首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The SALL4 promoter has not yet been characterized. Animal studies showed that SALL4 is downstream of and interacts with TBX5 during limb and heart development, but a direct regulation of SALL4 by TBX5 has not been demonstrated. For other SAL genes, regulation within the Shh, Wnt, and Fgf pathways has been reported. Chicken csal1 expression can be activated by a combination of Fgf4 and Wnt3a or Wnt7a. Murine Sall1 enhances, but Xenopus Xsal2 represses, the canonical Wnt signaling. Here we describe the cloning and functional analysis of the SALL4 promoter. Within a minimal promoter region of 31bp, we identified a consensus TCF/LEF-binding site.The SALL4 promoter was strongly activated not only by LEF1 but also by TCF4E. Mutation of the TCF/LEF-binding site resulted in decreased promoter activation. Our results demonstrate for the first time the direct regulation of a SALL gene by the canonical Wnt signaling pathway.  相似文献   

3.
4.
The organization of the embryonic neural plate requires coordination of multiple signal transduction pathways, including fibroblast growth factors (FGFs), bone morphogenetic proteins (BMPs), and WNTs. Many studies have suggested that a critical component of this process is the patterning of posterior neural tissues by an FGF-caudal signaling cascade. Here, we have identified a novel player, Dazap2, and show that it is required in vivo for posterior neural fate. Loss of Dazap2 in embryos resulted in diminished expression of hoxb9 with a concurrent increase in the anterior marker otx2. Furthermore, we found that Dazap2 is required for FGF dependent posterior patterning; surprisingly, this is independent of Cdx activity. Furthermore, in contrast to FGF activity, Dazap2 induction of hoxb9 is not blocked by loss of canonical Wnt signaling. Functionally, we found that increasing Dazap2 levels alters neural patterning and induces posterior neural markers. This activity overcomes the anteriorizing effects of noggin, and is downstream of FGF receptor activation. Our results strongly suggest that Dazap2 is a novel and essential branch of FGF-induced neural patterning.  相似文献   

5.
6.
7.
8.
9.
10.
Wu J  Yang J  Klein PS 《Developmental biology》2005,279(1):220-232
While Wnt signaling is known to be involved in early steps of neural crest development, the mechanism remains unclear. Because Wnt signaling is able to posteriorize anterior neural tissues, neural crest induction by Wnts has been proposed to be an indirect consequence of posteriorization of neural tissues rather than a direct effect of Wnt signaling. To address the relationship between posteriorization and neural crest induction by Wnt signaling, we have used gain of function and loss of function approaches in Xenopus to modulate the level of Wnt signaling at multiple points in the pathway. We find that modulating the level of Wnt signaling allows separation of neural crest induction from the effects of Wnts on anterior-posterior neural patterning. We also find that activation of Wnt signaling induces ectopic neural crest in the anterior region without posteriorizing anterior neural tissues. In addition, Wnt signaling induces neural crest when its posteriorizing activity is blocked by inhibition of FGF signaling in neuralized explants. Finally, depletion of beta-catenin confirms that the canonical Wnt pathway is required for initial neural crest induction. While these observations do not exclude a role for posteriorizing signals in neural crest induction, our data, together with previous observations, strongly suggest that canonical Wnt signaling plays an essential and direct role in neural crest induction.  相似文献   

11.
The Wnt family of proteins is a group of extracellular signalling molecules that regulate cell-fate decisions in developing and adult tissues. It is presumed that all 19 mammalian Wnt family members contain two types of post-translational modification: the covalent attachment of fatty acids at two distinct positions, and the N-glycosylation of multiple asparagines. We examined how these modifications contribute to the secretion, extracellular movement and signalling activity of mouse Wnt1 and Wnt3a ligands. We revealed that O-linked acylation of serine is required for the subsequent S-palmitoylation of cysteine. As such, mutant proteins that lack the crucial serine residue are not lipidated. Interestingly, although double-acylation of Wnt1 was indispensable for signalling in mammalian cells, in Xenopus embryos the S-palmitoyl-deficient form retained the signalling activity. In the case of Wnt3a, the functional duality of the attached acyls was less prominent, since the ligand lacking S-linked palmitate was still capable of signalling in various cellular contexts. Finally, we show that the signalling competency of both Wnt1 and Wnt3a is related to their ability to associate with the extracellular matrix.  相似文献   

