首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Reports of adverse human pregnancy outcomes including cleft palate have increased as the clinical use of isotretinoin (13-cis-retinoic acid) and other retinoic acid (RA) derivatives have increased, but the mechanisms by which their effects are exerted are not understood. Research in craniofacial development is generally performed in rodents, and mouse palatal shelves exposed in organ cultures to retinoids and epidermal growth factor (EGF) display altered medial epithelial cell morphology blocking normal union of apposing shelves. In the present study, precontacting human palatal shelves were maintained in organ culture for 2, 3, or 6 days and exposed to labeled thymidine (3H-TdR) during the last 16 hr. Retinoids and EGF were included in the media so that each shelf was exposed to one of the following: control, EGF, trans-RA at 10(-5)M, cis-RA at 10(-7) or 10(-9) M, or RA + EGF. After exposure of cultured human embryonic palatal shelves to 13-cis-RA and trans-RA with or without EGF, medial epithelial cells do not degenerate, cell surface morphology shifts toward a nasal type, glycogen deposits decrease, smooth endoplasmic reticulum (SER) increases, and basal lamina appear altered. In shelves exposed to EGF and trans-RA early in their development, DNA synthesis appears to terminate prematurely as compared to shelves cultured in control media, and this effect is accompanied by excessive mesenchymal extracellular space expansion. Exposure of shelves to EGF alone is sufficient to block degeneration and induce hyperplasia of the medial epithelial cells but does not induce other ultrastructural changes seen with both EGF and RA. The observed alterations in medial cell morphology could interfere with adhesion of the palatal shelves and may play a role in retinoid-induced cleft palate in the human embryo.  相似文献   

2.
The synthesis and appearance of carbohydrate-rich macromolecules by epithelial cells of the developing secondary palate was examined with concanavalin A (CON A) binding and [3H]glucosamine labeling. The amount of [125I]CON A bound to the epithelial surface of the rat palatal shelf in vitro increased from day 15 of gestation to day 16 when initial adhesion to the opposite shelf occurs in vivo. Visualization of CON A binding by electron microscopy using the peroxidase method revealed a dramatic increase in binding between days 15 and 16 of gestation, most apparent on the medial-edge epithelial surface. The incorporation in vivo of [3H]glucosamine during this period into the medial-edge epithelial cells was detected with autoradiography. These results show that a glycoprotein-rich surface material appears on the superficial cells of the medial-edge epithelium prior to adhesion of the apposing shelves.  相似文献   

3.
In the present study, the morphological, histochemical, biochemical, and cellular aspects of the pathogenesis of bromodeoxyuridine (BrdU)-induced cleft palate in hamster fetuses were analyzed. Morphological observations indicated that BrdU interferes with the growth of the vertical shelves and thus induces cleft palate. At an ultrastructural level, BrdU-induced changes were first seen in the mesenchymal cells. Eighteen hours after drug administration, the initial alterations were characterized by swelling of the nuclear membrane and the appearance of lysosomes in the mesenchymal cells of the roof of the oronasal cavity. During the next 6 hr, as the palatal primordia developed, lysosomes were also seen in the overlying epithelial cells. The appearance of lysosomal activity, which was verified by acid phosphatase histochemistry, was temporally abnormal and was interpreted as a sublethal response to BrdU treatment. Later the cellular alterations subsided; 48 hr after BrdU treatment, they were absent in both the epithelial and mesenchymal cells of the vertically developing palatal shelves. Subsequently, unlike controls (in which the palatal shelves undergo reorientation and fusion), the BrdU-treated shelves remained vertical until term. Biochemical determination of DNA synthesis indicated that although there was an inhibition of DNA synthesis at the time of appearance of palatal primordia, a catch-up growth during the ensuing 12 hr may have restored the number of cells available for the formation of a vertical palatal shelf. It was suggested that BrdU affected cytodifferentiation in the palatal tissues during the critical phase of early vertical development to induce a cleft palate.  相似文献   

