首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel enzymatic ligand binding assay for biotin and its benzodiazepine conjugate is based on their binding to horseradish peroxidase-avidin conjugate (A-P) followed by the uptake of biotin-unsaturated A-P onto polystyrene beads coated with biotin-BSA. The detection limit is 1.3 x 10(-16) mol per tube (300 microL) with a 3.3 x 10(-12) M A-P solution and varies with the conjugate concentration employed. The coefficient of variation for 10 repetitive assays of 10(-15) mol of biotin is 6.22%.  相似文献   

2.
M Berger 《Biochemistry》1975,14(11):2338-2342
Methods were developed for the coupling of biotin to bovine serum albumin and bovine gamma-globulin using a water-soluble carbodimide. The use of [14-C]biotin as a tracer allowed quantitation of the incorporation of biotin into the conjugates: 2.55 mol of biotin was incorporated per mol of gamma-globulin and 7-9 mol of biotin was incorporated per mol of serum albumin in different preparations. These conjugates were highly immunogenic in the rabbit and anti-bodies reactive with the biotinyl group itself could be detected by their ability to precipitate the heterologous biotinated carrier but not the unmodified heterologous carrier. There antisera rapidly inactivated transcarboxylase and pyruvate carboxylase and this inactivation could be blocked by pretreatment of the antisera with biotin or biocytin. Using enzyme inhibition to detect free antibody, the binding constant for biotin was found to be 5.0 x 10- minus 8 M and that for biocytin 3.5 x 10- minus 8 M.  相似文献   

3.
A colorimetric competitive inhibition assay for avidin, streptavidin and biotin was developed. The method for avidin or streptavidin was based on the competitive binding between avidin or streptavidin and a streptavidin-enzyme conjugate for biotinylated dextrin immobilized on the surface of a microtitre plate. For biotin quantitation the competition is between free biotin and the immobilized biotin for the streptavidin-enzyme conjugate. The limits of detection which was determined as the concentration of competitor required to give 90% of maximal absorbency (100% inhibition) was approximately 20 ng/100 microl per assay for avidin and streptavidin and 0.4 pg/100 microl per assay for biotin. The methods are simple, rapid, highly sensitive and adaptable to high throughput analysis.  相似文献   

4.
A new approach to heterogeneous enzyme immunoassays has been developed that uses a tag molecule linked to an enzyme-ligand conjugate. The insoluble phase is an insolubilized receptor to that tag. The antibody to the ligand, in addition to complexing either the free ligand or the one covalently linked to the tagged enzyme, also serves to mask the tag on the tagged enzyme-ligand conjugate so that it can no longer bind to the insolubilized receptor. Accordingly, the proportion of enzyme conjugate associated with the insoluble fraction is proportional to the amount of analyte ligand being assayed. This heterogeneous EIA based on the “antibody masking the tag” is called AMETIA. In the model system we use DNP-lysine as the ligand, β-galactosidase as the enzyme, biotin as the tag, and avidin immobilized to Sepharose as the insoluble receptor.  相似文献   

5.
A novel peptide was designed which possesses nanomolar affinity of less than 20 nM for streptavidin. Therefore it was termed Nano-tag and has been used as an affinity tag for recombinant proteins. The minimized version of the wild type Nano-tag is a seven-amino acid peptide with the sequence fMDVEAWL. The three-dimensional structure of wild type streptavidin in complex with the minimized Nano-tag was analyzed at atomic resolution of 1.15 A and the details of the binding motif were investigated. The peptide recognizes the same pocket of streptavidin where the natural ligand biotin is bound, but the peptide requires significantly more space than biotin. Therefore the binding loop adopts an "open" conformation in order to release additional space for the peptide. The conformation of the bound Nano-tag corresponds to a 3(10) helix. However, the analysis of the intermolecular interactions of the Nano-tag with residues of the binding pocket of streptavidin reveals astonishing similarities to the biotin binding motif. In principle the three-dimensional conformation of the Nano-tag mimics the binding mode of biotin. Our results explain why the use of the Nano-tag in fusion with recombinant proteins is restricted to their N-terminus and we describe the special significance of the fMet residue for the high affinity binding mode.  相似文献   

