首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Functional bivalent miniantibodies, directed against the epidermal growth factor receptor, accumulated to more than 3 gl−1 in high-cell-density cultures of Escherichia coli RV308(pHKK) on a pilot scale. The miniantibodies consist of scFv fragments with a C-termi-nal hinge followed by a helix-turn-helix motif, which homodimerizes in vivo. The improved expression vector pHKK is characterized by the hok/sok suicide system, improving plasmid maintenance, and the inducible lac p/o promoter system with the very strong T7g10 Shine-Dalgarno sequence. The expression unit is flanked by terminators. The prototrophic RV308 cells were cultivated in glucose mineral salt medium and reached a cell density of 145 g dry biomass l−1 after 33 h. After induction, growth continued almost unchanged for a further 4 h with concomitant miniantibody formation. In the fed-batch phase, the concentration of glucose was kept almost constant at the physiological level of approximately 1.5 g l−1, using on-line flow injection analysis for control. Surprisingly, E. coli RV308(pHKK) did not accumulate significant amounts of the metabolic by-product acetate under these unlimited aerobic growth conditions. Received: 26 February 1996 / Received revision: 1 August 1996 / Accepted: 12 August 1996  相似文献   

2.
An efficient expression system for the previously only weakly expressed thermophilic lipase BTL2 (Bacillus thermocatenulatus lipase 2) was developed for the production of large amounts of lipase in Escherichia coli. Therefore, the gene was subcloned in the pCYTEXP1 (pT1) expression vector downstream of the temperature-inducible λ promoter PL. Three different expression vectors were constructed: (i) pT1-BTL2 containing the mature lipase gene, (ii) pT1-preBTL2 containing the prelipase gene and (iii) pT1-OmpABTL2 containing the mature lipase gene fused to the signal peptide of the OmpA protein, the major outer membrane protein of E. coli. With pT1-BTL2 and pT1-preBTL2, comparable expression levels of 7000–9000 U/g cells were obtained independently of the E. coli host. In contrast, with E. coli JM105 harbouring pT1-OmpABTL2, 660 000 soluble lipase U/g cells was produced, whereas, with E. coli DH5α and BL321, production levels of 30 000 U/g cells were achieved. However, most of the lipase remained insoluble but active after cell breakage because of the unprocessed OmpA signal peptide. A simple cholate extraction followed by proteinase K cleavage and ultrafiltration allowed the isolation of 1.15 × 106 units of 90% pure mature lipase/wet cells. Received: 29 August 1997 / Received revision: 17 November 1997 / Accepted: 18 November 1997  相似文献   

3.
A gene library from the thermophilic eubacterium Rhodothermus marinus, strain ITI 378, was constructed in pUC18 and transformed into Escherichia coli. Of 5400 transformants, 3 were active on carboxymethylcellulose. Three plasmids conferring cellulase activity were purified and were all found to contain the same cellulase gene, celA. The open reading frame for the celA gene is 780 base pairs and encodes a protein of 260 amino acids with a calculated molecular mass of 28.8 kDa. The amino acid sequence shows homology with cellulases in glycosyl hydrolase family 12. The celA gene was overexpressed in E. coli when the pET23, T7 phage RNA polymerase system was used. The enzyme showed activity on carboxymethylcellulose and lichenan, but not on birch xylan or laminarin. The expressed enzyme had six terminal histidine residues and was purified by using a nickel nitrilotriacetate column. The enzyme had a pH optimum of 6–7 and its highest measured initial activity at 100 °C. The heat stability of the enzyme was increased by removal of the histidine residues. It then retained 75% of its activity after 8 h at 90 °C. Received: 5 August 1997 / Received revision: 6 November 1997 / Accepted: 7 November 1997  相似文献   