4.
Role of ERK1/2 signaling during EGF-induced inhibition of palatal fusion   总被引:2,自引:0,他引:2  
During mammalian palatal fusion, the medial edge epithelial (MEE) cells must stop DNA synthesis prior to the initial contact of opposing palatal shelves and thereafter selectively disappear from the midline. Exogenous EGF has been shown to inhibit the cessation of DNA synthesis and induce cleft palate; however, the precise intracellular mechanism has not been determined. We hypothesized that EGF signaling acting via ERK1/2 would maintain MEE DNA synthesis and cell proliferation and consequently inhibit the process of palatal fusion. Palatal shelves from E13 mouse embryos were maintained in organ cultures and stimulated with EGF. EGF-treated palates failed to fuse with intact MEE and had significant ERK1/2 phosphorylation. Both EGF-induced ERK1/2 phosphorylation and BrdU-incorporation were localized in the nucleus of MEE cells. Subsequent inhibition assays using U0126, a specific inhibitor of ERK1/2 phosphorylation, were conducted. U0126 inhibited EGF-induced ERK1/2 phosphorylation in a dose-dependent manner and consequently MEE cells stopped proliferation. The threshold of ERK1/2 inactivation to stop MEE DNA synthesis coincides with the level required to rescue the EGF-induced cleft palate phenotype. These results indicate that EGF-induced inhibition of palatal fusion is dependent on nuclear ERK1/2 activation and that this mechanism must be tightly regulated during normal palatal fusion.  相似文献   

5.
Retinoic acid alters epithelial differentiation during palatogenesis.   总被引:1,自引:0,他引:1  
Retinoids are teratogenic in humans and animals, producing a syndrome of craniofacial malformations that includes cleft palate. This study investigates the mechanism through which retinoic acid induces cleft palate. Murine palatogenesis after exposure to retinoic acid in utero is compared to normal development and to alterations observed after exposure in organ culture to retinoic acid or epidermal growth factor (EGF). Human embryonic palatal shelves were placed in the organ culture system and the responses to retinoic acid and EGF were compared to those of the murine palatal shelves. Growth factors play a role in normal development and are found in the embryonic palate. In other cell culture systems, retinoids alter the expression of EGF receptors. Our results suggest that in the medial epithelial cells of the palate, retinoic acid sustains the expression of the EGF receptor and the binding of EGF at a time when the expression in control medial cells has declined, and these control cells subsequently undergo programmed cell death. The continued DNA synthesis, proliferation, survival, and shift in phenotype of the medial cells is believed to interfere with the adhesion and fusion of opposing palatal shelves, resulting in cleft palate.  相似文献   

6.
The fate of the medial edge epithelial (MEE) cells during palatal fusion has been proposed to be either programmed cell death or epithelial-mesenchymal transformation. Vital cell labeling techniques were used to mark the MEE and observe their fate during palatal fusion in vitro. Fetal mouse palatal shelves were labeled with Dil and allowed to proceed through fusion while maintained in an organ culture system. The tissues were examined at several stages of palatal fusion for the distribution of Dil, presence of specific antigens and ultrastructural appearance of the cells. The MEE labeled with Dil occupied a midline position at all stages of palatal fusion. Initially the cells had keratin intermediate filaments and were separated from the underlying mesenchyme by an intact basement membrane. During the process of fusion the basement membrane was degraded and the Dil-labeled MEE were in contact with the mesenchymal-derived extracellular matrix. In the late stages of fusion the Dil-labeled MEE altered their cellular morphology, had vimentin intermediate filaments, and were not associated with an identifiable basement membrane. Dil-labeled cells, without an epithelial phenotype, remained present in the midline of the completely fused palate. The data indicate that the MEE did not die but underwent a phenotypic transformation to viable mesenchymal cell types, which were retained in the palatal mesenchyme.  相似文献   

