首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Dynamic regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) underlies aspects of synaptic plasticity. Although numerous AMPAR-interacting proteins have been identified, their quantitative and relative contributions to native AMPAR complexes remain unclear. Here, we quantitated protein interactions with neuronal AMPARs by immunoprecipitation from brain extracts. We found that stargazin-like transmembrane AMPAR regulatory proteins (TARPs) copurified with neuronal AMPARs, but we found negligible binding to GRIP, PICK1, NSF, or SAP-97. To facilitate purification of neuronal AMPAR complexes, we generated a transgenic mouse expressing an epitope-tagged GluR2 subunit of AMPARs. Taking advantage of this powerful new tool, we isolated two populations of GluR2 containing AMPARs: an immature complex with the endoplasmic reticulum chaperone immunoglobulin-binding protein and a mature complex containing GluR1, TARPs, and PSD-95. These studies establish TARPs as the auxiliary components of neuronal AMPARs.  相似文献   

2.
Hanley JG  Khatri L  Hanson PI  Ziff EB 《Neuron》2002,34(1):53-67
AMPA receptor (AMPAR) trafficking is crucial for synaptic plasticity that may be important for learning and memory. NSF and PICK1 bind the AMPAR GluR2 subunit and are involved in trafficking of AMPARs. Here, we show that GluR2, PICK1, NSF, and alpha-/beta-SNAPs form a complex in the presence of ATPgammaS. Similar to SNARE complex disassembly, NSF ATPase activity disrupts PICK1-GluR2 interactions in this complex. Alpha- and beta-SNAP have differential effects on this reaction. SNAP overexpression in hippocampal neurons leads to corresponding changes in AMPAR trafficking by acting on GluR2-PICK1 complexes. This demonstrates that the previously reported synaptic stabilization of AMPARs by NSF involves disruption of GluR2-PICK1 interactions. Furthermore, we are reporting a non-SNARE substrate for NSF disassembly activity.  相似文献   

3.
The N-methyl-d-aspartate (NMDA) receptors play critical roles in synaptic plasticity, neuronal development, and excitotoxicity. Tyrosine phosphorylation of NMDA receptors by Src-family tyrosine kinases such as Fyn is implicated in synaptic plasticity. To precisely address the roles of NMDA receptor tyrosine phosphorylation, we identified Fyn-mediated phosphorylation sites on the GluR epsilon 2 (NR2B) subunit of NMDA receptors. Seven out of 25 tyrosine residues in the C-terminal cytoplasmic region of GluR epsilon 2 were phosphorylated by Fyn in vitro. Of these 7 residues, Tyr-1252, Tyr-1336, and Tyr-1472 in GluR epsilon 2 were phosphorylated in human embryonic kidney fibroblasts when co-expressed with active Fyn, and Tyr-1472 was the major phosphorylation site in this system. We then generated rabbit polyclonal antibodies specific to Tyr-1472-phosphorylated GluR epsilon 2 and showed that Tyr-1472 of GluR epsilon 2 was indeed phosphorylated in murine brain using the antibodies. Importantly, Tyr-1472 phosphorylation was greatly reduced in fyn mutant mice. Moreover, Tyr-1472 phosphorylation became evident when hippocampal long term potentiation started to be observed, and its magnitude became larger in murine brain. Finally, Tyr-1472 phosphorylation was significantly enhanced after induction of long term potentiation in the hippocampal CA1 region. These data suggest that Tyr-1472 phosphorylation of GluR epsilon 2 is important for synaptic plasticity.  相似文献   

4.
Nakata H  Nakamura S 《FEBS letters》2007,581(10):2047-2054
The change in the number of post-synaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-type glutamatergic receptors (AMPARs) by neuronal activity is recognized as a molecular basis of synaptic plasticity. Here, we show that Ca(2+) transients evoked by brain-derived neurotrophic factor (BDNF) induce translocation of a subunit of AMPAR, GluR1, but not NMDAR, to the post-synaptic membrane in cultured cortical pyramidal neurons. Among BDNF-induced Ca(2+) transients, that dependent on IP3R was fully required, while store-operated calcium influx through the non-selective cation channel TRPC (transient receptor potential canonical) was partially required for the GluR1 up-regulation, suggesting that spatial and temporal calcium signaling regulate translocation of GluR1 to the polarized membrane domain.  相似文献   

