首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A critical hallmark of cancer cell survival is evasion of apoptosis. This is commonly due to overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-X(L), and Mcl-1, which bind to the BH3 α-helical domain of pro-apoptotic proteins such as Bax, Bak, Bad, and Bim, and inhibit their function. We designed a BH3 α-helical mimetic BH3-M6 that binds to Bcl-X(L) and Mcl-1 and prevents their binding to fluorescently labeled Bak- or Bim-BH3 peptides in vitro. Using several approaches, we demonstrate that BH3-M6 is a pan-Bcl-2 antagonist that inhibits the binding of Bcl-X(L), Bcl-2, and Mcl-1 to multi-domain Bax or Bak, or BH3-only Bim or Bad in cell-free systems and in intact human cancer cells, freeing up pro-apoptotic proteins to induce apoptosis. BH3-M6 disruption of these protein-protein interactions is associated with cytochrome c release from mitochondria, caspase-3 activation and PARP cleavage. Using caspase inhibitors and Bax and Bak siRNAs, we demonstrate that BH3-M6-induced apoptosis is caspase- and Bax-, but not Bak-dependent. Furthermore, BH3-M6 disrupts Bcl-X(L)/Bim, Bcl-2/Bim, and Mcl-1/Bim protein-protein interactions and frees up Bim to induce apoptosis in human cancer cells that depend for tumor survival on the neutralization of Bim with Bcl-X(L), Bcl-2, or Mcl-1. Finally, BH3-M6 sensitizes cells to apoptosis induced by the proteasome inhibitor CEP-1612.  相似文献   

2.
BACKGROUND: Tumors develop mechanisms to escape recognition by the immune system. It has recently been demonstrated that tumors cause apoptotic death of key immune cells, including the major antigen-presenting cells, dendritic cells (DC). Elimination of DC from the tumor environment significantly diminishes development of specific immunologic responses. We have recently demonstrated that tumor-induced DC apoptosis could be prevented by overexpression of the anti-apoptotic molecule Bcl-x(L). The aim of this study was to identify extrinsic and intrinsic tumor-induced apoptotic pathways in DC by targeting different anti-apoptotic molecules, including FLIP, XIAP/hILP, dominant-negative procaspase-9 and HSP70. METHODS: Murine bone marrow derived DC were transduced with adenoviral vectors carrying different anti-apoptotic molecules and co-incubated with tumor cells in a Transwell system. Apoptosis of DC was assessed by Annexin V and PI staining. RESULTS: We have demonstrated that adenoviral infection of DC with genes encoding different anti-apoptotic molecules exhibits different degrees of resistance to melanoma-induced apoptosis. Furthermore, we have shown that anti-apoptotic molecules other than the Bcl-2 family of proteins are able to protect DC and prevent tumor-induced apoptosis in DC. CONCLUSIONS: The results show that tumor-induced apoptosis of DC is not limited to the mitochondrial pathway of cell death and open additional possibilities for targeted molecular protection of DC longevity in cancer. Therefore, effective protection of DC from tumor-induced apoptosis may significantly improve the efficacy of DC-based therapies for cancer.  相似文献   

3.
Bcl-2 family proteins are key regulators of apoptosis and have recently been shown to modulate autophagy. The tumor suppressor Beclin 1 has been proposed to coordinate both apoptosis and autophagy through direct interaction with anti-apoptotic family members Bcl-2 and/or Bcl-X(L). However, the molecular basis for this interaction remains enigmatic. Here we report that Beclin 1 contains a conserved BH3 domain, which is both necessary and sufficient for its interaction with Bcl-X(L). We also report the crystal structure of a Beclin BH3 peptide in complex with Bcl-X(L) at 2.5A resolution. Reminiscent of previously determined Bcl-X(L)-BH3 structures, the amphipathic BH3 helix of Beclin 1 bound to a conserved hydrophobic groove of Bcl-X(L). These results define Beclin 1 as a novel BH3-only protein, implying that Beclin 1 may have a direct role in initiating apoptotic signaling. We propose that this putative apoptotic function may be linked to the ability of Beclin 1 to suppress tumor formation in mammals.  相似文献   