7.
A serum-free, hormonally defined medium was developed which supports growth and differentiation in primary culture of epithelial cells from prefusion embryonic mouse palatal shelves. Using this culture system, medial epithelial programmed cell death was investigated. In the absence of EGF, medial epithelial cells undergo cell death and detach from the substratum by 24 hr of culture. The addition of EGF alone or in combination with various agents which increase intracellular cyclic AMP levels prevented medial epithelial cell death in both cell and organ culture. EGF appeared to exert its most dramatic effect in cell culture on growth and differentiation of the squamous oral epithelial cells. In addition, EGF and agents such as 8-bromo-cyclic AMP, dibutyryl cyclic AMP, or cholera toxin synergistically stimulated the appearance of a long-lived, rapidly proliferating cell type by Day 4 of culture. Our results suggest that both EGF and cyclic AMP together may be important in regulating proliferation of embryonic palatal epithelial cells.  相似文献   

8.
In mammals, the adhesion and fusion of the palatal shelves are essential mechanisms in the development of the secondary palate. Failure of any of these processes leads to the formation of cleft palate. The mechanisms underlying palatal shelf adhesion are poorly understood, although the presence of filopodia on the apical surfaces of the superficial medial edge epithelial (MEE) cells seems to play an important role in the adhesion of the opposing MEE. We demonstrate here the appearance of chondroitin sulphate proteoglycan (CSPG) on the apical surface of MEE cells only immediately prior to contact between the palatal shelves. This apical CSPG has a functional role in palatal shelf adhesion, as either the alteration of CSPG synthesis by beta-D-Xyloside or its specific digestion by chondroitinase AC strikingly alters the in vitro adhesion of palatal shelves. We also demonstrate the absence of this apical CSPG in the clefted palates of transforming growth factor beta 3 (TGF-beta(3)) null mutant mice, and its induction, together with palatal shelf adhesion, when TGF-beta(3) is added to TGF-beta(3) null mutant palatal shelves in culture. When chick palatal shelves (that do not adherein vivo nor express TGF-beta(3), nor CSPG in the MEE) are cultured in vitro, they do not express CSPG and partially adhere, but when TGF-beta(3) is added to the media, they express CSPG and their adhesion increases strikingly. We therefore conclude that the expression of CSPG on the apical surface of MEE cells is a key factor in palatal shelf adhesion and that this expression is regulated by TGF-beta(3).  相似文献   

9.
Secondary palatal fusion is dependent on targeted removal of the epithelium between the palatal shelves. Aseptically delivered rat embryos 15 through 18 days post coitum (dpc) were probed with DIG-labeled antisense and sense ssDNA probes for spliced exon sequences flanking intron E of cytokeratins K5/6 and spliced exon sequences flanking intron F of vimentin. Cytokeratin K5/6 expression was upregulated in the medial edge epithelium (MEE) prior to rotation of the palatal shelves and in the vomerine epithelium in the region of fusion with the palate. K5/6 expression continued in the medial epithelial seam (MES) and in epithelial islands during breakdown of the MES. Vimentin expression was not detected in the MEE prior to rotation but was specifically upregulated in the MEE following rotation and prior to midline contact and continued in the MES and in epithelial cells identifiable during the breakdown of the MES. Initiation of vimentin upregulation in the MEE prior to contact of the palatal shelves was tested by serum-free organ culture of palates from embryos at 15.5 dpc with the shelves separated by a biocompatible membrane. Vimentin upregulation occurred in the epithelium specifically in the region of anticipated contact. These results are interpreted as indicating that i) cytokeratin K5/6 expression may play a critical role in the integration of the epithelial layers of the MES to ensure subsequent merging of the mesenchyme and ii) epithelial cells in the MEE are specifically 'primed' to upregulate expression of mesenchymal genes prior to integration into and breakdown of the MES.  相似文献   