5.
Regulated trafficking of AMPA receptors (AMPARs) is an important mechanism that underlies the activity-dependent modification of synaptic strength. Trafficking of AMPARs is regulated by specific interactions of their subunits with other proteins. Recently, we have reported that the AMPAR subunit GluR1 binds the cGMP-dependent kinase type II (cGKII) adjacent to the kinase catalytic site, and that this interaction is increased by cGMP. In this complex, cGKII phosphorylates GluR1 at serine 845 (S845), a site known to be phosphorylated also by PKA. S845 phosphorylation leads to an increase of GluR1 on the plasma membrane. In neurons, cGMP is produced by soluble guanylate cyclase (sGC), which is activated by nitric oxide (NO). Calcium flux through the NMDA receptor (NMDAR) activates neuronal nitric oxide synthase (nNOS), which produces NO. Using a combination of biochemical and electrophysiological experiments, we have shown that trafficking of GluR1 is under the regulation of NO, cGMP and cGKII. Moreover, our study indicates that the interaction of cGKII with GluR1, which is under the regulation of the NMDAR and NO, plays an important role in hippocampal plasticity.  相似文献   

6.
Regulated trafficking of AMPA receptors (AMPARs) is an important mechanism that underlies the activity-dependent modification of synaptic strength. Trafficking of AMPARs is regulated by specific interactions of their subunits with other proteins. Recently, we have reported that the AMPAR subunit GluR1 binds the cGMP-dependent kinase type II (cGKII) adjacent to the kinase catalytic site, and that this interaction is increased by cGMP. In this complex, cGKII phosphorylates GluR1 at serine 845 (S845), a site known to be phosphorylated also by PKA. S845 phosphorylation leads to an increase of GluR1 on the plasma membrane. In neurons, cGMP is produced by soluble guanylate cyclase (sGC), which is activated by nitric oxide (NO). Calcium flux through the NMDA receptor (NMDAR) activates neuronal nitric oxide synthase (nNOS), which produces NO. Using a combination of biochemical and electrophysiological experiments, we have shown that trafficking of GluR1 is under the regulation of NO, cGMP and cGKII. Moreover, our study indicates that the interaction of cGKII with GluR1, which is under the regulation of the NMDAR and NO, plays an important role in hippocampal plasticity.  相似文献   

7.
A GluR1-cGKII interaction regulates AMPA receptor trafficking   总被引:1,自引:0,他引:1  
Trafficking of AMPA receptors (AMPARs) is regulated by specific interactions of the subunit intracellular C-terminal domains (CTDs) with other proteins, but the mechanisms involved in this process are still unclear. We have found that the GluR1 CTD binds to cGMP-dependent protein kinase II (cGKII) adjacent to the kinase catalytic site. Binding of GluR1 is increased when cGKII is activated by cGMP. cGKII and GluR1 form a complex in the brain, and cGKII in this complex phosphorylates GluR1 at S845, a site also phosphorylated by PKA. Activation of cGKII by cGMP increases the surface expression of AMPARs at extrasynaptic sites. Inhibition of cGKII activity blocks the surface increase of GluR1 during chemLTP and reduces LTP in the hippocampal slice. This work identifies a pathway, downstream from the NMDA receptor (NMDAR) and nitric oxide (NO), which stimulates GluR1 accumulation in the plasma membrane and plays an important role in synaptic plasticity.  相似文献   

