymnosperm species. These analyses are presentedin order of increasing scale (roughly equating to the numberof cells required to produce a particular phenotypic trait),following the order of: cell size (guard cell and epidermal),stomatal density, seed mass, leaf mass per unit area (LMA),wood density, photosynthetic rate and finally maximum plantheight. Scope: The results show that genome size is a strong predictor of phenotypictraits at the cellular level (guard cell length and epidermalcell area had significant positive relationships with genomesize). Stomatal density decreased with increasing genome size,but this did not lead to decreased photosynthetic rate. At higherphenotypic scales, the predictive power of genome size generallydiminishes (genome size had weak predictive power for both LMAand seed mass), except in the interesting case of maximum plantheight (tree species tend to have small genomes). There wasno relationship with wood density. The general observation thatspecies with larger genome size have larger seed mass was supported;however, species with small genome size can also have largeseed masses. All of these analyses involved robust comparativemethods that incorporate the phylogenetic relationships of species. Conclusions: Genome size correlations are quite strong at the cellular levelbut decrease in predictive power with increasing phenotypicscale. Our hope is that these results may lead to new mechanistichypotheses about why genome size scaling exists at the cellularlevel, and why nucleotypic consequences diminish at higher phenotypicscales.  相似文献   

6.
壳斗科三种植物种子大小对昆虫寄生及种子存活率的影响   总被引:1,自引:0,他引:1  
种子内的寄生昆虫可以严重影响种子的发育、损害种子活力。种子足余策略理论认为大种子有利于抵御和适应昆虫寄生取食,但动物最优觅食理论推测,大种子更易遭受昆虫寄生。为对这两种对立观点进行验证,本实验以青冈、苦槠和麻栎各2个种群的种子为材料,对昆虫寄生与完好种子间的体积和萌发率进行比较,并对寄生种子萌发率与种子体积的关系进行了分析。结果显示:(1)在6个种群的种子中,只有松阳麻栎和青冈种群的寄生种子体积大于完好种子,其余4个种群的寄生种子体积小于完好种子,但这种差异不显著;(2)所有寄生种子的整体萌发率(18%)显著低于完好种子(45.66%)(P<0.001),在不同种群内,寄生种子的萌发率也分别显著低于完好种子。(3)比较同种植物体积差异显著的寄生种子的萌发率发现,大种子总比小种子具有更高的萌发率,但差异不显著;在不同植物的寄生种子间比较时,体积最大的麻栎种子萌发率显著高于体积较小的青冈和苦槠种子。研究结果表明,象虫在种子上产卵时对大种子没有选择偏好,在昆虫寄生取食严重损害种子活力的压力下,大种子比小种子具有更强的耐受力。  相似文献   

7.
昆虫种子捕食与蒙古栎种子产量和种子大小的关系   总被引:2,自引:1,他引:2  
为了了解昆虫种子捕食者在栎类种群更新中的作用,于2006年秋季,在黑龙江省伊春市带岭区东方红林场研究了昆虫对蒙古栎Quercus mongolica在参园和东山两个种群的种子蛀食情况及其与蒙古栎种子产量和种子大小的关系。结果表明:(1)在参园和东山两个林分内,蒙古栎种子雨动态非常相似,种子雨成分中完好种子的平均密度仅为3.2±4.1个/m2(参园)和1.7±2.8个/m2(东山),分别仅占种子产量的4.0%和3.2%,而虫蛀种子和败育种子的比例均在38%以上,以虫蛀种子的比例最高,分别为58.2%和57.7%;(2)柞栎象Curculio arakawai是蛀食蒙古栎种子的主要昆虫种类,在虫蛀种子中所占比例高达96.8%(参园)和97.1%(东山),且象甲蛀食种子中所含虫卵数与种子大小有关,即种子越大,所含象甲的虫卵数就较多。本研究的结果说明2006年蒙古栎成熟种子多遭遇虫蛀,导致完好种子的数量极低,因而可能成为限制蒙古栎种群更新的重要因素。  相似文献   

