首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
The diadenosine 5',5'-P1,P4-tetraphosphate alpha,beta-phosphorylase (Ap4A phosphorylase), recently observed in yeast [Guaranowski, A., & Blanquet, S. (1985) J. Biol. Chem. 260, 3542-3547], is shown to be capable of catalyzing the synthesis of Ap4A from ATP + ADP, i.e., the reverse reaction of the phosphorolysis of Ap4A. The synthesis of Ap4A markedly depends on the presence of a divalent cation (Ca2+, Mn2+, or Mg2+). In vitro, the equilibrium constant K = ([Ap4A][Pi])/[(ATP][ADP]) is very sensitive to pH. Ap4A synthesis is favored at low pH, in agreement with the consumption of one to two protons when ATP + ADP are converted into Ap4A and phosphate. Optimal activity is found at pH 5.9. At pH 7.0 and in the presence of Ca2+, the Vm for Ap4A synthesis is 7.4 s-1 (37 degrees C). Ap4A phosphorylase is, therefore, a valuable candidate for the production of Ap4A in vivo. Ap4A phosphorylase is also capable of producing various Np4N' molecules from NTP and N'DP. The NTP site is specific for purine ribonucleotides (N = A, G), whereas the N'DP site has a broader specificity (N' = A, C, G, U, dA). This finding suggests that the Gp4N' nucleotides, as well as the Ap4N' ones, could occur in yeast cells.  相似文献   

2.
The levels or diadenosine 5', 5'-p1, p4, tetraphosphate (Ap4A), a putative signal molecule associated with DNA synthesis, has been measured in murine T lymphocytes. The level or Ap4A detected correlated with the stimulation of DNA synthesis in murine T lymphocytes. In interleukin-2 (IL-2) dependent cells previously deprived of IL-2, new DNA synthesis can be induced by adding IL-2; the synthesis of DNA is preceded by an increase in Ap4A levels. A significant increase in DNA synthesis was observed after the Ap4A concentration exceeded the Kd of DNA polymerase alpha for Ap4A. Similarly, in cells blocked from synthesizing DNA by hydroxyurea, the levels or Ap4A are maintained only in the presence of IL-2. Once IL-2 is removed, the potential to synthesize DNA decreases and is preceded by decreases in the level or Ap4A. The DNA synthesis potential decreases rapidly after the Ap4A concentration fell below the Kd of DNA polymerase alpha for Ap4A. It is possible that Ap4A is a second messenger molecule required for the proliferation of lymphocytes and that the production of Ap4A in IL-2 dependent murine T lymphocytes is regulated by the homologous growth factor.  相似文献   

3.
Diadenosine 5′, 5?-p1, p4-tetraphosphate (Ap4A) strongly inhibited ADP-ribosylation reaction of histone by purified bovine thymus poly(ADP-ribose) polymerase. This compound showed a relatively weak inhibitory effect on Mg2+-dependent, enzyme-bound poly(ADP-ribose) synthesis. Among various adenine nucleotides tested, including several diadenosine nucleotides with varying phosphate chain length, Ap4A was the most effective inhibitor of the histone-modification reaction. Ap5A and Ap6A showed slightly lower inhibitory effect than Ap4A. Kinetic analysis of the inhibitor (Ap4A) with varying concentration of substrate (NAD+) revealed that this compound is a “mixed type inhibitor”, with a Ki value of 5.1 μM.  相似文献   

