首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eight H-bonded complexes between isocytosine (isoC) tautomeric forms and R/S-lactic acid (LA) have been studied at the B3LYP and HF levels of theory using 6–31+G(d) basis set. The energy barriers of the intermolecular proton transfers were also estimated as the results showed that they are several times lower than those of the intramolecular proton transfers of isoC in the gas phase. Furthermore, the energy barriers of the tautomerizations in which the carboxylic H-atom takes part are several times lower than those in which the LA OH group assists the proton transfer. Figure  相似文献   

2.
Twelve H-bonded supersystems constructed between the adenine tautomers and methanol, ethanol, and i-propanol were studied at the B3LYP and MP2 levels of theory using 6-311G(d,p) and 6-311++G(d,p) basis functions. The thermodynamic parameters of the complex formations were calculated in order to estimate the exact stability of the supersystems. It was proven that the calculated energy barriers of the alcohol-assisted proton transfers are about 60% lower than those of the intramolecular proton transfers in adenine found earlier (Gu and Leszczynski in J Phys Chem A 103:2744–2750, 1999). Figure H-bonded complex between i-propanol and adenine  相似文献   

3.
Twelve binary and eight ternary supersystems between thymine and methanol, and water were investigated in the ground state at the B3LYP and MP2 levels of theory using B3LYP/6-311 + + G(d,p) basis functions. The thermodynamics of complex formations and the mechanisms of intermolecular proton transfers were clarified in order to find out the most stable H-boned system. It was established that the energy barriers of the water/methanol-assisted proton transfers are several times lower than those of the intramolecular proton transfers in the DNA/RNA bases. The X-ray powder spectra of thymine, and this precrystallized from water and methanol showed that water molecules are incorporated in the crystal lattice of thymine forming H-bridges between thymine molecules. Figure Intermolecular H-bonding of thymine  相似文献   

4.
Eight H-bonded complexes between serotonin (5-hydroxy-tryptamine) and water/hydrogen peroxide were studied at the B3LYP and HF levels of theory, using the 6-31+G(d) basis set. A thermodynamic analysis was performed in order to find the most stable complex. The calculated bonding parameters showed that the most stable H-bonded complex is formed between serotonin and hydrogen peroxide by means of the intermolecular H-bond –H2N...H–OOH. Fig. a Theoretical study of the hydrogen-bonded supersystems serotonin-water/hydrogen peroxide  相似文献   

5.
The potential of various organic species to catalyze epoxidation of ethene by hydrogen peroxide is explored with B3LYP/6-31G* DFT calculations. Electronic Supplementary Materials Supplementary material is available for this article at http://dx.doi.org/10.1007/s00894-005-0044-4.Dedicated to Professor Dr. Paul von Ragué Schleyer on the occasion of his 75th birthday  相似文献   

6.
The electronic structure of representative hydrogen bonded systems: hydrogen cyanide, imidazole and malonic acid have been studied at the non-empirical level. The role of the dimensionality on the potential barrier for the proton transfer has been examined. It was shown that it depends on the crystal structure and only in some cases like hydrogen cyanide or imidazole the relevant crystals may be considered as one-dimensional. However, for more complicated crystallographic structures, e.g. malonic acid, the evaluated barrier is strongly dependent on the dimensionality taken into account in our calculations. Figure Density of states for the imidazole dimer: MD-EQ- standard proton position (black line), MD-TR- proton position in the middle of the hydrogen bond (red line)  相似文献   

7.
The tautomerization mechanism the isolated and monohydrated forms of two Schiff bases 1 and 2, and the effect of solvation on the proton transfer from enol-imine form to the keto-enamine form have been investigated using the B3LYP hybrid density functional method at the 6-31G** basis set level. The barrier heights for H2O-assisted reactions are significantly lower than that of unassisted tautomerization reaction in the gas phase. Nonspecific solvent effects have also been taken into account by using the continuum model (IPCM) of four different solvent. The tautomerization energies and the potential energy barriers are decreased by increasing solvent polarity. Figure The tautomerization mechanism the isolated and monohydrated forms of two Schiff bases 1 and 2, and the effect of solvation on the proton transfer from enol-imine form to the keto-enamine form have been investigated using the B3LYP hybrid density functional method at the 6-31G** basis set level  相似文献   