8.
Some ubiquitin-like (UBL) domain-containing proteins are known to play roles in receptor trafficking. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) undergo constitutive cycling between the intracellular compartment and the cell surface in the central nervous system. However, the function of UBL domain-containing proteins in the recycling of the AMPARs to the synaptic surface has not yet been reported.Here, we report that the Transmembrane and ubiquitin-like domain-containing 1 (Tmub1) protein, formerly known as the Hepatocyte Odd Protein Shuttling (HOPS) protein, which is abundantly expressed in the brain and which exists in a synaptosomal membrane fraction, facilitates the recycling of the AMPAR subunit GluR2 to the cell surface. Neurons transfected with Tmub1/HOPS-RNAi plasmids showed a significant reduction in the AMPAR current as compared to their control neurons. Consistently, the synaptic surface expression of GluR2, but not of GluR1, was significantly decreased in the neurons transfected with the Tmub1/HOPS-RNAi and increased in the neurons overexpressing EGFP-Tmub1/HOPS. The altered surface expression of GluR2 was speculated to be due to the altered surface-recycling of the internalized GluR2 in our recycling assay. Eventually, we found that GluR2 and glutamate receptor interacting protein (GRIP) were coimmunoprecipitated by the anti-Tmub1/HOPS antibody from the mouse brain. Taken together, these observations show that the Tmub1/HOPS plays a role in regulating basal synaptic transmission; it contributes to maintain the synaptic surface number of the GluR2-containing AMPARs by facilitating the recycling of GluR2 to the plasma membrane.  相似文献   

9.
There is increasing evidence that severe mood disorders are associated with impairment of structural plasticity and cellular resilience. Cumulative data demonstrate that mood stabilizers regulate intracellular signaling cascades, including protein kinase C (PKC), PKA, mitogen-activated protein (MAP) kinase, glycogen synthase kinase 3-beta (GSK3-beta) and intracellular calcium, which are signaling pathways that regulate synaptic plasticity. In this context, it is noteworthy that a growing body of data indicates that the glutamatergic system, has a major role in neuronal plasticity and cellular resilience, might be involved in the pathophysiology and treatment of mood disorders. AMPA glutamate-receptor trafficking is important in synaptic plasticity and might play crucial roles in maintaining critical neuronal circuits associated with mood. Two clinically effective, structurally dissimilar, antimanic agents, lithium and valproate (VPA), down-regulate synaptic expression of AMPA receptor subunit GluR1 in hippocampus in chronically treated rats. This reduction in synaptic GluR1 by lithium and VPA is due to attenuated phosphorylation of GluR1 at a specific PKA site (residue 845 of GluR1), which is crucial for AMPA receptor insertion. By contrast,imipramine, which can provoke mania, increases synaptic expression of GluR1 in the hippocampus in vivo. Furthermore, there is ample evidence from preclinical and clinical research that the glutamatergic system is involved in the pathophysiology of mood disorders and that many of the somatic treatments used for mood disorders including antidepressants, mood stabilizers, atypical antipsychotic drugs and electroconvulsive therapy have both direct and indirect effects on the glutamatergic system. Given these findings, further research with medications that specifically affect the glutamatergic system is warranted. Recent studies in our lab have shown that riluzole, a FDA approved medicine that regulates the glutamatergic system, shows antidepressant efficacy in unipolar and bipolar depression. These studies indicate that regulation of glutamate-mediated synaptic plasticity might play a role in the treatment of mood disorders, and raise new avenues for novel therapies for this devastating illness.  相似文献   

10.
Meng Y  Zhang Y  Jia Z 《Neuron》2003,39(1):163-176
The AMPA glutamate receptor (AMPAR) subunits GluR2 and GluR3 are thought to be important for synaptic targeting/stabilization of AMPARs and the expression of hippocampal long-term depression (LTD). In order to address this hypothesis genetically, we generated and analyzed knockout mice deficient in the expression of both GluR2 and GluR3. We show here that the double knockout mice are severely impaired in basal synaptic transmission, demonstrating that GluR2/3 are essential to maintain adequate synaptic transmission in vivo. However, these mutant mice are competent in establishing several forms of long-lasting synaptic changes in the CA1 region of the hippocampus, including LTD, long-term potentiation (LTP), depotentiation, and dedepression, indicating the presence of GluR2/3-independent mechanisms of LTD expression and suggesting that AMPA receptor GluR1 alone is capable of various forms of synaptic plasticity.  相似文献   