4.
5.
The Bcl-2 family of proteins interacts at the mitochondria to regulate apoptosis. However, the anti-apoptotic Bcl-2 and Bcl-X(L) are not completely localized to the mitochondria. In an attempt to generate Bcl-2 and Bcl-X(L) chimeras that are constitutively localized to the mitochondria, we substituted their C-terminal transmembrane tail or both the C-terminal transmembrane tail and the adjacent loop with the equivalent regions from Bak or Bax mutant (BaxS184V) as these regions determine the mitochondrial localization of Bak and Bax. The effects of these substitutions on subcellular localization and their activities were assessed following expression in HeLa and CHO K1 cells. The substitution of the C-terminal tail or the C-terminal tail and the adjacent loop of Bcl-2 with the equivalent regions from Bak or the Bax mutant resulted in its association with the mitochondria. This change in subcellular localization of Bcl-2 chimeras triggered cells to undergo apoptotic-like cell death. The localization of this Bcl-2 chimera to the mitochondria may be associated with the disruption of mitochondrial membrane potential. Unlike Bcl-2, the loop structure adjacent to the C-terminal tail in Bcl-X(L) is crucial for its localization. To localize the Bcl-X(L) chimeras to the mitochondria, the loop structure next to the C-terminal tail in Bcl-X(L) protein must remain intact and cannot be substituted by the loop from Bax or Bak. The chimeric Bcl-X(L) with both its C-terminal tail and the loop structure replaced by the equivalent regions of Bak or Bax mutant localized throughout the entire cytosol. The Bcl-X(L) chimeras that are targeted to the mitochondria and the wild type Bcl-X(L) provided same protection against cell death under several death inducing conditions.  相似文献   

6.
Levine B  Sinha S  Kroemer G 《Autophagy》2008,4(5):600-606
The essential autophagy protein and haplo-insufficient tumor suppressor, Beclin 1, interacts with several cofactors (Ambra1, Bif-1, UVRAG) to activate the lipid kinase Vps34, thereby inducing autophagy. In normal conditions, Beclin 1 is bound to and inhibited by Bcl-2 or the Bcl-2 homolog Bcl-X(L). This interaction involves a Bcl-2 homology 3 (BH3) domain in Beclin 1 and the BH3 binding groove of Bcl-2/Bcl-X(L). Other proteins containing BH3 domains, called BH3-only proteins, can competitively disrupt the interaction between Beclin 1 and Bcl-2/Bcl-X(L) to induce autophagy. Nutrient starvation, which is a potent physiologic inducer of autophagy, can stimulate the dissociation of Beclin 1 from its inhibitors, either by activating BH3-only proteins (such as Bad) or by posttranslational modifications of Bcl-2 (such as phosphorylation) that may reduce its affinity for Beclin 1 and BH3-only proteins. Thus, anti-apoptotic Bcl-2 family members and pro-apoptotic BH3-only proteins may participate in the inhibition and induction of autophagy, respectively. This hitherto neglected crosstalk between the core machineries regulating autophagy and apoptosis may redefine the role of Bcl-2 family proteins in oncogenesis and tumor progression.  相似文献   

7.
PUMA Dissociates Bax and Bcl-X(L) to induce apoptosis in colon cancer cells   总被引:4,自引:0,他引:4  
PUMA is a BH3-only Bcl-2 family protein that plays an essential role in DNA damage-induced apoptosis. PUMA interacts with anti-apoptotic Bcl-2 and Bcl-X(L) and is dependent on Bax to induce apoptosis. In this study, we investigated how the interactions of PUMA with the antiapoptotic proteins coordinate with Bax to initiate apoptosis in HCT116 colon cancer cells. We found that Bcl-X(L) was most effective among several antiapoptotic proteins in suppressing PUMA-induced apoptosis and PUMA-dependent apoptosis induced by the DNA-damaging agent adriamycin. Mutant Bcl-X(L) that cannot interact with Bax was unable to protect cells from PUMA-mediated apoptosis. Knockdown of Bcl-X(L) by RNA interference significantly enhanced PUMA-mediated apoptosis in HCT116 cells but not in PUMA-knockout cells. Furthermore, Bax was found to be dissociated preferentially from Bcl-X(L) in HCT116 cells but not in the PUMA-knockout cells, in response to PUMA induction and adriamycin treatment. PUMA inhibited the association of Bax and Bcl-X(L) in vitro by directly binding to Bcl-X(L) through its BH3 domain. Finally, we found that wild-type Bax, but not mutant Bax deficient in either multimerization or mitochondrial localization, was able to restore PUMA-induced apoptosis in the BAX-knockout cells. Together, these results indicate that PUMA initiates apoptosis in part by dissociating Bax and Bcl-X(L), thereby promoting Bax multimerization and mitochondrial translocation.  相似文献   