4.
The substrate specificity of procaryotic and eucaryotic AppppA-degrading enzymes was investigated with phosphonate analogues of diadenosine 5',5'-P1,P4-tetraphosphate (AppppA). App(CH2)ppA (I), App(CHBr)ppA (II), and Appp(CH2)pA (III), but not Ap(CH2)pp(CH2)pA (IV), are substrates for lupin AppppA hydrolase (EC 3.6.1.17) and phosphodiesterase I (EC 3.1.4.1). None of the four analogues is hydrolyzed by bacterial AppppA hydrolase (EC 3.6.1.41), and only analogue III is degraded by yeast AppppA phosphorylase (EC 2.7.7.53). The analogues are competitive inhibitors of all four enzymes. The affinity of analogue IV is 3-40-fold lower than that of analogues I-III for all four enzymes. Introduction of one methylene (as in I and III) [or bromomethylene (as in II)] group into AppppA results in a 3-15-fold increase of its affinity for lupin and Escherichia coli AppppA hydrolases. The same modifications only negligibly (10-30%) affect its affinity for yeast AppppA phosphorylase and decrease its affinity for lupin phosphodiesterase I about 2.5-fold. The data provide further evidence for the heterogeneity among catalytic sites of all four AppppA-degrading enzymes.  相似文献   

5.
Diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A) phosphorylase has been isolated previously using classical protein isolation techniques [A. Guranowski and S. Blanquet (1985) J. Biol. Chem. 260, 3542-3547]. A protein A-Sepharose immunoaffinity column was prepared to simplify the purification procedure. The immunoaffinity column was prepared using specific polyclonal antibodies to Ap4A phosphorylase covalently coupled to protein A-Sepharose with dimethyl pimelimidate by a modification of the procedure of C. Schneider et al. [(1982) J. Biol. Chem. 257, 10,766-10,769]. The specific activity of the immunoaffinity-purified enzyme showed an increase equivalent to the specific activity obtained by chromatography on DEAE-cellulose and hydroxyapatite columns.  相似文献   

6.
Enzymatic activity which hydrolyzes diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) yielding ADP has been identified in extracts of eubacteria, Escherichia coli and Acidaminococcus fermentans, and of a highly thermophilic archaebacterium, Pyrodictum occultum. Specific Ap4A (symmetric) pyrophosphohydrolase from Escherichia coli K12 has been purified almost 400-fold. The preparation was free of phosphatase, ATPase, phosphodiesterase, AMP-nucleosidase, and adenylate kinase. The Ap4A pyrophosphohydrolase molecular weight estimated by gel filtration is 27,000 +/- 1,000. Activity maximum is at pH 8.3. The Km value computed for Ap4A is 25 +/- 3 microM. The sulfhydryl group(s) is essential for enzyme activity. Metal chelators, EDTA, and o-phenanthroline, inhibit Ap4A hydrolysis; I0.5 values are 3 and 50 microM, respectively. Co2+ is a strong stimulator with an almost 100-fold increase in rate of Ap4A hydrolysis and a plateau in the range of 100-500 microM Co2+, when compared with the nonstimulated hydrolysis. Other transition metal ions, Mn2+, Cd2+, and Ni2+, stimulate by factors of 8, 3.5, and 3.5, respectively, with optimal concentrations in the range 200-500, 2-5, and 4-8 microM, respectively. Zn2+, Cu2+, and Fe2+, up to 30 microM, are without effect and they inhibit at higher concentrations. Mg2+ or Ca2+, in the absence of other divalent metal ions, are weak stimulators (1.5-fold stimulation occurs at 1-2 mM concentration), but act synergistically with Co2+ at its suboptimal concentrations. Stimulation in the presence of 10 microM Co2+ and either 1 mM MgCl2 or CaCl2 increases up to 75-fold. The same degree of synergy is found at 10 microM Co2+ and either 2-5 mM spermidine or 0.5-1.5 mM spermine. Besides Ap4A, bacterial Ap4A pyrophosphohydrolase hydrolyzes effectively Ap5A and Gp4G, and, to some extent, p4A, Ap6A, and Ap3A yielding in each case corresponding nucleoside diphosphate as one of the products.  相似文献   