8.
9.
Knowledge of feeding rates is the basis to understand interaction strength and subsequently the stability of ecosystems and biodiversity. Feeding rates, as all biological rates, depend on consumer and resource body masses and environmental temperature. Despite five decades of research on functional responses as quantitative models of feeding rates, a unifying framework of how they scale with body masses and temperature is still lacking. This is perplexing, considering that the strength of functional responses (i.e. interaction strengths) is crucially important for the stability of simple consumer–resource systems and the persistence, sustainability and biodiversity of complex communities. Here, we present the largest currently available database on functional response parameters and their scaling with body mass and temperature. Moreover, these data are integrated across ecosystems and metabolic types of species. Surprisingly, we found general temperature dependencies that differed from the Arrhenius terms predicted by metabolic models. Additionally, the body-mass-scaling relationships were more complex than expected and differed across ecosystems and metabolic types. At local scales (taxonomically narrow groups of consumer–resource pairs), we found hump-shaped deviations from the temperature and body-mass-scaling relationships. Despite the complexity of our results, these body-mass- and temperature-scaling models remain useful as a mechanistic basis for predicting the consequences of warming for interaction strengths, population dynamics and network stability across communities differing in their size structure.  相似文献   

10.
Morphological scaling relationships between organ and body size—also known as allometries—describe the shape of a species, and the evolution of such scaling relationships is central to the generation of morphological diversity. Despite extensive modeling and empirical tests, however, the modes of selection that generate changes in scaling remain largely unknown. Here, we mathematically model the evolution of the group‐level scaling as an emergent property of individual‐level variation in the developmental mechanisms that regulate trait and body size. We show that these mechanisms generate a “cryptic individual scaling relationship” unique to each genotype in a population, which determines body and trait size expressed by each individual, depending on developmental nutrition. We find that populations may have identical population‐level allometries but very different underlying patterns of cryptic individual scaling relationships. Consequently, two populations with apparently the same morphological scaling relationship may respond very differently to the same form of selection. By focusing on the developmental mechanisms that regulate trait size and the patterns of cryptic individual scaling relationships they produce, our approach reveals the forms of selection that should be most effective in altering morphological scaling, and directs researcher attention on the actual, hitherto overlooked, targets of selection.  相似文献   

11.
12.
13.
Summary Life-history theory is usually based on an animal's age or size. McNamara describes a general technique for finding the optimal life-history when an organism's strategy is allowed to depend on other aspects of its state. In this paper we describe the technique in the context of previous work in life-history theory and discuss how it can be used to look at decisions on a finer time scale than the usual annual decisions. We show how it can be used to model optimal clutch size when there is a trade-off between number and quality of offspring. It is shown that the optimal clutch size is typically less than the most productive clutch size. Measuring the value of a clutch in terms of the number of offspring that survive to breed or even the number of grandchildren that survive to breed may give misleading results.  相似文献   

14.
《Molecular cell》2021,81(23):4861-4875.e7
  1. Download : Download high-res image (165KB)
  2. Download : Download full-size image
  相似文献   

15.
Ecological correlates of seed size in the British flora   总被引:5,自引:0,他引:5  
1. The association between seed size and habitat shade within the British flora was investigated using a data set of seed masses, life histories and quantitative measures of habitat shade for 504 species; the association between seed size and seed longevity was investigated using a data set of seed masses, life histories and seed longevities for 301 species.
2. The data were analysed using the method of phylogenetically independent contrasts (PICs) calculated using the software package CAIC (Comparative Analysis by Independent Contrasts).
3. Seed mass was found to be positively correlated with habitat shade and negatively correlated with seed longevity, after variation owing to life history had been accounted for.  相似文献   

16.
1. The size–grain hypothesis maintains that as terrestrial walking organisms decrease in size, their environment becomes less planar and more rugose. The benefits of long legs (efficient, speedy movement over a planar environment) may thus decrease with smaller body size, while the costs (larger cross-sectional area limiting access to the interstitial environment) are enhanced.
2. A prediction from this hypothesis – that leg size should increase proportionately with body mass – is examined. Ants are among the smallest walking animals and extend the size gradient five orders of magnitude beyond the traditional 'mouse to elephant' curve. The mass of 135 species of worker ants spans 3·7 orders of magnitude (0·008–53 mg). Larger ants tended to be slimmer and longer legged. Ant subfamilies varied in their scaling relationships, but four out of five showed a positive allometry for hind leg length ( b > 0·33). Mammals, in contrast, show isometry for leg length over six orders of magnitude.
3. It is suggested that ants make a transition from living in an interstitial environment when small to a planar environment when large, a habit continued by most terrestrial mammals. Head length and pronotum width are robust estimators of mass in ants.  相似文献   