8.
The protomeric tautomerizm and conformation of the 2-methyl-4-pyridin-2′-yl-1,5-benzodiazepine molecule were investigated, and its three neutral tautomers (B1,B2,B3) and their rotamers (C1,C2,C3) were considered. Full geometry optimizations were carried out at the HF/6-31G* and B3LYP/6-31G* levels in gas phase and in water. The tautomerization processes in water (ɛ = 78.54) were studied by using self-consistent reaction field theory. The calculation showed that the boat conformation is dominant for the seven-membered diazepine ring in all of the structures, even with different double bond positions. The calculated relative free energies (ΔG) showed that the tautomer C1 was the most stable structure, and its conformer B1 was the second most stable in the gas phase and in water. Figure 2-Methyl-4-pyridin-2′-yl-1,5-benzodiazepine  相似文献   

9.
We have determined the effects that tightly bound water molecules have on the de novo design of cyclin-dependent kinase-2 (CDK2) ligands. In particular, we have analyzed the impact of a specific structural water molecule on the chemical diversity and binding mode of ligands generated through a de novo structure-based ligand generation method in the binding site of CDK2. The tightly bound water molecule modifies the size and shape of the binding site and we have found that it also imposed constraints on the observed binding modes of the generated ligands. This in turn had the indirect effect of reducing the chemical diversity of the underlying molecular scaffolds that were able to bind to the enzyme satisfactorily.   相似文献   

10.
The geometric and electronic structure of tetracyanoethylene (TCNE)-aniline (donor-acceptor type) complex has been investigated in gas phase using ab initio and time dependent density functional theory calculations. Both the above calculations predict a composed structure for the complex, in which the interacting site is a C≡N and C=C bond center in the TCNE and, –NH2 and π-electrons of aniline. The N atom of aniline is oriented toward the TCNE molecule. The charge transfer transition energy, estimated by calculating the ground-to-excited state transition electric dipole moments of the complex, agree well with the reported experimental value in chloroform medium. TCNE-aniline at ground state. TCNE-aniline at excited state  相似文献   

11.
Based on experimental evidence and DFT studies, a probable cyclization route to 1,3,5-thiadiazinanes-2-thiones in aqueous medium is proposed. Experimental facts suggest the formation of a {[hydroxymethyl (substituted) carbamothioyl] sulfanyl}methanol intermediate via reaction of dithiocarbamate (DTC) and formaldehyde. Nucleophilic addition of glycine to this intermediate generates an adduct that undergoes intramolecular heterocyclization via an SN2 reaction. Computational calculations predict an active role of water in the reaction mechanism that promotes intramolecular cyclization. Figure Energy profile of the proposed reaction mechanism for the synthesis of thiadiazinane-2-thione ring 11 in aqueous medium from a (hydroxymethylcarbamothioyl)sulfanylmethanol intermediate, 9  相似文献   

12.
Quantum chemical (Hartree-Fock) calculations were performed on neutral and protonated saxitoxin in order to obtain optimum geometries, rotational energy barriers for the guanidinium ions and proton affinities. For comparison purposes, as model compounds, guanidinium systems in five and six membered rings were also investigated. In addition, DFT (B3LYP) calculations with the 6-31G** basis set were performed and the sodium affinities of the guanidinium groups in saxitoxin were obtained. It was concluded that the inhibition of the sodium channels by the saxitoxin is due to the interaction of the guanidinium group with carboxylate groups from the wall of the channel and not to the binding of the sodium ions. Figure Calculated structure of Compound 1, neutral saxitoxin. a Calculated structure of Compound 1a, saxitoxin protonated on the guanidine of the five-membered ring. b Calculated structure of Compound 1b, saxitoxin protonated on the guanidine of the six-membered ring  相似文献   

13.
As a follow-up study to our study on tetrazane (N4H6), we present computed thermodynamic properties of triazane (N3H5). Calculated properties include optimized geometries, infrared vibrations, enthalpy of formation, enthalpy of combustion, and proton affinities. We have also mapped the potential energy surface as the molecule is rotated about the N-N bond. We have predicted a specific enthalpy of combustion for triazane of about -20 kJ g−1. Figure Schematic diagram of the dielectric barrier discharge (left) and typical temporal profiles of voltage and current, as obtained from the simulations (right)  相似文献   

14.
Following our recent study on triazane, we present a follow-up study on the thermodynamic properties of triazane’s unsaturated analog, triazene. We predict optimized structural parameters, vibrational frequencies, enthalpies of formation, enthalpies of combustion, specific enthalpies of combustion, and proton affinities. Our results indicate that the cis form of triazene has a specific enthalpy of combustion of −15.2 kJ g−1 and the trans form has a specific enthalpy of combustion of −14.7 kJ g−1. Figure Structures of cis- and trans-triazane, N3H3  相似文献   