11.
AMPA receptor tetramerization is mediated by Q/R editing   总被引:10,自引:0,他引:10  
Greger IH  Khatri L  Kong X  Ziff EB 《Neuron》2003,40(4):763-774
AMPA-type glutamate receptors (AMPARs) play a major role in excitatory synaptic transmission and plasticity. Channel properties are largely dictated by their composition of the four subunits, GluR1-4 (or A-D). Here we show that AMPAR assembly and subunit stoichiometry are determined by RNA editing in the pore loop. We demonstrate that editing at the GluR2 Q/R site regulates AMPAR assembly at the step of tetramerization. Specifically, edited R subunits are largely unassembled and ER retained, whereas unedited Q subunits readily tetramerize and traffic to synapses. This assembly mechanism restricts the number of the functionally critical R subunits in AMPAR tetramers. Therefore, a single amino acid residue affects channel composition and, in turn, controls ion conduction through the majority of AMPARs in the brain.  相似文献   

12.
Ehlers MD 《Neuron》2000,28(2):511-525
Both acute and chronic changes in AMPA receptor (AMPAR) localization are critical for synaptic formation, maturation, and plasticity. Here I report that AMPARs are differentially sorted between recycling and degradative pathways following endocytosis. AMPAR sorting occurs in early endosomes and is regulated by synaptic activity and activation of AMPA and NMDA receptors. AMPAR intemalization triggered by NMDAR activation is Ca2+-dependent, requires protein phosphatases, and is followed by rapid membrane reinsertion. Furthermore, NMDAR-mediated AMPAR trafficking is regulated by PKA and accompanied by dephosphorylation and rephosphorylation of GluR1 subunits at a PKA site. In contrast, activation of AMPARs without NMDAR activation targets AMPARs to late endosomes and lysosomes, independent of Ca2+, protein phosphatases, or PKA. These results demonstrate that activity regulates AMPAR endocytic sorting, providing a potential mechanistic link between rapid and chronic changes in synaptic strength.  相似文献   

13.
Kim MJ  Dunah AW  Wang YT  Sheng M 《Neuron》2005,46(5):745-760
NMDA receptors (NMDARs) control bidirectional synaptic plasticity by regulating postsynaptic AMPA receptors (AMPARs). Here we show that NMDAR activation can have differential effects on AMPAR trafficking, depending on the subunit composition of NMDARs. In mature cultured neurons, NR2A-NMDARs promote, whereas NR2B-NMDARs inhibit, the surface expression of GluR1, primarily by regulating its surface insertion. In mature neurons, NR2B is coupled to inhibition rather than activation of the Ras-ERK pathway, which drives surface delivery of GluR1. Moreover, the synaptic Ras GTPase activating protein (GAP) SynGAP is selectively associated with NR2B-NMDARs in brain and is required for inhibition of NMDAR-dependent ERK activation. Preferential coupling of NR2B to SynGAP could explain the subtype-specific function of NR2B-NMDARs in inhibition of Ras-ERK, removal of synaptic AMPARs, and weakening of synaptic transmission.  相似文献   