17.
Abstract: For eleven tree species, differing in seed mass, germination success (emergence success for two small-seeded species) and the causes of failure to germinate were studied in the forest understorey and in logging gaps in the tropical rain forests of Guyana. In the forest understorey, germination success increased with seed mass. However, as gap size increased the difference between smaller and larger seeded species diminished because germination success of smaller-seeded species increased slightly, while that of larger-seeded species decreased dramatically. The negative effect of gap size on germination success of larger-seeded species was caused by an increased risk of desiccation with gap size, which was a far more important seed mortality agent for larger than for smaller-seeded species. Generally, seeds of smaller-seeded species suffered more from insect predation and were removed at higher rates than larger-seeded species. On the other hand, larger-seeded species were eaten more by mammals than smaller-seeded species. It is concluded that logging can result in shifts in the species composition in the tropical rain forests of Guyana which are dominated by species with large seeds, since germination success of larger-seeded species is dramatically reduced in large logging gaps.  相似文献   

18.
The avian eggshell represents a highly evolved structure adapted to the physiological requirements of the embryo and the potential fracturing forces it is exposed to during incubation. Given its many roles, it is not surprising that the eggshell is also central to the current hypothesis about maximum avian body mass. Eggshell thickness ( L ) and strength has historically been scaled as a function of initial egg mass (IEM). However, maximum incubator mass (IM) is likely a better indicator of the forces the shell must be selected to withstand during incubation. We compare the results of analyses of L 2 (an indicator of shell strength) as a function of IEM and IM. We conclude from IM scaling that megapode and kiwi eggshells are not thin but rather are thicker than expected and in general birds with a clutch size of 1 have thicker shells, and further, that reversed sexual dimorphism in the large, particularly extinct birds may be a strategy to avoid shell breakage during incubation of the largest eggs without creating a shell so thick as to inhibit hatching.  相似文献   

19.
To explain the adaptive significance of sex role partitioning and reversed sexual size dimorphism among raptors, owls and skuas, where females are usually larger than males, we combine several previous hypotheses with some new ideas. Owing to their structural and behavioural adaptations for prey capture, predatory birds have better prospects than other birds of defending their offspring against nest predators. This makes sex role partitioning advantageous; one parent guards the offspring while the other forages for the family. Further, among predators hunting alert prey such as vertebrates, two mates because of interference may not procur much more food than would one mate hunting alone. By contrast, two mates feeding on less alert prey may together obtain almost twice as much food as one mate hunting alone. For these reasons, partitioning of breeding labours might be adaptive only in predatory birds. An initial imbalance favours female nest guarding and male foraging: the developing eggs might be damaged if the female attacks prey; their mass might reduce her flight performance; she must visit the nest to lay; and the male feeds her before she lays (‘courtship feeding’). Increased female body size should enhance egg production, incubation, ability to tear apart prey for the young, and, in particular, offspring protection in predatory birds. Efficient foraging during the breeding period then becomes most important for the male. This imposes great demands on aerial agility in males, particularly among predators of agile prey. Flight performance decreases with increasing size in five of six aspects explored. The male must therefore not be too large in relation to the most important prey. For these reasons, he should be smaller than the female. Among predatory birds, size dimorphism increases with the proportion of birds in the diet, which may be explained as follows. Adult birds have mainly one type of predators: other predatory birds. Because almost only these specialists exploit adult birds, they carry out most of the cropping of this prey. A predator of easier prey competes with many other kinds of predators, which considerably reduce prey abundance in its territory. This is not so for predators of adult birds. Further, because birds are extremely agile, the specialized predator can hunt efficiently only within a limited size range of birds, whose flight skill it can match. Increased size dimorphism among these predators therefore should be particularly important for enlarging the combined food base of the pair. A bird specialist may consume much of the available prey in the suitable size range during the breeding period. When the predator's young are large enough to defend themselves, the female aids better by hunting than by guarding the chicks. It is advantageous among bird specialists if she hunts prey of other sizes than does the male, who has by then reduced prey abundance in his prey size class. But among predatory birds hunting easier prey the female gains little by hunting outside the male's prey spectrum, because other kinds of predators will have reduced the prey abundance outside as well as inside the male's preferred size range. Intra-pair food separation through large sexual size dimorphism therefore should be particularly advantageous among predators of birds. This may be the main reason why the degree of size dimorphism increases with the dietary proportion of birds.  相似文献   

20.
Recent evidence indicates that fruit size has evolved according to dispersers' size. This is hypothesized to result from a balance between factors favouring large seeds and dispersers setting the maximum fruit size. This hypothesis assumes that (1) the size of fruits that can be consumed by dispersers is limited, (2) fruit and seed size are positively correlated, and (3) the result of multiple selection pressures on seed size is positive. Our studies on the seed dispersal mutualism of Olea europaea have supported the first and second assumptions, but valid tests of the third assumption are still lacking. Here we confirm the third assumption. Using multiplicative fitness components, we show that conflicting selection pressures on seed size during and after dispersal reverse the negative pattern of selection exerted by dispersers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号