8.
A series of inhibitors for anti-apoptotic Bcl-2 proteins based on BHI-1 were synthesized and their binding interactions with Bcl-2, Bcl-X(L), and Bcl-w were evaluated. It was found that modification of BHI-1 resulted in varied binding profiles among Bcl-2, Bcl-X(L), and Bcl-w, and a set of inhibitors with varied selectivity to Bcl-2, Bcl-X(L), and Bcl-w proteins have been identified. Molecular modeling of the interaction of the BHI-1 based analogues with the anti-apoptotic Bcl-2 proteins suggested that the binding site for the BHI-1 based inhibitor was the least conserved section among Bcl-2, Bcl-X(L), and Bcl-w: targeting the non-conserved section may account for the observed selectivity of the BHI-1 based inhibitors among the anti-apoptotic Bcl-2 proteins. The validity of the model was supported by a strong correlation between the model-calculated binding energy and the experimental binding affinity. In summary, our studies suggest that most of the reported inhibitors for anti-apoptotic Bcl-2 proteins are nonselective and BHI-1 is a promising template to distinguish among Bcl-2, Bcl-X(L), and Bcl-w by targeting the non-conserved domain among the anti-apoptotic Bcl-2 proteins. Molecular-modeling-aided rational development of BHI-1 based selective inhibitor for anti-apoptotic Bcl-2 proteins is underway.  相似文献   

9.
The BH3-only protein BAD binds to Bcl-2 family proteins through its BH3 domain. Recent studies suggest that BAD binds to both Bcl-2 and Bcl-X(L), however mediates its pro-apoptotic functions through inhibition of Bcl-X(L), but not Bcl-2. In this paper we addressed this issue using a BAD mutant within the BH3 domain, by substitution of Asp 119 with Gly (BAD(D119G)), which selectively abrogates an ability to interact with Bcl-2. Confocal microscopy revealed that mutation of BAD at D119 does not affect BAD targeting to the mitochondrial membrane in serum-starved COS-7 cells. However, co-precipitation assays indicated that, whereas wild-type BAD (BADwt) directly interacts with Bcl-2 and Bcl-X(L), BAD(D119G) interacts only with Bcl-X(L). Nevertheless both BADwt and BAD(D119G) could introduce apoptosis and diminish the anti-apoptotic effect of Bcl-2 and Bcl-X(L) in a similar manner in a co-transfection assay. These data thus suggest that Asp119 is a crucial site within the BH3 domain of BAD for interaction of BAD with Bcl-2, but is dispensable for the interaction of BAD with Bcl-X(L), for its targeting to mitochondria, and most importantly, for its pro-apoptotic functions. Thus, we confirm that neutralization of Bcl-2 function is marginal for BAD-mediated apoptosis.  相似文献   

10.
Bcl-2 family of proteins plays differential roles in regulation of mitochondria-mediated apoptosis, by either promoting or inhibiting the release of apoptogenic molecules from mitochondria to cytosol. Bcl-2 family proteins modulate the mitochondrial permeability through interaction with adenine nucleotide translocator (ANT), voltage-dependent anion channel (VDAC), ADP/ATP exchange, or oxidative phosphorylation during apoptosis. Although the mitochondrial homeostasis is affected by the relative ratio of pro- and anti-apoptotic Bcl-2 family members, the molecular mechanism underlying the release of mitochondrial intermembrane proteins remains elusive. Here we reported the biochemical evidence that both pro-apoptotic Bax and anti-apoptotic Bcl-X(L) might simultaneously contact the putative loop regions of human VDAC1, and the existence of VDAC1-Bax-Bcl-X(L) tertiary complex in vitro suggested that VDAC1 channel conformation and mitochondrial permeability could be determined by the delicate balance between Bax and Bcl-X(L).  相似文献   