6.
Pretargeted radioimmunotherapy specifically targets radiation to tumors using antibody-streptavidin conjugates followed by radiolabeled biotin. A potential barrier to this cancer therapy is the presence of endogenous biotin in serum, which can block the biotin-binding sites of the antibody-streptavidin conjugate before the administration of radiolabeled biotin. Serum-derived biotin can also be problematic in clinical diagnostic applications. Due to the extremely slow dissociation of the biotin-streptavidin complex, this endogenous biotin can irreversibly block the biotin-binding sites of streptavidin and reduce therapeutic efficacy, as well as reduce sensitivity in diagnostic assays. We tested a streptavidin mutant (SAv-Y43A), which has a 67-fold lower affinity for biotin than wild type streptavidin, and three bivalent bis-biotin constructs as replacements for wild-type streptavidin and biotin used in pretargeting and clinical diagnostics. Biotin dimers were engineered with certain parameters including water solubility, biotinidase resistance, and linker lengths long enough to span the distance between two biotin-binding sites of streptavidin. The bivalent biotins were compared to biotin in exchange, retention, and off-rate assays. The faster off-rate of SAv-Y43A allowed efficient exchange of prebound biotin by the biotin dimers. In fluorescent competition experiments, the biotin dimer ligands displayed high avidity binding and essentially irreversible retention with SAv-Y43A. The off-rate of a biotinidase-stabilized biotin dimer from SAv-Y43A was 4.36 x 10(-)(6) s(-)(1), over 640 times slower compared to biotin. These findings strongly suggest that employing a mutant streptavidin in concert with a bivalent biotin can mitigate the deleterious impact of endogenous biotin, by allowing exchange of bound biotin and retention of the biotin dimer carriers.  相似文献   

7.
A novel form of tetrameric streptavidin has been engineered to have reversible biotin binding capability. In wild-type streptavidin, loop(3-4) functions as a lid for the entry and exit of biotin. When biotin is bound, interactions between biotin and key residues in loop(3-4) keep this lid in the closed state. In the engineered mutein, a second biotin exit door is created by changing the amino acid sequence of loop(7-8). This door is mobile even in the presence of the bound biotin and can facilitate the release of biotin from the mutein. Since loop(7-8) is involved in subunit interactions, alteration of this loop in the engineered mutein results in an 11° rotation between the two dimers in reference to wild-type streptavidin. The tetrameric state of the engineered mutein is stabilized by a H127C mutation, which leads to the formation of inter-subunit disulfide bonds. The biotin binding kinetic parameters (k(off) of 4.28×10(-4) s(-1) and K(d) of 1.9×10(-8) M) make this engineered mutein a superb affinity agent for the purification of biotinylated biomolecules. Affinity matrices can be regenerated using gentle procedures, and regenerated matrices can be reused at least ten times without any observable reduction in binding capacity. With the combination of both the engineered mutein and wild-type streptavidin, biotinylated biomolecules can easily be affinity purified to high purity and immobilized to desirable platforms without any leakage concerns. Other potential biotechnological applications, such as development of an automated high-throughput protein purification system, are feasible.  相似文献   

8.
We describe a simple and rapid quantitative assay for biotin and biotin conjugates. The assay is based on the kinetic analysis of the enhancement of fluorescence of streptavidin/fluorescein biotin complexes in the presence of biotin. The kinetic response of fluorescence enhancement is proportional to the concentration of biotin. Standard calibration curves based on the kinetic response are obtained and detection limits of approximately 10(-9)M are established. Because the assay is amenable for use in small volumes of 5-50 microL or bead-based assays, the detection limits can be extended to the femtomole range. Since the assay depends on kinetic analysis, routine quantitation can be achieved without reference to standard curves. The dynamic aspects allow the assay to be extended to a broader range of applications including its use as an indicator of reagent mixing in laminar-flow assays carried out in microfluidic devices.  相似文献   

9.
The many laboratory and diagnostic applications utilizing streptavidin as a molecular adaptor rely on its high affinity and essentially irreversible interaction with biotin. However, there are many situations where recovery of the biotinylated molecules is desirable. We have previously shown that poly(N-isopropylacrylamide) (PNIPAAm), a temperature-sensitive polymer, can reversibly block biotin association as the polymer's conformation changes at its lower critical solution temperature (LCST). Here, we have constructed a streptavidin-PNIPAAm conjugate which is able to bind biotin at room temperature or lower and release bound biotin at 37 degrees C. The conjugate can repeatedly bind and release biotin as temperature is cycled through the LCST. A genetically engineered streptavidin mutant, E116C, which has only one cysteine residue, was conjugated site specifically via the sulfhydryl groups with a PNIPAAm that has pendent sulfhydryl-reactive vinyl sulfone groups. The conjugation site is near the tryptophan 120 residue, which forms a van der Waals contact with biotin that is important in generating the large binding free energy. The temperature-induced conformational change of the polymer at position 116 may lead to structural changes in the region of tryptophan 120 that are responsible for the reversible binding between biotin and the conjugated streptavidin.  相似文献   