4.
 Poly[(R)-3-hydroxybutyric acid] (PHB) was produced at 37 °C by a recombinant Escherichia coli harboring the Alcaligenes eutrophus biosynthesis phbCAB genes in Luria-Bertani media containing glucose at 10–30 g/l at different pH values and the time-dependent changes in the molecular mass of PHB were studied. PHB polymers accumulated within cells while glucose was present in the medium. The number-average molecular mass of PHB decreased with time during the course of PHB accumulation, and the values for PHB were markedly dependent on the cultivation conditions of the E. coli, ranging from 0.5 MDa to 20 MDa. Under specific conditions (pH 6.0), E. coli produced PHB with an extremely high molecular mass (20 MDa). It has been suggested that a chain-transfer agent is generated in E. coli cells during the accumulation of PHB. Received: 18 July 1996 / Received revision: 4 November 1996 / Accepted: 4 November 1996  相似文献   

5.
  Xanthomonas campestris pv. campestris, the causal agent of black-rot disease of cruciferous plants, and an important industrial microbe, was able to express the Escherichia coliβ-glucuronidase reporter gene (uidA) when fused to the E. coli lactose operon promoter on a wide-host-range plasmid vector. The gene fusion is expressed constitutively at high levels in both complex and defined media using a wide range of carbon sources, and is not repressible by glucose or inducible by the gratuitous lac inducer isopropyl β-d-thiogalactoside. An X. campestris campestris strain with a lesion in the clp (catabolite-repressor-like protein) locus, and containing the plac/uidA fusion, was tested for β-glucuronidase activity. We found that the expression of the plac/uidA fusion gene is dependent on the presence of catabolite-repressor-like protein, with an approximately 75% reduction of expression in the clp -deficient mutant. Received: 1 April 1996 / Received revision: 21 June 1996 / Accepted: 15 July 1996  相似文献   

6.
The Tn5-based transposon Tn5-KIL3 (Miksch et al. 1997c) bearing the kil gene of the ColE1 plasmid of Escherichia coli, which mediates controlled export of periplasmic proteins into the culture medium, was stably integrated into the chromosome of Klebsiella planticola with high transposition frequency. A Bacillus hybrid β-glucanase located on an RSF1010-derived plasmid was mobilized from E.coli to K. planticola and used as a reporter protein to select strains with high expression and secretion competence. During fermentation experiments it was shown that the production of β-glucanase in K. planticola was improved to an unexpectedly high level when the enzyme was secreted into the medium. Due to the stationary-phase promoter used for the expression of the kil gene the secretion of β-glucanase into the medium started at the transition from the exponential to the stationary phase, as in E. coli, and the fraction of secreted protein reached 90%. The results showed that K. planticola may represent an interesting organism for the production of heterologous proteins. Received: 22 July 1998 / Received revision: 25 November 1998 / Accepted: 29 November 1998  相似文献   

7.
Various concentrations of isopropyl β-d-thiogalactopyranoside (IPTG) were used to induce production of the enzyme penicillin G acylase by recom binant Escherichia coli harboring plasmid pQEA11. The plasmid pQEA11 carries a wild-type pga gene, which is under the control of the tac promoter and lacIq. At low IPTG concentrations (0.025 – 0.1 mM), enzyme activity increased with increasing IPTG concentrations. At higher IPTG concentrations (0.2 and 0.5 mM), enzyme activity declined progressively. Examination of induced recombinant E. coli cells by transmission electron microscopy showed the presence of only periplasmic inclusion bodies at low IPTG concentrations (up to 0.1 mM) and both periplasmic and cytoplasmic inclusion bodies at high IPTG concentrations (0.2 mM and 0.5 mM). Results from sodium dodecyl sulfate/polyacrylamide gel electrophoresis and immunoblots of whole-cell proteins, membrane proteins and inclusion body proteins in these cells indicated that cytoplasmic inclusion bodies constituted an accumulation of preproenzyme (i.e., precursor polypeptide containing a signal peptide) and that periplasmic inclusion bodies constituted an accumulation of proenzyme (i.e., precursor polypeptide lacking a signal peptide). Received: 27 March 1996 / Received revision: 2 July 1996 / Accepted: 10 November 1996  相似文献   