14.
Enhancement of synaptic transmission, as occurs in long-term potentiation (LTP), can result from several mechanisms that are regulated by phosphorylation of the AMPA-type glutamate receptor (AMPAR). Using a quantitative assay of net serine 845 (Ser-845) phosphorylation in the GluR1 subunit of AMPARs, we investigated the relationship between phospho-Ser-845, GluR1 surface expression, and synaptic strength in hippocampal neurons. About 15% of surface AMPARs in cultured neurons were phosphorylated at Ser-845 basally, whereas chemical potentiation (forskolin/rolipram treatment) persistently increased this to 60% and chemical depression (N-methyl-D-aspartate treatment) decreased it to 10%. These changes in Ser-845 phosphorylation were paralleled by corresponding changes in the surface expression of AMPARs in both cultured neurons and hippocampal slices. For every 1% increase in net phospho-Ser-845, there was 0.75% increase in the surface fraction of GluR1. Phosphorylation of Ser-845 correlated with a selective delivery of AMPARs to extrasynaptic sites, and their synaptic localization required coincident synaptic activity. Furthermore, increasing the extrasynaptic pool of AMPA receptors resulted in stronger theta burst LTP. Our results support a two-step model for delivery of GluR1-containing AMPARs to synapses during activity-dependent LTP, where Ser-845 phosphorylation can traffic AMPARs to extrasynaptic sites for subsequent delivery to synapses during LTP.  相似文献   

15.
Regulation of AMPA receptor trafficking by N-cadherin   总被引:1,自引:0,他引:1  
Dendritic spines are dynamically regulated, both morphologically and functionally, by neuronal activity. Morphological changes are mediated by a variety of synaptic proteins, whereas functional changes can be dramatically modulated by the regulation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor trafficking. Although these two forms of plasticity appear to be highly coordinated, the connections between them are not fully understood. In this study the synaptic cell adhesion molecule N-cadherin was found to associate with AMPA receptors and regulate AMPA receptor trafficking in neurons. N-cadherin and beta-catenin formed a protein complex with AMPA receptors in vivo, and this association was regulated by extracellular Ca2+. In addition, these proteins co-clustered at synapses in cultured neurons. In heterologous cells and in cultured neurons, overexpression of wild-type N-cadherin specifically increased the surface expression level of the AMPA receptor subunit glutamate receptor 1 (GluR1) and this effect was reversed by a dominant-negative form of N-cadherin. Finally, GluR1 increased the surface expression of N-cadherin in heterologous cells. Importantly, recent studies suggest that N-cadherin and beta-catenin play key roles in structural plasticity in neurons. Therefore, our data suggest that the association of N-cadherin with AMPA receptors may serve as a biochemical link between structural and functional plasticity of synapses.  相似文献   

16.
A central concept in the field of learning and memory is that NMDARs are essential for synaptic plasticity and memory formation. Surprisingly then, multiple studies have found that behavioral experience can reduce or eliminate the contribution of these receptors to learning. The cellular mechanisms that mediate learning in the absence of NMDAR activation are currently unknown. To address this issue, we examined the contribution of Ca2+-permeable AMPARs to learning and plasticity in the hippocampus. Mutant mice were engineered with a conditional genetic deletion of GluR2 in the CA1 region of the hippocampus (GluR2-cKO mice). Electrophysiology experiments in these animals revealed a novel form of long-term potentiation (LTP) that was independent of NMDARs and mediated by GluR2-lacking Ca2+-permeable AMPARs. Behavioral analyses found that GluR2-cKO mice were impaired on multiple hippocampus-dependent learning tasks that required NMDAR activation. This suggests that AMPAR-mediated LTP interferes with NMDAR-dependent plasticity. In contrast, NMDAR-independent learning was normal in knockout mice and required the activation of Ca2+-permeable AMPARs. These results suggest that GluR2-lacking AMPARs play a functional and previously unidentified role in learning; they appear to mediate changes in synaptic strength that occur after plasticity has been established by NMDARs.  相似文献   