7.
L D Barnes  C A Culver 《Biochemistry》1982,21(24):6123-6128
A new enzyme that hydrolyzes diadenosine 5',5"'-P1,P4-tetraphosphate has been purified by a factor of 250 from the acellular slime mold Physarum polycephalum. Activity was assayed radioisotopically with [3H]Ap4A. Isolation of the enzyme was facilitated by dye-ligand chromatography. The enzyme symmetrically hydrolyzes Ap4A to ADP and exhibits biphasic kinetics for the substrate with values for the apparent Km of 2.6 micro M and 37 micro M. The two values of Vmax differ by a factor of 10. Mg2+, Ca2+, and other divalent cations inhibit the activity with 40-80% inhibition occurring at 0.5 mM. Mg2+, at 0.5 mM, decreases both values of Vmax by 50%, decreases the low Km value by about 30%, and increases the high Km value by about 100%. (Ethylenedinitrilo)tetraacetic acid (EDTA) and [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA), at 10 mM, inhibit the activity by 50%. ADP, ATP, Ap4, and Gp4 are equipotent inhibitors with 50% inhibition occurring at 30 micro M. AMP is a relatively weak inhibitor. The molecular weight of the enzyme is 26000 on the basis of elution of activity from a calibrated Sephadex G-75 column.  相似文献   

8.
We report the development of a synthetic, biotin-conjugated diadenosine tetraphosphate (Ap(4)A)-'molecular hook' attached to magnetic beads enabling the isolation of Ap(4)A-binding proteins from bacterial cells or mammalian tissue lysates. Characterisation and identification of isolated binding proteins is performed sequentially by mass spectrometry. The observation of positive controls suggests that these newly observed proteins are putative Ap(4)A-binding partners, and we have expectations that others can be found with further technical improvements in our methods.  相似文献   

9.
Heat-shocked organisms are known to produce not only "heat shock proteins" but also diadenosine tetraphosphate (Ap4A) and related compounds that may act as "alarmones" that alert the cell to the onset of metabolic stress. We found that Ap4A is synthesized in chicken erythrocytes and that the Ap4A level in the whole blood of heat-stressed birds increases about 10-fold. In searching for alarmone receptors, we found that the diadenosine polyphosphates bind preferentially with high affinity to the deoxy conformation of hemoglobin in a ratio of one/tetramer. The binding affinity of this new class of effectors of hemoglobin function is directly related to the number of phosphates which bridge the nucleotide moieties, with the most dramatic in vitro effect on oxygen affinity being shown by Ap6A. Decreasing effects are brought about by diadenosine penta-, tetra-, tri-, di-, and monophosphates. The association constant for Ap4A binding to deoxygenated human hemoglobin at pH 7.25 is 26 microM-1, close to that for 2,3-diphosphoglycerate. At 100-fold excess over heme, Ap4A increases the P50 of stripped Hb A in 0.05 M HEPES buffer at pH 7.25, 20 degrees C, from 0.85 to 6.03 mm Hg. The binding, which markedly enhances the Bohr effect, involves the beta chain anion-binding site. The kinetics of both ligand binding and dissociation are affected, with a greater quantitative effect on the oxygen dissociation process. Although the low concentration of the diadenosine polyphosphates in red cells precludes a physiologically significant modulation of oxygen delivery, competition with the ATP- and NAD(P)H-binding sites on hemoglobin or regulatory enzymes may prove to be of adaptive significance.  相似文献   

10.
Sea urchin embryos were labeled with [3H]adenosine at two developmental stages (morula and prism) and the labeled acid-soluble nucleotides were fractionated successively by column chromatography with DEAE-Sephadex and DEAE-cellulose, and by thin-layer chromatography on a PEI-cellulose plate. Significant radioactivity was detected on the PEI-cellulose plate at the region of diadenosine 5',5'-P1,P4-tetraphosphate (AP4A). After treatment of this fraction with phosphodiesterase, the radioactivity was all recovered in the AMP region, while alkaline phosphatase had no effect on the AP4A fraction. The present result suggests that AP4A is actively synthesized in the sea urchin embryos.  相似文献   