8.
A gene for a synthetic protein-based polymer, G-(VPGVG)119-VPGV, coding for the EG-120mer (elastomer), was cloned into a fungal expression vector to allow constitutive expression of the polymer controlled by the gpdA (glyceraldehyde-3-phosphate dehydrogenase) promoter sequence of Aspergillus nidulans. Stable transformants of A. nidulans showed plasmid integration with varying copy number when analyzed by Southern-blot hybridization. Expression of the synthetic gene was demonstrated by Northern-blot hybridization. However, the translational efficiency for production of the polymer polypeptide was low, presumably because of certain codons in the polymer gene (CCG and GUA) that are rarely used by A. nidulans. Partial purification by reversible phase transition followed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed the presence of polymer protein in a transformant that contained multiple copies of the polymer gene. This study represents the first attempt to express a synthetic gene (with no natural analog) in a fungus. Received: 23 July 1996 / Received revision: 19 November 1996 / Accepted: 23 November 1996  相似文献   

9.
Genes encoding the mosquitocidal binary toxin of Bacillus sphaericus 2362 were introduced into Synechococcus PCC6301, a cyanobacterium that can tolerate a number of potential variations in the mosquito breeding environment, and can serve as a food source for mosquito larvae. The toxin genes, preceded by a Synechococcus rbcL promoter, were located on a mobilizable Escherichia coli Synechococcus shuttle vector, which was introduced into Synechococcus PCC6301 at frequencies of 10−5–10−7 exconjugants/recipient, depending on the selective conditions used. Recombinant Synechococcus exhibited significant toxicity against 2-day-old and 6-day-old Culex quinquefasciatus larvae, the concentration required to kill 50 % of larvae (LC50) being 2.1 × 105 and 1.3 × 105 cells/ml respectively. Mosquitocidal activity decreased tenfold after 20 generations of non-selective growth. Received: 23 July 1996 / Received revision: 11 November 1996 / Accepted: 15 November 1996  相似文献   

10.
Carotenoids are of great commercial interest and attempts are made to produce different carotenoids in transgenic bacteria and yeasts. Development of appropriate systems and optimization of carotenoid yield involves transformation with several new genes on suitable plasmids. Therefore, the non-carotenogenic bacterium Escherichia coli JM101 was transformed in our study with several genes that mediated the biosynthetic production of the carotenoid zeaxanthin in this host. Selection of plasmids for the introduction of five essential genes for zeaxanthin formation showed that a pACYC-derived plasmid was the best. Multiplasmid transformation generally decreased production of zeaxanthin. By cotransformation with different plasmids, limitations in the biosynthetic pathway were found at the level of geranylgeranyl-pyrophosphate synthase and β-carotene hydroxylase. In our study a maximum zeaxanthin content of 289 μg/g dry weight was obtained. This involved the construction of a plasmid that mediated high-level expression of β-carotene hydroxylase. The level of expression was demonstrated on protein gels and solubilization by the mild detergent Brij 78 revealed that a significant portion of the expressed enzyme is located in the E. coli membranes where it can exert its catalytic function. Based on the results obtained, new strategies for vector construction and strain selection were proposed which could increase the present concentrations drastically. Optimal growth conditions of the transfomed E. coli strains for carotenoid formation were found at a temperature of 28 °C and a cultivation period of 2 days. Received: 28 November 1996 / Received revision: 24 March 1997 / Accepted: 27 April 1997  相似文献   

11.
Streptomyces lividans 1326 carries inducible mercury resistance genes on the chromosome, which are arranged in two divergently transcribed operons. Expression of the genes is negatively regulated by the repressor MerR, which binds in the intercistronic region between the two operons. The merR gene was expressed in E. coli using a T7 RNA polymerase/promoter expression system, and MerR was purified to around 95% homogeneity by ammonium sulfate precipitation, gel filtration and affinity chromatography. Gel filtration showed that the native MerR is a dimer with a molecular mass of 31 kDa. Two DNA binding sites were identified in the intercistronic mer promoter region by footprinting experiments. No evidence for cooperativity in the binding of MerR to the adjacent operator sequences was observed in gel mobility shift assays. The dissociation constants (KD) for binding of MerR were: binding site I, 8.5 × 10−9 M; binding site II, 1.2 × 10−8 M; and for the complete promoter/operator region 1 × 10−8 M. The half-life of the MerR-DNA complex was 19.4 min and 18.8 min for binding site I and binding site II, respectively. The KD value for binding of mercury(II)chloride to MerR, again determined by mobility shift assay, was 1.1 × 10−7 M. Received: 18 August 1998 / Accepted: 5 May 1999  相似文献   