10.
The high-affinity binding of biotin to avidin, streptavidin, and related proteins has been exploited for decades. However, a disadvantage of the biotin/biotin-binding protein interaction is that it is essentially irreversible under physiological conditions. Desthiobiotin is a biotin analogue that binds less tightly to biotin-binding proteins and is easily displaced by biotin. We synthesized an amine-reactive desthiobiotin derivative for labeling proteins and a desthiobiotin-agarose affinity matrix. Conjugates labeled with desthiobiotin are equivalent to their biotinylated counterparts in cell-staining and antigen-labeling applications. They also bind to streptavidin and other biotin-binding protein-based affinity columns and are recognized by anti-biotin antibodies. Fluorescent streptavidin conjugates saturated with desthiobiotin, but not biotin, bind to a cell-bound biotinylated target without further processing. Streptavidin-based ligands can be gently stripped from desthiobiotin-labeled targets with buffered biotin solutions. Thus, repeated probing with fluorescent streptavidin conjugates followed by enzyme-based detection is possible. In all applications, the desthiobiotin/biotin-binding protein complex is easily dissociated under physiological conditions by either biotin or desthiobiotin. Thus, our desthiobiotin-based reagents and techniques provide some distinct advantages over traditional 2-iminobiotin, monomeric avidin, or other affinity-based techniques.  相似文献   

11.
A new biotin-fluorescein conjugate with an ethylene diamine spacer was found to be the first fluorescent biotin derivative which truly mimicked d-biotin in terms of high affinity, fast association, and non-cooperative binding to avidin and streptavidin tetramers. These exceptional properties were attributed to the small size/length of the new ligand since all larger/longer biotin derivatives are known for their mutual steric hindrance and anti-cooperative binding in 4:1 complexes with avidin and streptavidin tetramers. Specific binding of the new biotin-fluorescein conjugate towards avidin and streptavidin was accompanied by 84-88% quenching of ligand fluorescence. In the accompanying study this effect was used for rapid estimation of avidin and streptavidin in a new 'single tube assay'. In the present study the strong quenching effect was utilized to accurately monitor stoichiometric titration of biotin-binding sites in samples with >/=200 pM avidin or streptavidin. The concentration was calculated from the consumption of fluorescent ligand up to the distinct breakpoint in the fluorescence titration profile which was marked by the abrupt appearance of strongly fluorescent ligands which were in excess. Due to this protocol the assay was not perturbed by background fluorescence or coloration in the unknown samples. The new fluorescence titration assay is particularly suited for quick checks on short notice because getting started only means to thaw an aliquot of a standardized stock solution of fluorescent ligand. No calibration is required for the individual assay and the ligand stock solution needs to be restandardized once per week (or once per year) when stored at -25 degrees C (or at -70 degrees C, respectively).  相似文献   

12.
We have studied the structural elements that affect ligand exchange between the two high affinity biotin-binding proteins, egg white avidin and its bacterial analogue, streptavidin. For this purpose, we have developed a simple assay based on the antipodal behavior of the two proteins toward hydrolysis of biotinyl p-nitrophenyl ester (BNP). The assay provided the experimental basis for these studies. It was found that biotin migrates unidirectionally from streptavidin to avidin. Conversely, the biotin derivative, BNP, is transferred in the opposite direction, from avidin to streptavidin. A previous crystallographic study (Huberman, T., Eisenberg-Domovich, Y., Gitlin, G., Kulik, T., Bayer, E. A., Wilchek, M., and Livnah, O. (2001) J. Biol. Chem. 276, 32031-32039) provided insight into a plausible explanation for these results. These data revealed that the non-hydrolyzable BNP analogue, biotinyl p-nitroanilide, was almost completely sheltered in streptavidin as opposed to avidin in which the disordered conformation of a critical loop resulted in the loss of several hydrogen bonds and concomitant exposure of the analogue to the solvent. In order to determine the minimal modification of the biotin molecule required to cause the disordered loop conformation, the structures of avidin and streptavidin were determined with norbiotin, homobiotin, and a common long-chain biotin derivative, biotinyl epsilon-aminocaproic acid. Six new crystal structures of the avidin and streptavidin complexes with the latter biotin analogues and derivatives were thus elucidated. It was found that extending the biotin side chain by a single CH(2) group (i.e. homobiotin) is sufficient to result in this remarkable conformational change in the loop of avidin. These results bear significant biotechnological importance, suggesting that complexes containing biotinylated probes with streptavidin would be more stable than those with avidin. These findings should be heeded when developing new drugs based on lead compounds because it is difficult to predict the structural and conformational consequences on the resultant protein-ligand interactions.  相似文献   