10.
During fusion of the mammalian secondary palate, it has been suggested that palatal medial edge epithelial (MEE) cells disappear by means of apoptosis, epithelial-mesenchymal transformation (EMT) and epithelial cell migration. However, it is widely believed that MEE cells never differentiate unless palatal shelves make contact and the midline epithelial seam is formed. In order to clarify the potential of MEE cells to differentiate, we cultured single (unpaired) palatal shelves of ICR mouse fetuses by using suspension and static culture methods with two kinds of gas-mixtures. We thereby found that MEE cells can disappear throughout the medial edge even without contact and adhesion to the opposing MEE in suspension culture with 95% O2/5% CO2. Careful examination of MEE cell behavior in the culture revealed that apoptosis, EMT, and epithelial cell migration all occurred at various stages of MEE cell disappearance, including the transient formation and disappearance of epithelial triangles and islets. In contrast, MEE cells showed poor differentiation in static culture in a CO2 incubator. Furthermore, mouse and human amniotic fluids were found to prevent MEE cell differentiation in the cultured single palatal shelf, although paired palatal shelves fused successfully even in the presence of amniotic fluid. We therefore conclude that terminal differentiation of MEE cells is not necessarily dependent on palatal shelf contact and midline epithelial seam formation, but such MEE cell differentiation appears to be prevented in utero by amniotic fluid unless palatal shelves make close contact and the midline epithelial seam is formed.  相似文献   

11.
Formation of secondary palate in hamster was studied with electron microscopy. Prior to assuming horizontal position, the palatal shelves were covered by a two to three cell layer thick epithelium which was separated from the underlying mesenchyme by an intact basal lamina. Epithelial cells were attached to each other by desmosomes. Early hemidesmosomes could be identified as thickenings of the cytoplasmic membrane opposing the basal lamina. Epithelial cells, like other embryonic cells, contained only few organelles but were rich in polyribosomes. As the horizontal shelves approached each other towards the midline, lysosomes and tonofilaments appeared in the superficial and basal cells of the epithelia. Superficial cells showed degeneration and eventual lysis. Fusion of the opposing epithelia occurred between the deeper cells by means of newly formed desmosomes. The epithelial seam resulting from fusion of the epithelia was limited on each side by a continuous basal lamina. Its subsequent thining and eventual fragmentation resulted from the loss of cells by autophagy. There was no evidence of mesenchymal invasion of the epithelial seam. Mesenchymal macrophages appeared in the later stage of palatogenesis and were responsible for phagocytosis of cellular debris. Formation of the soft palate was basically similar to that of the secondary hard palate and occurred by fusion of the opposing shelves. Similarly, anterior closure of the palate occurred by fusion of the lower end of the nasal septum to the primary and secondary palates. Hyperplasia of the opposing epithelia, prior to their fusion, was often seen. It is suggested that formation of the palate occurs in predictable and coordinated fashion and that timely appearance of lysosomes causing lysis of intervening epithelia is of great significance in normal palatogenesis.  相似文献   

12.
Epidermal growth factor (EGF) injected into pregnant mice increased the frequency of cleft palate (CP) in cortisone-treated mouse fetuses. EGF alone produced proliferation and thickening of the epithelium of the palatal processes, but CP was not significantly increased over saline injected controls. Cortisone alone produced thinning of the palatal epithelium and caused CP in 61 percent of formed fetuses. The combination of EGF and cortisone treatment induced CP in 100 percent of formed fetuses; epithelial thickening still occurred with the combination treatment. Thus, EGF may be teratogenic under special circumstances. These observations suggest that the relative thickness of the palatal shelf epithelium may not be a critical factor in the fusion of the palatal shelves.  相似文献   