12.
13.
Artificial amplification of gluconeogenic phosphoenolpyruvate carboxykinase (PCK) under glycolytic conditions enables Escherichia coli to maintain a greater intracellular ATP concentration during its growth phase. To demonstrate the biotechnological benefit of E. coli harboring a high intracellular ATP concentration, we compared the recombinant protein synthesis of a soluble protein (enhanced green fluorescence protein, GFP) with that of a secretory protein (alkaline protease, AP), under control of the T7 promoter in E. coli BL21(DE3) overexpressing PCK. According to the batch fermentations, the strain overexpressing PCK produced more GFP and AP with a lower increase in biomass than the control strain. In a chemostat culture (D = 0.7 h−1), the GFP production in the PCK overexpressing strain was 99.0 ± 4.31 mg/g cell, with a biomass of 0.22 g/L, while that of the control strain was 53.5 ± 3.07 mg/g cell, with a biomass of 0.35 g/L. These results indicate that the PCK overexpressing E. coli strain harboring high intracellular levels of ATP can be useful as a protein-synthesizing host. The potential uses of the strain and associated rationale are discussed.  相似文献   

14.
A modified pBAD24 vector (pBAD24M) was constructed with the araBAD promoter of the arabinose operon along with T7g10 sequence elements and a modified Shine–Dalgarno sequence. While both green fluorescent protein and granulocyte colony stimulating factor showed negligible expression under the original pBAD24 vector, they were expressed at >35% of total cellular protein with the modified vector. Similar results were obtained for staphylokinase wherein the pBAD24-SAK construct yielded 8 ng/106 c.f.u. of E. coli induced cells while the pBAD24M-SAK vector showed nearly 55 ng/106 c.f.u. induced bacterial cells as tested by ELISA. Interestingly, the expression levels using modified pBAD24 vector matched that achieved with T7 promoter based vector system. The modified pBAD24 vector therefore represents a simple and a useful prokaryotic expression system for efficient repression, modulation and elevated protein expression levels. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
We have constructed a novel Pichia pastoris/Escherichia coli dual expression vector for the production of recombinant proteins in both host systems. In this vector, an E. coli T7 promoter region, including the ribosome binding site from the phage T7 major capsid protein for efficient translation is placed downstream from the yeast alcohol oxidase promoter (AOX). For detection and purification of the target protein, the vector contains an amino-terminal oligohistidine domain (His6) followed by the hemaglutinine epitope (HA) adjacent to the cloning sites. A P. pastoris autonomous replicating sequence (PARS) was integrated enabling simple propagation and recovery of plasmids from yeast and bacteria (1). In the present study, the expression of human proteins in P. pastoris and E. coli was compared using this single expression vector. For this purpose we have subcloned a cDNA expression library deriving from human fetal brain (2) into our dual expression T7 vector and investigated 96 randomly picked clones. After sequencing, 29 clones in the correct reading frame have been identified, their plasmids isolated and shuttled from yeast to bacteria. All proteins were expressed soluble in P. pastoris, whereas in E. coli only 31% could be purified under native conditions. Our data indicates that this dual expression vector allows the economic expression and purification of proteins in different hosts without subcloning.  相似文献   

16.
A truncated Bacillus sp. TS-23 α-amylase gene lacking 96 and 294 bp at its 5′ and 3′ end respectively was prepared by polymerase chain reaction and cloned into Escherichia coli expression vector, pQE-30, under the control of T5 promoter. SDS-PAGE and activity staining analyses showed that the His6-tagged amylase had a molecular mass of approximately 54 kDa. Isopropyl-β-d-thiogalactopyranoside (IPTG) induction of E. coli M15 cells bearing the recombinant plasmid resulted in the extracellular production of active amylase. Western blot analysis also revealed that the truncated amylase was present in the periplasmic space and culture medium. Received: 23 December 2000/Accepted: 26 January 2001  相似文献   