12.
13.
14.
The canonical Wnt/β‐catenin signaling pathway plays a critical role in numerous physiological and pathological processes. LRP6 is an essential co‐receptor for Wnt/β‐catenin signaling; as transduction of the Wnt signal is strongly dependent upon GSK3β‐mediated phosphorylation of multiple PPP(S/T)P motifs within the membrane‐anchored LRP6 intracellular domain. Previously, we showed that the free LRP6 intracellular domain (LRP6‐ICD) can activate the Wnt/β‐catenin pathway in a β‐catenin and TCF/LEF‐1 dependent manner, as well as interact with and attenuate GSK3β activity. However, it is unknown if the ability of LRP6‐ICD to attenuate GSK3β activity and modulate activation of the Wnt/β‐catenin pathway requires phosphorylation of the LRP6‐ICD PPP(S/T)P motifs, in a manner similar to the membrane‐anchored LRP6 intracellular domain. Here we provide evidence that the LRP6‐ICD does not have to be phosphorylated at its PPP(S/T)P motif by GSK3β to stabilize endogenous cytosolic β‐catenin resulting in activation of TCF/LEF‐1 and the Wnt/β‐catenin pathway. LRP6‐ICD and a mutant in which all 5 PPP(S/T)P motifs were changed to PPP(A)P motifs equivalently interacted with and attenuated GSK3β activity in vitro, and both constructs inhibited the in situ GSK3β‐mediated phosphorylation of β‐catenin and tau to the same extent. These data indicate that the LRP6‐ICD attenuates GSK3β activity similar to other GSK3β binding proteins, and is not a result of it being a GSK3β substrate. Our findings suggest the functional and regulatory mechanisms governing the free LRP6‐ICD may be distinct from membrane‐anchored LRP6, and that release of the LRP6‐ICD may provide a complimentary signaling cascade capable of modulating Wnt‐dependent gene expression. J. Cell. Biochem. 108: 886–895, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
During adipocyte differentiation, the cells experience dramatic alterations in morphology, motility and cell-ECM contact. Focal adhesion kinase (pp125FAK), a widely expressed non-receptor tyrosine kinase in integrin signaling, has been reported to participate in these events in various cells. Utilizing 3T3-L1 cells and primary rat preadipocytes, we explored the role of FAK in adipocyte differentiation. Gradual cleavage of FAK was demonstrated during adipcoyte differentiation, both in vitro and in vivo. This cleavage of FAK was mediated by calpain. Inhibition of calpain activity resulted in the rescue of FAK degradation, accompanied with the disturbance of final maturation of adipocyte. Our study revealed that FAK participated in adipocyte differentiation, and its cleavage by calpain was required to fulfill the final maturation of adipocytes.  相似文献   

16.
目的观察Wnt/β-catenin信号通路是否在体外以外源性Wnt3a持续作用小鼠胚胎干细胞后被激活,并进一步调控该通路下游基因的表达。方法应用外源性Wnt3a持续作用ES-E14TG2a小鼠胚胎干细胞21d,通过细胞免疫荧光及Western Blotting检测细胞内β-catenin蛋白,以观察该蛋白的胞内积聚情况;同时QRT-PCR检测WNT下游靶标基因的表达量,采用完全随机F检验并用LSD法进行两两比较,来确定经典WNT/β-catenin信号通路是否被激活。结果ES-E14TG2a小鼠胚胎干细胞经Wnt3a连续培养21d后,β-catenin蛋白的细胞荧光明显较强,而对照组中的荧光强度较弱,说明细胞内β-catenin蛋白没有被降解而是在胞内大量积累;Western Blotting检测结果显示Wnt3a连续培养21d后ES-E14TG2a细胞内β-catenin蛋白条带明显比空白对照的蛋白条带粗;ES—E14TG2a细胞经wnt3a培养后Pitx2、Frizzled、Sox17的表达量均持续上升,Pitx2在培养7d、14d、21d分别为4.17±0.20、7.27±0.35、8.59±0.21(F=222.757,P=0.000);Frizzled在培养7d、14d、21d分别为1.01±0.06、2.93±0.22、5.44±0.30(F=302.703,P=0.000);Sox17在培养7d、14d、21d分别为8.45±0.41、18.35±0.17、34.93±0.16(F=7217.083,P=0.000);Oct4培养到7d、14d的表达量持续增加分别为1.22±0.21、1.56±0.04,而连续培养21d后Oct4基因的表达量下降为1.15±0.07(F=8.827,P=0.016)。结论Wnt3a持续作用可激活Wnt/β-catenin信号通路,并调控下游基因的表达。  相似文献   

17.
18.
19.
20.
The canonical Wnt signaling pathway can determine human bone marrow stromal (mesenchymal) stem cell (hMSC) differentiation fate into osteoblast or adipocyte lineages. However, its downstream targets in MSC are not well characterized. Thus, using DNA microarrays, we compared global gene expression patterns induced by Wnt3a treatment in two hMSC lines: hMSC-LRP5T253 and hMSC-LRP5T244 cells carrying known mutations of Wnt co-receptor LRP5 (T253I or T244M) that either enhances or represses canonical Wnt signaling, respectively. Wnt3a treatment of hMSC activated not only canonical Wnt signaling, but also the non-canonical Wnt/JNK pathway through upregulation of several non-canonical Wnt components e.g. naked cuticle 1 homolog (NKD1) and WNT11. Activation of the non-canonical Wnt/JNK pathway by anisomycin enhanced osteoblast differentiation whereas its inhibition by SP600125 enhanced adipocyte differentiation of hMSC. In conclusion, canonical and non-canonical Wnt signaling cooperate in determining MSC differentiation fate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号