11.
A novel way of enzymatic synthesis of diadenosine 5',5"'-P1,P4-tetraphosphate (AppppA), which does not involve aminoacyl-tRNA synthetases, has been discovered. Yeast AppppA alpha, beta-phosphorylase catalyzes irreversible conversion of adenosine 5'-phosphosulfate (APS) and ATP into AppppA according to the equation APS + ATP----AppppA + sulfate. In this reaction, the enzyme exhibits a broad pH optimum (between 6 and 8) and requires Mn2+, Mg2+, or Ca2+ ions for activity, with Mn2+ being twice as effective as Mg2+ or Ca2+ at optimal concentration (0.5 mM). The Km values computed for APS and ATP are 80 microM and 700 microM, respectively. The rate constant for the AppppA synthesis is 3 s-1 (pH 8.0, 30 degrees C, 0.5 mM MgCl2). Some ATP analogues like ppppA, GTP, adenosine 5'-(alpha, beta-methylenetriphosphate), and adenosine 5'-(beta, gamma-methylenetriphosphate), but not dATP, UTP, or CTP, are also substrates for AppppA phosphorylase and accept adenylate from APS with the formation of AppppA, AppppG, Appp(CH2)pA, and App(CH2)ppA, respectively. Functional versatility of yeast AppppA phosphorylase may provide a link between metabolism of AppppA on one hand and metabolism of APS and phosphate on the other and raises the possibility of participation of AppppA in regulation of metabolism of APS and/or inorganic phosphate in yeast.  相似文献   

12.
1. A 5'-nucleotidase was purified from pig lung to apparent homogeneity. 2. Its kinetic properties were similar to those of the previously reported cytoplasmic 5'-nucleotidase, which preferentially hydrolyses IMP and GMP. 3. It was a tetramer composed of 69 kDa subunit. 4. It was effectively stimulated by diadenosine tetraphosphate and glycerate 2,3-bisphosphate.  相似文献   

13.
Purified phenylalanyl-tRNA synthetases present in chloroplasts, mitochondria and cytoplasm of green and bleached Euglena gracilis strains, respectively, are able to synthesize diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A). Ap4A synthesis is strictly dependent on zinc ions. This is the first evidence that chloroplasts should be able to synthesize Ap4A. Synthesis of Ap4A by phenylalanyl-tRNA synthetases of the three compartments of a plant cell or by other enzymes such as Ap4A phosphorylase is discussed.  相似文献   

14.
When the effect of diadenosine 5',5"'-P1,P4-tetraphosphate on a purified poly(ADP-ribose) polymerase reaction was examined, the compound strongly inhibited ADP-ribosylation reaction of histone, while the compound was much less inhibitory of the Mg2+-dependent automodification of this enzyme. In an attempt to study the mechanism of the inhibition, we analyzed the total reaction products, which were synthesized from NAD+ in the presence of diadenosine 5',5"'-P1,P4-tetraphosphate in a reaction mixture for ADP-ribosylation of histone, and found that a new, low molecular product was predominantly synthesized instead of ADP-ribosylated histone in the reaction. Approximately 90% of added NAD+ was converted into this low molecular product under an appropriate reaction condition. Further analysis revealed that the product was mono- and oligo(ADP-ribosyl)ated diadenosine nucleotide and that the bound oligo(ADP-ribose) is elongating at one end of the product during the reaction. Thus, the present study clearly demonstrated that diadenosine 5',5"'-P1,P4-tetraphosphate functions as an acceptor for ADP-ribose in a poly(ADP-ribose) polymerase reaction in vitro. The finding that histone H1 is required in the reaction mixture for the synthesis of this new product suggests that histone H1 and the diadenosine compound interact during this modification reaction.  相似文献   