17.
To produce a large quantity of the angiotensin-converting-enzyme(ACE)-inhibiting peptide YG-1, which consists of ten amino acids derived from yeast glyceraldehyde-3-phosphate dehydrogenase, a high-level expression was explored with tandem multimers of the YG-1 gene in Escherichia coli. The genes encoding YG-1 were tandemly multimerized to 9-mers, 18-mers and 27-mers, in which each of the repeating units in the tandem multimers was connected to the neighboring genes by a DNA linker encoding Pro-Gly-Arg for the cleavage of multimers by clostripain. The multimers were cloned into the expression vector pET-21b, and expressed in E. coli BL21(DE3) with isopropyl β-d-thiogalactopyranoside induction. The expressed multimeric peptides encoded by the 9-mer, 18-mer and 27-mer accumulated intracellularly as inclusion bodies and comprised about 67%, 25% and 15% of the total proteins in E. coli respectively. The multimeric peptides expressed as inclusion bodies were cleaved with clostripain, and active monomers were purified to homogeneity by reversed-phase high-performance liquid chromatography. In total, 105 mg pure recombinant YG-1 was obtained from 1 l E. coli culture harboring pETYG9, which contained the 9-mer of the YG-1 gene. The recombinant YG-1 was identical to the natural YG-1 in molecular mass, amino acid sequence and ACE-inhibiting activity. Received: 6 January 1998 / Received revision: 23 February 1998 / Accepted: 24 February 1998  相似文献   

18.
A plasmid (pYP17) containing a genomic DNA insert from Escherichia coli K-12 that confers the ability to hydrolyze carboxymethylcellulose (CMC) was isolated from a genomic library constructed in the cosmid vector pLAFR3 in E. coli DH5α. A small 1.65-kb fragment, designated bcsC (pYP300), was sequenced and found to contain an ORF of 1,104 bp encoding a protein of 368 amino acid residues, with a calculated molecular weight of 41,700 Da. BcsC carries a typical prokaryotic signal peptide of 21 amino acid residues. The predicted amino acid sequence of the BcsC protein is similar to that of CelY of Erwinia chrysanthemi, CMCase of Cellulomonas uda, EngX of Acetobacter xylinum, and CelC of Agrobacterium tumefaciens. Based on these sequence similarities, we propose that the bcsC gene is a member of glycosyl hydrolase family 8. The apparent molecular mass of the protein, when expressed in E. coli, is approximately 40 kDa, and the CMCase activity is found mainly in the extracellular space. The enzyme is optimally active at pH 7 and a temperature of 40° C. Received: 6 February 1998 / Accepted: 6 November 1998  相似文献   

19.
New secretion vectors containing the Bacillus sp. endoxylanase signal sequence were constructed for the secretory production of recombinant proteins in Escherichia coli. The E. coli alkaline phosphatase structural gene fused to the endoxylanase signal sequence was expressed from the trc promoter in various E. coli strains by induction with IPTG. Among those tested, E. coli HB101 showed the highest efficiency of secretion (up to 25.3% of total proteins). When cells were induced with 1 mM IPTG, most of the secreted alkaline phosphatase formed inclusion bodies in the periplasm. However, alkaline phosphatase could be produced as a soluble form without reduction of expression level by inducing with less (0.01 mM) IPTG, and greater than 90% of alkaline phosphatase could be recovered from the periplasm by the simple osmotic shock method. Fed-batch cultures were carried out to examine the possibility of secretory protein production at high cell density. Up to 5.2 g/l soluble alkaline phosphatase could be produced in the periplasm by the pH-stat fed-batch cultivation of E. coli HB101 harboring pTrcS1PhoA. These results demonstrate the possibility of efficient secretory production of recombinant proteins in E. coli by high cell density cultivation. Received: 8 September 1999 / Received revision: 3 January 2000 / Accepted 4 January 2000  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号