13.
Birnbaum, Jerome (University of Cincinnati, Cincinnati, Ohio), and Herman C. Lichstein. Metabolism of biotin and analogues of biotin by microorganisms. IV. Degradation of biotin, oxybiotin, and desthiobiotin by Lactobacillus casei. J. Bacteriol. 92:925-930. 1966.-Lactobacillus casei degrades biotin when it is present in excess to products not utilizable for growth by L. plantarum or Saccharomyces cerevisiae. Degrading activity was initiated in the early stationary phase and was controlled by the pH of the medium. Nonproliferating cells, grown previously in excess biotin for 40 hr, metabolized oxybiotin and desthiobiotin as well as biotin. Cells grown in low biotin, or in excess biotin for 20 hr, did not degrade either analogue. Oxybiotin was 50% as active as biotin for growth, whereas desthiobiotin acted as a competitive inhibitor. Cells grown in excess biotin for 40 hr, but not 20 hr, overcame the inhibitory effect of desthiobiotin, when subcultured to media containing a normally inhibitory concentration of the analogue. Moreover, the level of desthiobiotin dropped rapidly during the first 4 to 6 hr before growth ensued. The data indicate that growth in excess biotin enables L. casei to degrade desthiobiotin and, thereby, to overcome the inhibitory effect of the analogue.  相似文献   

14.
A streptavidin-glucose-6-phosphate dehydrogenase (G6PDH) conjugate was synthesized and its properties were studied, along with those of biotin-G6PDH conjugates. Two bioluminescent assays were used. Streptavidin was assayed in two steps: streptavidin samples were first incubated with a small amount of biotin-G6PDH and then with biotinylated rabbit gamma-globulins. The complex was immobilized on a bioluminescent immunoadsorbent. In the single-step biotin assay, free biotin was allowed to compete with biotin linked to rabbit gamma-globulins for binding to streptavidin-G6PDH in the presence of the bioluminescent immunoadsorbent. Neither assay required washing or separation steps and the sensitivity was 0.2 ng for streptavidin and 100 fg for biotin. Different applications are described: studies of biotin reactivity when linked to probes in solution or immobilized, and quantitation of biotin in biotinylated DNA probes and oligonucleotides.  相似文献   

15.
Cell-free extracts prepared from a biotin auxotroph of Escherichia coli were active in catalyzing the synthesis of 7,8-diaminopelargonic acid, an intermediate of the biotin pathway, from 7-oxo-8-aminopelargonic acid. The product was identified on the basis of its chromatographic characteristics and its biotin activities for biotin auxotrophs of E. coli. Enzyme activity was determined in a reaction coupled with the desthiobiotin synthetase system, which is required for the conversion of 7,8-diaminopelargonic acid to desthiobiotin, and by measuring the amount of desthiobiotin formed by microbiological assay. The reaction was stimulated by l-methionine and pyridoxal-5'-phosphate. l-Methionine could not be replaced by any other amino acids tested. Pyridoxamine and pyridoxamine-5'-phosphate were as active as pyridoxal phosphate. The enzyme, presumably an aminotransferase, was demonstrable in the parent strain of E. coli and all mutant strains tested with the exception of a strain which is able to grow on diaminopelargonic acid but not on 7-oxo-8-aminopelargonic acid. Furthermore, the enzyme was repressible by biotin. The results were consistent with the hypothesis that the biosynthesis of 7,8-diaminopelargonic acid from 7-oxo-8-aminopelargonic acid is an obligatory step in the biosynthetic pathway of biotin in E. coli.  相似文献   

16.
A method for the homogeneous estimation of the biotin binding protein, avidin, by use of an enzyme label is described. As in homogeneous enzyme immunoassay, where no separation step is employed, the activity of a biotin-lysozyme conjugate is inhibited by the binding of avidin, instead of an immunoagent. Biotin concentration can also be related to conjugate activity after sequential saturation of a known amount of avidin by the biotin sample and the biotin-lysozyme conjugate. Conjugate activity is followed potentiometrically by the release of trimethylphenylammonium ion from loaded Micrococcus lysodeikticus cells or turbidimetrically using a M. lysodeikticus cell suspension.  相似文献   

