首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Cdx1 gene product is essential for normal anterior-posterior vertebral patterning. Expression of Cdx1 is regulated by several pathways implicated in anterior-posterior patterning events, including retinoid and Wnt signaling. We have previously shown that retinoic acid plays a key role in early stages of Cdx1 expression at embryonic day 7.5 (E7.5), while both Wnt3a signaling and an autoregulatory loop, dependent on Cdx1 itself, are involved in later stages of expression (E8.5 to E9.5). This autoregulation is reflected by the ability of Cdx1 to affect expression from proximal Cdx1 promoter sequences in tissue culture. However, this region is devoid of a demonstrable Cdx response element(s). We have now found that Cdx1 and LEF1, a nuclear effector of Wnt signaling, synergize to induce expression from the Cdx1 promoter through previously documented LEF/T-cell factor response elements. We also found a direct physical interaction between the homeodomain of Cdx1 and the B box of LEF1, suggesting a basis for this synergy. Consistent with these observations, analysis of Cdx1 Wnt3a(vt) compound mutants demonstrated that Wnt and Cdx1 converged on Cdx1 expression and vertebral patterning in vivo. Further data suggest that Cdx-high-mobility group box interactions might be involved in a number of additional pathways.  相似文献   

2.
The products of the Cdx genes, Cdx1, Cdx2 and Cdx4, play multiple roles in early vertebrate development, and have been proposed to serve to relay signaling information from Wnt, RA and FGF pathways to orchestrate events related to anterior-posterior vertebral patterning and axial elongation. In addition, Cdx1 and Cdx2 have been reported to both autoregulate and to be subject to cross regulation by other family members. We have now found that Cdx4 expression is significantly down regulated in Cdx2(-/-) mutants suggesting previously unrecognized cross-regulatory interactions. Moreover, we have previously shown that Cdx4 is a direct target of the canonical Wnt signaling pathway, and that Cdx1 physically interacts with LEF/TCF members in an autoregulatory loop. We therefore investigated the means by which Cdx2 impacted on Cdx4 expression and assessed potential interaction between Cdx2 and canonical Wnt signaling on the Cdx4 promoter. We found that the Cdx4 promoter was regulated by Cdx2 in transient transfection assays. Electrophoretic mobility shift assays showed that Cdx2 bound to predicted Cdx response elements in the Cdx4 promoter which, when mutated, significantly reduced activity. Consistent with these data, chromatin immunoprecipitation assays from embryos demonstrated occupancy of the Cdx4 promoter by Cdx2 in vivo. However, we failed to observe an interaction between Cdx2 and components of the canonical Wnt signaling pathway. These findings suggest that, while both canonical Wnt and Cdx2 can regulate the activity of the Cdx4 promoter, they appear to operate through distinct mechanisms.  相似文献   

3.
Wnt signaling is a key mediator of Cdx1 expression in vivo   总被引:2,自引:0,他引:2  
In the mouse, Cdx1 is essential for normal anteroposterior vertebral patterning through regulation of a subset of Hox genes. Retinoic acid (RA) and certain Wnts have also been implicated in vertebral patterning, although the relationship between these signaling pathways and the regulation of mesodermal Hox gene expression is not fully understood. Prior work has shown that Cdx1 is a direct target of both Wnt and retinoid signaling pathways, and might therefore act to relay these signals to the Hox genes. Wnt and RA are believed to impact on Cdx1 through an atypical RA-response element (RARE) and Lef/Tcf-response elements (LRE), respectively, in the proximal promoter. To address the roles of these regulatory motifs and pathways, we derived mice mutated for the LRE or the LRE plus the RARE. In contrast to RARE-null mutants, which exhibit limited vertebral defects, LRE-null and LRE+RARE-null mutants exhibited vertebral malformations affecting the entire cervical region that closely phenocopied the malformations seen in Cdx1-null mutants. Mutation of the LRE also greatly reduced induction of Cdx1 by RA, demonstrating a requirement for Wnt signaling in the regulation of this gene by retinoids. LRE and LRE+RARE mutants also exhibited vertebral fusions, suggesting a defect in somitogenesis. As Wnt signaling is implicated in somitogenesis upstream of the Notch pathway, it is conceivable that Cdx1 might play a role in this process. However, none of the Notch pathway genes assessed was overtly affected.  相似文献   

4.
5.
6.
Cdx1 encodes a mammalian homeobox gene involved in vertebral patterning. Retinoic acid (RA) is likewise implicated in vertebral patterning. We have previously shown that Cdx1 is a direct retinoid target gene, suggesting that Cdx1 may convey some of the effects of retinoid signaling. However, RA appears to be essential for only early stages of Cdx1 expression, and therefore other factors must be involved in maintaining later stages of expression. Based on function and pattern of expression, Wnt family members, in particular Wnt3a, are candidates for regulation of expression of Cdx1. Consistent with this, we confirm prior results which demonstrated that Cdx1 can be directly regulated by Wnt signaling, and identify functional LEF/TCF response motifs essential for this response. We also find that Cdx1 expression is markedly attenuated in a stage- and tissue-specific fashion in the Wnt3a hypomorph vestigial tail, and present data demonstrating that Wnt3a and RA synergize strongly to activate Cdx1. Finally, we show that Cdx1 positively regulates its own expression. These data prompt a model whereby retinoid and Wnt signaling function directly and synergistically to initiate Cdx1 expression in the caudal embryo. Expression is then maintained, at least in part, by an autoregulatory mechanism at later stages.  相似文献   