13.
The mechanism by which retinoids (RA) induce cleft palate is not known. During normal palatogenesis, the medial epithelia of opposing palatal shelves cease DNA synthesis, come into contact, adhere, and undergo programmed cell death (PCD). In organ cultures of day 12 embryonic mouse palatal shelves, epidermal growth factor (EGF) blocks PCD, and DNA synthesis continues. In the present study, the effects of trans-RA, 13-cis-RA, EGF, and combinations of EGF and RA on surface morphology, DNA synthesis, and cellular ultrastructure are determined for CD-1 embryonic mouse palatal shelves cultured on day 12 of gestation. DNA synthesis in the medial cells was sustained and PCD was blocked by EGF, trans-RA, and 13-cis-RA. Exposure to trans-RA, but not to 1-cis-RA, induced the medial epithelia to undergo hyperplasia, and addition of EGF enhanced the effect. In the presence of RA, particularly trans-RA, medial epithelial cells acquired nasal cell characteristics, and EGF enhanced this effect. Expansion of the mesenchymal extracellular spaces was blocked by trans-RA and to a lesser degree by 13-cis-RA. The RA-induced alterations in normal epithelial and mesenchymal cell differentiation may be relevant to the etiology of RA-induced cleft palate in vivo.  相似文献   

14.
During palatogenesis, fusion of the palatine shelves is a crucial event, the failure of which results in the birth defect, cleft palate. The fate of the midline epithelial seam (MES), which develops transiently upon contact of the two palatine shelves, is still strongly debated. Three major mechanisms underlying the regression of the MES upon palatal fusion have been proposed: (1) apoptosis has been evidenced by morphological and molecular criteria; (2) epithelial-mesenchymal transformation has been suggested based on ultrastructural and lipophilic dye cell labeling observations; and (3) migration of MES cells toward the oral and nasal areas has been proposed following lipophilic dye cell labeling. To verify whether epithelial-mesenchymal transformation of MES cells takes place during murine palatal fusion, we used the Cre/lox system to genetically mark Sonic hedgehog- and Keratin-14-expressing palatal epithelial cells and to identify their fate in vivo. Our analyses provide conclusive evidence that rules out the occurrence of epithelial-mesenchymal transformation of MES cells.  相似文献   

15.
Morphogenesis of the secondary palate in mammalian embryos involves two major events: first, reorientation of the two vertically oriented palatal shelves into a horizontal position above the tongue, and second, fusion of the two shelves at the midline. Genetic evidence in humans and mice indicates the involvement of matrix metalloproteinases (MMPs). As MMP expression patterns might differ from sites of activity, we used a recently developed highly sensitive in situ zymography technique to map gelatinolytic MMP activity in the developing mouse palate. At embryonic day 14.5 (E14.5), we detected strong gelatinolytic activity around the lateral epithelial folds of the nasopharyngeal cavity, which is generated as a consequence of palatal shelf elevation. Activity was concentrated in the basement membrane of the epithelial fold but extended into the adjacent mesenchyme, and increased in intensity with lateral outgrowth of the cavity at E15.5. Gelatinolytic activity at this site was not the consequence of epithelial fold formation, as it was also observed in Bmp7-deficient embryos where shelf elevation is delayed. In this case, gelatinolytic activity appeared in vertical shelves at the exact position where the epithelial fold will form during elevation. Mmp2 and Mmp14 (MT1-MMP), but not Mmp9 and Mmp13, mRNAs were expressed in the mesenchyme around the epithelial folds of the elevated palatal shelves; this was confirmed by immunostaining for MMP-2 and MT1-MMP. Weak gelatinolytic activity was also found at the midline of E14.5 palatal shelves, which increased during fusion at E15.5. Whereas MMPs have been implicated in palatal fusion before, this is the first report showing that gelatinases might contribute to tissue remodeling during early stages of palatal shelf elevation and formation of the nasopharynx.  相似文献   