11.
The anti-apoptotic proteins Bcl-2 and Bcl-X(L) bind and inhibit Beclin-1, an essential mediator of autophagy. Here, we demonstrate that this interaction involves a BH3 domain within Beclin-1 (residues 114-123). The physical interaction between Beclin-1 and Bcl-X(L) is lost when the BH3 domain of Beclin-1 or the BH3 receptor domain of Bcl-X(L) is mutated. Mutation of the BH3 domain of Beclin-1 or of the BH3 receptor domain of Bcl-X(L) abolishes the Bcl-X(L)-mediated inhibition of autophagy triggered by Beclin-1. The pharmacological BH3 mimetic ABT737 competitively inhibits the interaction between Beclin-1 and Bcl-2/Bcl-X(L), antagonizes autophagy inhibition by Bcl-2/Bcl-X(L) and hence stimulates autophagy. Knockout or knockdown of the BH3-only protein Bad reduces starvation-induced autophagy, whereas Bad overexpression induces autophagy in human cells. Gain-of-function mutation of the sole BH3-only protein from Caenorhabditis elegans, EGL-1, induces autophagy, while deletion of EGL-1 compromises starvation-induced autophagy. These results reveal a novel autophagy-stimulatory function of BH3-only proteins beyond their established role as apoptosis inducers. BH3-only proteins and pharmacological BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin-1 and Bcl-2 or Bcl-X(L).  相似文献   

12.
Bax-mediated apoptosis in neurons is involved in many pathologic conditions affecting the central nervous system, including degenerative diseases, stroke, and trauma. Two molecules belonging to the Bcl-2 family, Bcl-2 and Bcl-X(L), protect cells from Bax-induced apoptosis and show distinct expression patterns in adult neurons, with downregulated Bcl-2 and highly upregulated Bcl-X(L) expression. To investigate the biological functions of these two molecules in Bax-mediated apoptosis in neurons, we transduced various levels of Bcl-X(L) or Bcl-2 via adenoviral vectors into nerve growth factor (NGF)-treated PC12 cells. Overexpression of Bax induced drastic apoptosis in NGF-treated PC12 cells. Bcl-X(L) expressed at a wide range of levels conferred a high level of protection against Bax-mediated apoptosis. In contrast, Bcl-2 at various levels conferred far less protection against apoptosis. Moreover, Bcl-X(L) protected PC12 cells from apoptosis induced by NGF withdrawal. These data indicate that Bcl-X(L)-mediated protection is the major pathway that suppresses apoptosis in NGF-treated PC12 cells and that Bcl-X(L) would be a more relevant target of manipulation in future treatment strategies, including gene therapies.  相似文献   

13.
Identification of a novel regulatory domain in Bcl-X(L) and Bcl-2.   总被引:15,自引:1,他引:14  
Bcl-X(L), a member of the Bcl-2 family, can inhibit many forms of programed cell death. The three-dimensional structure of Bcl-X(L) identified a 60 amino acid loop lacking defined structure. Although amino acid sequence within this region is not conserved among Bcl-2 family members, structural modeling suggested that Bcl-2 also contains a large unstructured region. Compared with the full-length protein, loop deletion mutants of Bcl-X(L) and Bcl-2 displayed an enhanced ability to inhibit apoptosis. Despite enhanced function, the deletion mutants did not have significant alterations in the ability to bind pro-apoptotic proteins such as Bax. The loop deletion mutant of Bcl-2 also displayed a qualitative difference in its ability to inhibit apoptosis. Full-length Bcl-2 was unable to prevent anti-IgM-induced cell death of the immature B cell line WEHI-231. In contrast, the Bcl-2 deletion mutant protected WEHI-231 cells from death. Substantial differences were observed in the ability of WEHI-231 cells to phosphorylate the deletion mutant of Bcl-2 compared with full-length Bcl-2. Bcl-2 phosphorylation was found to be dependent on the presence of an intact loop domain. These results suggest that the loop domain in Bcl-X(L) and Bcl-2 can suppress the anti-apoptotic function of these genes and may be a target for regulatory post-translational modifications.  相似文献   