17.
Homogeneous assays are attractive because they are performed in only one phase, namely, the liquid phase, and thus, they do not require separation of phases as their heterogeneous counterparts do. As opposed to heterogeneous assays, the signal generation in a homogeneous assay is a direct result of analyte binding, which allows the multiple washing and incubation steps required in an indirect heterogeneous assay format to be eliminated. Moreover, homogeneous assays are usually fast and amenable to miniaturization and automation. In this article, we describe the development of a homogeneous assay for the hormone cortisol using the bioluminescent photoprotein aequorin as a reporter molecule. A cortisol derivative was chemically conjugated to the lysine residues of a genetically modified aequorin in order to prepare an aequorin-cortisol conjugate capable of binding anticortisol antibodies. The binding of anticortisol antibodies to the aequorin-cortisol conjugate resulted in a linear response reflected in the emission of bioluminescence by aequorin. A competitive binding assay was developed by simultaneously incubating the aequorin-cortisol conjugate, the anticortisol antibodies, and the sample containing free cortisol. Dose-response curves were generated relating the intensity of the bioluminescence signal with the concentration of free cortisol in the sample. The optimized homogeneous immunoassay produced a detection limit of 1 x 10 (-10) M of free cortisol, with a linear dynamic range spanning from 1 x 10 (-5) to 1 x 10 (-9) M. Both serum and salivary levels of cortisol fall well within this assay's linear range (3.0 x 10 (-7) M to 7.5 x 10 (-7) M and 1.0 x 10 (-8) M to 2.5 x 10 (-8) M, respectively), thereby making this assay attractive for the analysis of this hormone in biological samples. To that end, it was demonstrated that the assay can be reliably used to measure the concentration of free cortisol in saliva without significant pretreatment of the sample.  相似文献   

18.
Escherichia coli was engineered to intracellularly manufacture streptavidin beads. Variants of streptavidin (monomeric, core and mature full length streptavidin) were C-terminally fused to PhaC, the polyester granule forming enzyme of Cupriavidus necator. All streptavidin fusion proteins mediated formation of the respective granules in E. coli and were overproduced at the granule surface. The monomeric streptavidin showed biotin binding (0.7 ng biotin/microg bead protein) only when fused as single-chain dimer. Core streptavidin and the corresponding single-chain dimer mediated a biotin binding of about 3.9 and 1.5 ng biotin/mug bead protein, respectively. However, biotin binding of about 61 ng biotin/mug bead protein with an equilibrium dissociation constant (KD) of about 4 x 10(-8)M was obtained when mature full length streptavidin was used. Beads displaying mature full length streptavidin were characterized in detail using ELISA, competitive ELISA and FACS. Immobilisation of biotinylated enzymes or antibodies to the beads as well as the purification of biotinylated DNA was used to demonstrate the applicability of these novel streptavidin beads. This study proposes a novel method for the cheap and efficient one-step production of versatile streptavidin beads by using engineered E. coli as cell factory.  相似文献   

19.
We describe the cooperativity in the biotin binding of streptavidin. We have developed an electrophoretic method which can separate streptavidin molecules with bound biotin from those without biotin. In 6 M urea, the electrophoretic mobility of streptavidin in polyacrylamide gels becomes significantly faster upon biotin binding. When streptavidin was titrated with biotin, only two major bands were observed on the gel, consisting of streptavidin molecules without bound biotin and those saturated with biotin. The change in mobility is due partly to the negative charge of the bound biotin, but it must reflect conformational changes of the protein molecule associated with biotin binding. Gel filtration chromatography showed that the streptavidin molecule dissociates into two subunit dimers in the presence of 6 M urea. These results suggest that the biotin binding by the streptavidin subunit dimer is cooperative and that some communication must exist between the two subunits.  相似文献   

20.
On the basis of high resolution crystallographic studies of streptavidin and its biotin complex, three principal binding motifs have been identified that contribute to the tight binding. A flexible binding loop can undergo a conformational change from an open to a closed form when biotin is bound. Additional studies described here of unbound wild-type streptavidin have provided structural views of the open conformation. Several tryptophan residues packing around the bound biotin constitute the second binding motif, one dominated by hydrophobic interactions. Mutation of these residues to alanine or phenylalanine have variable effects on the thermodynamics and kinetics of binding, but they generate only small changes in the molecular structure. Hydrogen bonding interactions also contribute significantly to the binding energetics of biotin, and the D128A mutation which breaks a hydrogen bond between the protein and a ureido NH group results in a significant structural alteration that could mimic an intermediate on the dissociation pathway. In this review, we summarize the structural aspects of biotin recognition that have been gained from crystallographic analyses of wild-type and site-directed streptavidin mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号