16.
In mammals, the adhesion and fusion of the palatal shelves are essential mechanisms in the development of the secondary palate. Failure of any of these processes leads to the formation of cleft palate. The mechanisms underlying palatal shelf adhesion are poorly understood, although the presence of filopodia on the apical surfaces of the superficial medial edge epithelial (MEE) cells seems to play an important role in the adhesion of the opposing MEE. We demonstrate here the appearance of chondroitin sulphate proteoglycan (CSPG) on the apical surface of MEE cells only immediately prior to contact between the palatal shelves. This apical CSPG has a functional role in palatal shelf adhesion, as either the alteration of CSPG synthesis by β-d-Xyloside or its specific digestion by chondroitinase AC strikingly alters the in vitro adhesion of palatal shelves. We also demonstrate the absence of this apical CSPG in the clefted palates of transforming growth factor beta 3 (TGF-β3) null mutant mice, and its induction, together with palatal shelf adhesion, when TGF-β3 is added to TGF-β3 null mutant palatal shelves in culture. When chick palatal shelves (that do not adherein vivo nor express TGF-β3, nor CSPG in the MEE) are cultured in vitro, they do not express CSPG and partially adhere, but when TGF-β3 is added to the media, they express CSPG and their adhesion increases strikingly. We therefore conclude that the expression of CSPG on the apical surface of MEE cells is a key factor in palatal shelf adhesion and that this expression is regulated by TGF-β3.  相似文献   

17.
A morphological, electron microscopic, and biochemical study was undertaken to analyze the genesis of hadacidin-induced cleft palate in hamster fetuses. Gross and light microscopic observations indicated that hadacidin affected the growth of vertical palatal shelves to induce cleft palate. Electron microscopic observations showed that initial hadacidin-induced changes were seen in the mesenchymal cells. Within 12 hr of drug administration, the perinuclear space was swollen and a lysosomal response injury was evident in the mesenchymal cells. Subsequently, 24 hr after hadacidin treatment, lysosomes appeared in the epithelial cells; changes were also seen in the basal lamina which included separation of the lamina densa from the basal cells, duplication of lamina densa, and complete loss of basal lamina. Between 36 and 42 hr post-treatment, the cellular and basal lamina changes subsided, and the epithelium of vertical shelves underwent stratification. Biochemical determination of enzyme acid phosphatase indicated that the levels of enzyme activity in both the control and treated palatal tissues corresponded to the appearance of lysosomes. Measurement of cAMP levels suggested that the peak activity of cAMP corresponded to that of enzyme acid phosphatase and cell injury. The cAMP activity in hadacidin-injured cells, however, was significantly lower in comparison to that of the dying cells of control palates. Hadacidin treatment also affected DNA synthesis in the developing primordia of the palate. It was suggested that hadacidin injures the precursor cells of the palate prior to the appearance of the primordia, and subsequently affects their proliferative behavior, stunting the vertical growth of the palatal shelves and inducing a cleft palate.  相似文献   

18.
Pathogenesis of cleft palate in TGF-beta3 knockout mice.   总被引:13,自引:0,他引:13  
We previously reported that mutation of the transforming growth factor-beta3 (TGF-beta3) gene caused cleft palate in homozygous null (-/-) mice. TGF-beta3 is normally expressed in the medial edge epithelial (MEE) cells of the palatal shelf. In the present study, we investigated the mechanisms by which TGF-beta3 deletions caused cleft palate in 129 x CF-1 mice. For organ culture, palatal shelves were dissected from embryonic day 13.5 (E13.5) mouse embryos. Palatal shelves were placed singly or in pairs on Millipore filters and cultured in DMEM/F12 medium. Shelves were placed in homologous (+/+ vs +/+, -/- vs -/-, +/- vs +/-) or heterologous (+/+ vs -/-, +/- vs -/-, +/+ vs +/-) paired combinations and examined by macroscopy and histology. Pairs of -/- and -/- shelves failed to fuse over 72 hours of culture whereas pairs of +/+ (wild-type) and +/+ or +/- (heterozygote) and +/-, as well as +/+ and -/- shelves, fused within the first 48 hour period. Histological examination of the fused +/+ and +/+ shelves showed complete disappearance of the midline epithelial seam whereas -/- and +/+ shelves still had some seam remnants. In order to investigate the ability of TGF-beta family members to rescue the fusion between -/- and -/- palatal shelves in vitro, either recombinant human (rh) TGF-beta1, porcine (p) TGF-beta2, rh TGF-beta3, rh activin, or p inhibin was added to the medium in different concentrations at specific times and for various periods during the culture. In untreated organ culture -/- palate pairs completely failed to fuse, treatment with TGF-beta3 induced complete palatal fusion, TGF-beta1 or TGF-beta2 near normal fusion, but activin and inhibin had no effect. We investigated ultrastructural features of the surface of the MEE cells using SEM to compare TGF-beta3-null embryos (E 12. 5-E 16.5) with +/+ and +/- embryos in vivo and in vitro. Up to E13.5 and after E15.5, structures resembling short rods were observed in both +/+ and -/- embryos. Just before fusion, at E14.5, a lot of filopodia-like structures appeared on the surface of the MEE cells in +/+ embryos, however, none were observed in -/- embryos, either in vivo or in vitro. With TEM these filopodia are coated with material resembling proteoglycan. Interestingly, addition of TGF-beta3 to the culture medium which caused fusion between the -/- palatal shelves also induced the appearance of these filopodia on their MEE surfaces. TGF-beta1 and TGF-beta2 also induced filopodia on the -/- MEE but to a lesser extent than TGF-beta3 and additionally induced lamellipodia on their cell surfaces. These results suggest that TGF-beta3 may regulate palatal fusion by inducing filopodia on the outer cell membrane of the palatal medial edge epithelia prior to shelf contact. Exogenous recombinant TGF-beta3 can rescue fusion in -/- palatal shelves by inducing such filopodia, illustrating that the effects of TGF-beta3 are transduced by cell surface receptors which raises interesting potential therapeutic strategies to prevent and treat embryonic cleft palate.  相似文献   