14.
Microtubule-damaging agents arrest cells at G(2)/M and induce apoptosis in association with phosphorylation of the anti-apoptotic proteins Bcl-2 and Bcl-X(L). Because microtubule inhibitors activate JNK, we sought to determine whether JNK was responsible for Bcl-2/Bcl-X(L) phosphorylation in KB-3 cells treated with vinblastine. Two major endogenous forms of JNK, p46(JNK1) and p54(JNK2), were present in KB-3 cells, and both isoforms were activated by vinblastine as determined by Mono Q chromatography. We used antisense oligonucleotides (AS) to specifically inhibit their expression. A combination of AS-JNK1 with AS-JNK2 inhibited by 80% vinblastine-induced phosphorylation of two known JNK substrates, c-Jun and ATF-2. In addition, AS-JNK1/2 inhibited vinblastine-induced phosphorylation of Bcl-2 by 85% and that of Bcl-X(L) by 65%. Stable expression of the JNK scaffold protein JIP-1 blocked vinblastine-induced phosphorylation of c-Jun and ATF-2, but did not affect Bcl-2/Bcl-X(L) phosphorylation, confirming a bifurcation in JNK signaling involving both nuclear and non-nuclear substrates. Vinblastine-induced phosphorylation of Raf-1 was unaffected by AS-JNK1/2 and was associated with loss of activity for MEK substrate in vitro and inactivation of ERK in vivo. These results provide evidence for a direct role of the JNK pathway in apoptotic regulation through Bcl-2/Bcl-X(L) phosphorylation.  相似文献   

15.
16.
Beclin 1 has recently been identified as novel BH3-only protein, meaning that it carries one Bcl-2-homology-3 (BH3) domain. As other BH3-only proteins, Beclin 1 interacts with anti-apoptotic multidomain proteins of the Bcl-2 family (in particular Bcl-2 and its homologue Bcl-X(L)) by virtue of its BH3 domain, an amphipathic alpha-helix that binds to the hydrophobic cleft of Bcl-2/Bcl-X(L). The BH3 domains of other BH3-only proteins such as Bad, as well as BH3-mimetic compounds such as ABT737, competitively disrupt the inhibitory interaction between Beclin 1 and Bcl-2/Bcl-X(L). This causes autophagy of mitochondria (mitophagy) but not of the endoplasmic reticulum (reticulophagy). Only ER-targeted (not mitochondrion-targeted) Bcl-2/Bcl-X(L) can inhibit autophagy induced by Beclin 1, and only Beclin 1-Bcl-2/Bcl-X(L) complexes present in the ER (but not those present on heavy membrane fractions enriched in mitochondria) are disrupted by ABT737. These findings suggest that the Beclin 1-Bcl-2/Bcl-X(L) complexes that normally inhibit autophagy are specifically located in the ER and point to an organelle-specific regulation of autophagy. Furthermore, these data suggest a spatial organization of autophagy and apoptosis control in which BH3-only proteins exert two independent functions. On the one hand, they can induce apoptosis, by (directly or indirectly) activating the mitochondrion-permeabilizing function of pro-apoptotic multidomain proteins from the Bcl-2 family. On the other hand, they can activate autophagy by liberating Beclin 1 from its inhibition by Bcl-2/Bcl-X(L) at the level of the endoplasmic reticulum.  相似文献   

17.
Apoptosis induced by serum withdrawal in pheochromocytoma PC12 cells is promoted by overexpression of cyclin-dependent kinase 4 (CDK4). We compared CDK4-promoted apoptosis with that induced by serum withdrawal alone in PC12 cells. Protein synthesis inhibitors did not prevent apoptosis in parental cells, but prevented the promotion of apoptosis by CDK4 overexpression. Nerve growth factor, basic-fibroblast growth factor, and Bcl-2 proteins protected both parental and CDK4-overexpressing cells from apoptosis. However, insulin-like growth factor-I and Bcl-X(L) protein only partially inhibited apoptosis in the CDK4-overexpressing cells. Bcl-2 or Bcl-X(L) had no significant effect on CDK4 kinase activity in both cell lines. These results suggest a novel CDK4-mediated apoptotic cascade which is normally restrained, but which is activated by CDK4 overexpression. This apoptotic cascade should eventually converge with the cascade induced by serum withdrawal in normal PC12 cells. We discuss the interactions among these apoptotic cascades and the points where anti-apoptotic agents act.  相似文献   