17.
The goal of this study was to understand how dopamine receptors, which are activated during psychostimulant administration, might influence glutamate-dependent forms of synaptic plasticity that are increasingly recognized as important to drug addiction. Regulation of the surface expression of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor subunit GluR1 plays a critical role in long-term potentiation, a well-characterized form of synaptic plasticity. Primary cultures of rat nucleus accumbens neurons were used to examine whether dopamine receptor stimulation influences cell surface expression of GluR1, detected using antibody to the extracellular portion of GluR1 and fluorescence microscopy. Surface GluR1 labeling on processes of medium spiny neurons and interneurons was increased by brief (5-15 min) incubation with a D1 agonist (1 microm SKF 81297). This effect was attenuated by the D1 receptor antagonist SCH 23390 (10 microm) and reproduced by the adenylyl cyclase activator forskolin (10 microm). Labeling was decreased by glutamate (10-50 microm, 15 min). These results are the first to demonstrate modulation of AMPA receptor surface expression by a non-glutamatergic G protein-coupled receptor. Normally, this may enable ongoing regulation of AMPA receptor transmission in response to changes in the activity of dopamine projections to the nucleus accumbens. When dopamine receptors are over-stimulated during chronic drug administration, this regulation may be disrupted, leading to inappropriate plasticity in neuronal circuits governing motivation and reward.  相似文献   

18.
Loss of one type of sensory input can cause improved functionality of other sensory systems. Whereas this form of plasticity, cross-modal plasticity, is well established, the molecular and cellular mechanisms underlying it are still unclear. Here, we show that visual deprivation (VD) increases extracellular serotonin in the juvenile rat barrel cortex. This increase in serotonin levels facilitates synaptic strengthening at layer 4 to layer 2/3 synapses within the barrel cortex. Upon VD, whisker experience leads to trafficking of the AMPA-type glutamate receptors (AMPARs) into these synapses through the activation of ERK and increased phosphorylation of AMPAR subunit GluR1 at the juvenile age when natural whisker experience no longer induces synaptic GluR1 delivery. VD thereby leads to sharpening of the functional whisker-barrel map at layer 2/3. Thus, sensory deprivation of one modality leads to serotonin release in remaining modalities, facilitates GluR1-dependent synaptic strengthening, and refines cortical organization.  相似文献   

19.
The modifications occurring in the brain during learning and memory are still poorly understood but may involve long-lasting changes in synaptic transmission (synaptic plasticity). In perirhinal cortex, a lasting decrement in neuronal responsiveness is associated with visual familiarity discrimination, leading to the hypothesis that long-term depression (LTD)-like synaptic plasticity may underlie recognition memory. LTD relies on internalization of AMPA receptors (AMPARs) through interaction between their GluR2 subunits and AP2, the clathrin adaptor protein required for endocytosis. We demonstrate that a peptide that blocks interactions between GluR2 and AP2 blocks LTD in perirhinal cortex in vitro. Viral transduction of this peptide in perirhinal cortex produced striking deficits in visual recognition memory. Furthermore, there was a deficit of LTD in perirhinal cortex slices from virally transduced, recognition memory-deficient animals. These results suggest that internalization of AMPA receptors, a process critical for the expression of LTD in perirhinal cortex, underlies visual recognition memory.  相似文献   

20.
Gardner SM  Takamiya K  Xia J  Suh JG  Johnson R  Yu S  Huganir RL 《Neuron》2005,45(6):903-915
A recently described form of synaptic plasticity results in dynamic changes in the calcium permeability of synaptic AMPA receptors. Since the AMPA receptor GluR2 subunit confers calcium permeability, this plasticity is thought to occur through the dynamic exchange of synaptic GluR2-lacking and GluR2-containing receptors. To investigate the molecular mechanisms underlying this calcium-permeable AMPA receptor plasticity (CARP), we examined whether AMPA receptor exchange was mediated by subunit-specific protein-protein interactions. We found that two GluR2-interacting proteins, the PDZ domain-containing Protein interacting with C kinase (PICK1) and N-ethylmaleimide sensitive fusion protein (NSF), are specifically required for CARP. Furthermore, PICK1, but not NSF, regulates the formation of extrasynaptic plasma membrane pools of GluR2-containing receptors that may be laterally mobilized into synapses during CARP. These results demonstrate that PICK1 and NSF dynamically regulate the synaptic delivery of GluR2-containing receptors during CARP and thus regulate the calcium permeability of AMPA receptors at excitatory synapses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号