19.
Runx1 is expressed in medial edge epithelial (MEE) cells of the palatal shelf. Conditionally rescued Runx1−/− mice showed limited clefting in the anterior junction between the primary and the secondary palatal shelves, but not in the junction between the secondary palates. In wild type mice, the fusing epithelial surface exhibited a rounded cobblestone-like appearance, while such cellular prominence was less evident in the Runx1 mutants. We also found that Fgf18 was expressed in the mesenchyme underlying the MEE and that locally applied FGF18 induced ectopic Runx1 expression in the epithelium of the palatal explants, indicating that Runx1 was induced by mesenchymal Fgf18 signaling. On the other hand, unpaired palatal explant cultures revealed the presence of anterior-posterior (A-P) differences in the MEE fates and fusion mechanism. Interestingly, the location of anterior clefting in Runx1 mutants corresponded to the region with different MEE behavior. These data showed a novel function of Runx1 in morphological changes in the MEE cells in palatal fusion, which is, at least in part, regulated by the mesenchymal Fgf signaling via an epithelial-mesenchymal interaction.  相似文献   

20.
Development of the secondary palate in Swiss white mouse embroyos was studied from age nine-and-one-half days in utero to the stage of mesenchymal coalescence in the secondary palate (approximately fifteen-and-one-half days). The greatest changes observed occur in the mesenchyme. At early stages, mesenchymal cells underlying oral ectoderm of the head are few and only occasionally contact the ectoderm. Electron micrographs show large intercellular spaces between the ectodermal cells. As embryogenesis continues, the mesenchymal cells become more numerous, closer to each other and closer to the epithelium. Just prior to horizontal transposition of shelves, the mesenchymal cells spread farther from each other and from the palatal epithelium and epithelium of the palatal tip becomes stretched. Ultrastructurally the intercellular spaces between epithelial cells of the palate tip have become much smaller. Some mitochondria in some epithelial cells are swollen and have clear matrices and distorted cristae. The shelves become horizontal and meet in the midpalate. Cells with degeneration bodies are seen in the epithelial seam. The seam undergoes autolysis and is replaced by mesenchyme. The morphological changes described, particularly in the mesenchyme, may play an important role in determining the effect of various teratogens at different stages of palatal development. The changes in both mesenchyme and epithelial cells in the later stages may constitute part of the process of preparing shelves for fusion as postulated by Pourtois ('66).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号