18.
Enforced Bcl-2 expression inhibits Myc-induced apoptosis and cooperates with Myc in transformation. Here we report that the synergy between Bcl-2 and Myc in transforming hematopoietic cells in fact reflects a Myc-induced pathway that selectively suppresses the expression of the Bcl-X(L) or Bcl-2 antiapoptotic protein. Myc activation suppresses Bcl-X(L) RNA and protein levels in cultures of primary myeloid and lymphoid progenitors, and Bcl-X(L) and Bcl-2 expression is inhibited by Myc in precancerous B cells from Emu-myc transgenic mice. The suppression of bcl-X RNA levels by Myc requires de novo protein synthesis, indicating that repression is indirect. Importantly, the suppression of Bcl-2 or Bcl-X(L) by Myc is corrupted during Myc-induced tumorigenesis, as Bcl-2 and/or Bcl-X(L) levels are markedly elevated in over one-half of all lymphomas arising in Emicro-myc transgenic mice. Bcl-2 and/or Bcl-X(L) overexpression did not correlate with loss of ARF or p53 function in tumor cells, indicating that these two apoptotic pathways are inactivated independently. Therefore, the suppression of Bcl-X(L) or Bcl-2 expression represents a physiological Myc-induced apoptotic pathway that is frequently bypassed during lymphomagenesis.  相似文献   

19.
The Bcl-2 family of proteins plays a central role in the regulation of mitochondrial outer-membrane permeabilization, a critical step in apoptosis. Heterodimerization between the pro- and anti-apoptotic members of Bcl-2 family is a key event in this process. Anti-apoptotic proteins have high levels of expression in many cancers and they have different affinities for different pro-apoptotic proteins. Experimentally determined structures of all members of Bcl-2 proteins have remarkably similar helical fold despite poor amino acid sequence identity. Peptides representing BH3 region of pro-apoptotic proteins have been shown to bind the hydrophobic cleft of anti-apoptotic proteins and this segment is responsible in modulating the apoptotic pathways in living cells. Understanding the molecular basis of protein-protein recognition is required to develop inhibitors specific to a particular anti-apoptotic protein. We have carried out molecular dynamics simulations on the anti-apoptotic Bcl-X(L) protein in complex with three different BH3 peptides derived from pro-apoptotic Bak, Bad and Bim proteins. Each complex structure was simulated for a period of 50 ns after 2.5 ns equilibration. Analysis of the simulation results showed that in the Bcl-X(L) protein, the helix containing the BH3 region is more flexible than other helices in all three simulations. A network of strong hydrophobic interactions exists between four of the six helices and they contribute significantly to the stability of this helix bundle protein. Analysis of Bcl-X(L)-BH3 peptide interactions reveals the role of loop residues in the protein-peptide interactions in all three simulations. Bad and Bim peptides maintain strong hydrophobic and hydrophilic interactions with the helix preceding the central hydrophobic helix. Residues from this helix interact with an Arg residue in Bad and Bim peptides. This Arg residue is next to the conserved Leu residue and is replaced by Ala in Bak. Absence of these interactions and the helix propensity are likely to be the cause for Bak peptide's weaker binding affinity with the Bcl-X(L) protein. The results of this study have implications in the design of Bcl-X(L)-specific inhibitors.  相似文献   

20.
BNIP3 (formerly NIP3) is a pro-apoptotic, mitochondrial protein classified in the Bcl-2 family based on limited sequence homology to the Bcl-2 homology 3 (BH3) domain and COOH-terminal transmembrane (TM) domain. BNIP3 expressed in yeast and mammalian cells interacts with survival promoting proteins Bcl-2, Bcl-X(L), and CED-9. Typically, the BH3 domain of pro-apoptotic Bcl-2 homologues mediates Bcl-2/Bcl-X(L) heterodimerization and confers pro-apoptotic activity. Deletion mapping of BNIP3 excluded its BH3-like domain and identified the NH(2) terminus (residues 1-49) and TM domain as critical for Bcl-2 heterodimerization, and either region was sufficient for Bcl-X(L) interaction. Additionally, the removal of the BH3-like domain in BNIP3 did not diminish its killing activity. The TM domain of BNIP3 is critical for homodimerization, pro-apoptotic function, and mitochondrial targeting. Several TM domain mutants were found to disrupt SDS-resistant BNIP3 homodimerization but did not interfere with its killing activity or mitochondrial localization. Substitution of the BNIP3 TM domain with that of cytochrome b(5) directed protein expression to nonmitochondrial sites and still promoted apoptosis and heterodimerization with Bcl-2 and Bcl-X(L). We propose that BNIP3 represents a subfamily of Bcl-2-related proteins that functions without a typical BH3 domain to regulate apoptosis from both mitochondrial and nonmitochondrial sites by selective Bcl-2/Bcl-X(L) interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号