7.
8.
9.
10.
BMP and Wnt specify hematopoietic fate by activation of the Cdx-Hox pathway   总被引:2,自引:0,他引:2  
The formation of blood in the embryo is dependent on bone morphogenetic protein (BMP), but how BMP signaling intersects with other regulators of hematopoietic development is unclear. Using embryonic stem (ES) cells, we show that BMP4 first induces ventral-posterior (V-P) mesoderm and subsequently directs mesodermal cells toward blood fate by activating Wnt3a and upregulating Cdx and Hox genes. When BMP signaling is blocked during this latter phase, enforced expression of either Cdx1 or Cdx4 rescues hematopoietic development, thereby placing BMP4 signaling upstream of the Cdx-Hox pathway. Wnt signaling cooperates in BMP-induced hemogenesis, and the Wnt effector LEF1 mediates BMP4 activation of Cdx genes. Our data suggest that BMP signaling plays two distinct and sequential roles during blood formation, initially as an inducer of mesoderm, and later to specify blood via activation of Wnt signaling and the Cdx-Hox pathway.  相似文献   

11.
12.
13.
14.
Mouse Cdx genes are involved in axial patterning and partial Cdx mutants exhibit posterior embryonic defects. We found that mouse embryos in which all three Cdx genes are inactivated fail to generate any axial tissue beyond the cephalic and occipital primordia. Anterior axial tissues are laid down and well patterned in Cdx null embryos, and a 3' Hox gene is initially transcribed and expressed in the hindbrain normally. Axial elongation stops abruptly at the post-occipital level in the absence of Cdx, as the posterior growth zone loses its progenitor activity. Exogenous Fgf8 rescues the posterior truncation of Cdx mutants, and the spectrum of defects of Cdx null embryos matches that resulting from loss of posterior Fgfr1 signaling. Our data argue for a main function of Cdx in enforcing trunk emergence beyond the Cdx-independent cephalo-occipital region, and for a downstream role of Fgfr1 signaling in this function. Cdx requirement for the post-head section of the axis is ancestral as it takes place in arthropods as well.  相似文献   

15.
16.
Cell–cell signaling regulated by retinoic acid (RA), Wnt/β-catenin, and fibroblast growth factor (FGF) is important during body axis extension, and interactions between these pathways have been suggested. At early somite stages, Wnt/β-catenin and FGF signaling domains exist both anterior and posterior to the developing trunk, whereas RA signaling occurs in between in the trunk under the control of the RA-synthesizing enzyme retinaldehyde dehydrogenase-2 (Raldh2). Previous studies demonstrated that vitamin A deficient quail embryos and Raldh2−/− mouse embryos lacking RA synthesis exhibit ectopic expression of Fgf8 and Wnt8a in the developing trunk. Here, we demonstrate that Raldh2−/− mouse embryos display an expansion of FGF signaling into the trunk monitored by Sprouty2 and Pea3 expression, and an expansion of Wnt/β-catenin signaling detected by expression of Axin2, Tbx6, Cdx2, and Cdx4. Following loss of RA signaling, the caudal expression domains of Fgf8, Wnt8a, and Wnt3a expand anteriorly into the trunk, but no change is observed in caudal expression of Fgf4 or Fgf17 plus caudal expression of Fgf18 and Cdx1 is reduced. These findings suggest that RA repression of Fgf8, Wnt8a, and Wnt3a in the developing trunk functions to down-regulate FGF signaling and Wnt/β-catenin signaling as the body axis extends.  相似文献   

17.
18.
19.
Cdx1, an upstream regulator of Hox genes, is best characterized for its homeotic effects upon the developing axial skeleton, particularly in the neck. It responds to retinoic acid (RA) in both mouse embryos and embryonal carcinoma (EC) cells. By use of beta-galactosidase chemiluminescence, we show that a mouse Cdx1/lacZ reporter expressed in P19 EC cells responds to RA by the combined activities of an intron retinoic acid response element (RARE) and an upstream RARE. In contrast, a chicken Cdx1/lacZ reporter responds only by activity of the intron RARE. Database analyses upon Cdx1 from twenty three vertebrate species reveal that the intron RARE is structurally conserved in amniotes (eutherian mammals, marsupials, birds and Anole lizard), but not in Xenopus or fish. The upstream RARE is structurally conserved only in eutherian mammals. We conclude that the intron RARE originated at around the amphibian/amniote division, and the upstream RARE appeared around the marsupial/eutherian mammal division. In view of the site of action of Cdx1, we propose that acquisition of the intron RARE may have facilitated the substantial changes that occurred in the neck and anterior thorax at the advent of the amniotes. We present evidence that Cdx1 is also a developmental regulator of the female urogenital system, and we suggest that acquisition of the upstream RARE may have contributed to morphological divergence of marsupial and eutherian mammals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号