15.
Protonation in the two-electron/two-proton reduction processes of 2,6-dichlorophenolindophenolate (DCIP) is investigated combining density functional theory (DFT) and molecular dynamics (MD) methods. DCIP (anion), DCIP?– (radical anion), and DCIP2? (dianion) are considered, including the electronic structure analysis from the prospective of quantum theory of atoms and molecules (QTAIM). It is shown that oxygen on the indophenolate moiety and nitrogen are the first and/or the second proton acceptor sites and their energetic order depends on the total charge of the system. MD simulations of differently charged species interacting with the solvent molecules have been performed for methanol, water, and oxonium cation (H3O+). Methanol and water molecules are found to form only hydrogen bonds with the solute irrespective of its charge. The calculated pKa values show that the imino group of DCIPH? is a weaker acid than water. While in the case of DCIP (and DCIP?–) plus oxonium cation, proton transfer from the solvent to the solute was evidenced for both aforementioned acceptor sites. In addition, MD simulations of bulks containing 15 and 43 molecules of water around the DCIP molecule have been performed, revealing the formation of 2–4 hydrogen bonds.
Graphical Abstract 2,6-Dichlorophenolindophenolate interacts with solvent molecules (water, oxonium cation and methanol). Hydrogen transfer and electronic structure are studied by DFT and molecular dynamics methods
  相似文献   

16.
We have used density-functional theory to investigate the neighboring-group stabilization of iodine, arsenic, and phosphorus-centered oxyanion moieties in species such as deprotonated 2-iodoxybenzoic acid (IBX) and its analogs. The magnitudes of different stabilizing effects and further candidates for analogous stabilization are analyzed.   相似文献   

17.
Cyclin-dependent kinases (CDKs) have been identified as potential targets for development of drugs, mainly against cancer. These studies generated a vast library of chemical inhibitors of CDKs, and some of these molecules can also inhibit kinases identified in the Plasmodium falciparum genome. Here we describe structural models for Protein Kinase 6 from P. falciparum (PfPK6) complexed with Roscovitine and Olomoucine. These models show clear structural evidence for differences observed in the inhibition, and may help designing inhibitors for PfPK6 generating new potential drugs against malaria. Figure Ribbon diagram of PfPK6 complexed with a roscovitine and b olomoucine  相似文献   

18.
The study of spin-spin coupling constants across hydrogen bond provides useful information about configuration of complexes. The interesting case of such interactions was observed as a coupling across an intramolecular hydrogen bond in 8-bromo-2′,3′-O-isopropylideneadenosine between the -CH2OH (at 5″ proton) group and the nitrogen atom of adenine. In this paper we report theoretical investigations on the 4h J NH coupling across the H″-C-O-H···N hydrogen bond in adenosine derivatives in various solvent models. Figure Coupling constants in 8-bromo-2′,3′-O-isopropylideneadenosine Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
We report a consistent set of AMBER force-field parameters for the most common phosphorylated amino acids, phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine in different protonation states. The calculation of atomic charges followed the original restrained electrostatic potential fitting procedure used to determine the charges for the parm94/99 parameter set, taking α-helical and β-strand conformations of the corresponding ACE-/NME-capped model peptide backbone into account. Missing force-field parameters were taken directly from the general AMBER force field (gaff) and the parm99 data set with minor modifications, or were newly generated based on ab initio calculations for model systems. Final parameters were validated by geometry optimizations and molecular-dynamics simulations. Template libraries for the phosphorylated amino acids in Leap format and corresponding frcmod parameter files are made available. Figure Schematic illustration of the systems used for parameter generation. Acid hydrogens are shown in red Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

20.
The relative stabilities of the alkali [M ⊂ 222]+ cryptates (M = Na, K, Rb and Cs) in the gas phase and in solution (80:20 v/v methanol:water mixture) at 298 K, are computed using a combination of ab initio quantum-chemical calculations (HF/6-31G and MP2/6-31+G*//HF/6-31+G*) and explicit-solvent Monte Carlo free-energy simulations. The results suggest that the relative stabilities of the cryptates in solution are due to a combination of steric effects (compression of large ions within the cryptand cavity), electronic effects (delocalization of the ionic charge onto the cryptand atoms) and solvent effects (dominantly the ionic dessolvation penalty). Thus, the relative stabilities in solution cannot be rationalized solely on the basis of a simple match or mismatch between the ionic radius and the cryptand cavity size as has been suggested previously. For example, although the [K ⊂ 222]+ cryptate is found to be the most stable in solution, in agreement with experimental data, it is the [Na ⊂ 222]+ cryptate that is the most stable in the gas phase. The present results provide further support to the notion that the solvent in which supramolecules are dissolved plays a key role in modulating molecular recognition processes. Figure Alkali cryptates [M ⊂ 222]+ (M = Na, K, Rb and Cs) relative stabilities in gas and methanol:water solution: solvent effects and molecular recognition
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号