15.
The gene encoding diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A) phosphorylase from yeast was isolated from a lambda gt11 library. The DNA sequence of the coding region was determined, and more than 90% of the deduced amino acid sequence was confirmed by peptide sequencing. The Ap4A phosphorylase gene (APA1) is unique in the yeast genome. Disruption experiments with this gene, first, supported the conclusion that, in vivo, Ap4A phosphorylase catabolizes the Ap4N nucleotides (where N is A, C, G, or U) and second, revealed the occurrence of a second Ap4A phosphorylase activity in yeast cells. Finally, evidence is provided that the APA1 gene product is responsible for most of the ADP sulfurylase activity in yeast extracts.  相似文献   

16.
An 18 S multienzyme complex of aminoacyl-tRNA synthetases is found to be active in the synthesis of diadenosine-5',5'-P1,P4-tetraphosphate (AppppA). Most of the activity is attributed to lysyl-tRNA synthetase in the complex. Free lysyl-tRNA synthetase dissociated from the synthetase complex is about 6-fold more active than the complex in AppppA synthesis, while their apparent Michaelis constants for ATP and lysine are similar. AMP, which reportedly activates AppppA synthesis (Hilderman, R.H. (1983) Biochemistry 22, 4353-4357), has no effect on AppppA synthesis. The higher activity of free Lys-tRNA synthetase is in part due to the higher stimulation of AppppA synthesis by Zn2+. These results suggest that association of aminoacyl-tRNA synthetases may affect AppppA synthesis.  相似文献   

17.
In order to elucidate the postulated role of diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A) in cell growth regulation, the Ap4A cellular content was measured in cells submitted to various treatments affecting the cell growth. Ap4A level was found to increase ten times when cells reached confluence, whereas no significant variation of the ATP pool was observed. Cell growth arrest after serum depletion did not cause any variation in the Ap4A pool. A limited increase in the Ap4A pool was observed when growth of arrested cells was reinitiated but this variation reflected only the increase of cell density. No significant variation in the Ap4A intracellular level was observed after submitting two eukaryotic cell lines to various stresses (cytotoxic drugs, ethanol and heat-shock treatments). These results suggest that, in eukaryotic cells, Ap4A is not involved in cell growth stimulation but rather is associated with cell contact growth inhibition. They also suggest that Ap4A is not an 'alarmone', contrary to what has been proposed for bacteria.  相似文献   

18.
The effective length and the hard core radius were calculated by scaled particle theory for high molecular weight calf thymus DNA in the presence of varying concentrations of diadenosine 5',5'-P1, P4-tetraphosphate and of adenosine 5'-triphosphate in aqueous millimolar NaCl. DNA became slightly more flexible in the presence of diadenosine 5',5'-P1, P4-tetraphosphate at concentrations of 10(-9)-10(-7) M. DNA was denatured in the presence of 5 X 10(-5) M adenosine triphosphate.  相似文献   

19.
20.
Diadenosine 5',5'-P(1),P(4)-tetraphosphate (Ap(4)A) is a dinucleoside polyphosphate found ubiquitously in eukaryotic and prokaryotic cells. Despite Ap(4)A being universal, its functions have proved to be difficult to define, although they appear to have a strong presence during cellular stress. Here we report on our investigations into the nature and properties of putative Ap(4)A interactions with Escherichia coli molecular chaperone GroEL and cAMP receptor protein (CRP). We confirm previous literature observations that GroEL is an Ap(4)A binding protein and go on to prove that binding of Ap(4)A to GroEL involves a set of binding sites (one per monomer) distinct from the well-known GroEL ATP/ADP sites. Binding of Ap(4)A to GroEL appears to enhance ATPase rates at higher temperatures, encourages the release of bound ADP, and may promote substrate protein release through differential destabilization of the substrate protein-GroEL complex. We suggest that such effects should result in enhanced GroEL/GroES chaperoning activities that could be a primary reason for the improved yields of the refolded substrate protein observed during GroEL/GroES-assisted folding and refolding at >or=30 degrees C in the presence of Ap(4)A. In contrast, we were unable to obtain any data to support a direct role for Ap(4)A interactions with CRP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号